
A Case Study on Retrieval-Augmented Generation
for AI-Generated Content

Aditya Kumar
University Institute of Engineering

Chandigarh University
Mohali, India

24mai14003@cuchd.in

Abstract—Improvements in model algorithms has led to the
development of Artificial Intelligence Generated Content (AIGC),
aided by the expansion of core models, and the availability of
high-quality datasets. Even with its noteworthy accomplishments,
AIGC still confronts challenges that include keeping up with new
information, managing large amounts of training and inference
data, minimizing data leakage, and handling long tail data. The
paradigm known as Retrieval-Augmented Generation (RAG) has
now surfaced as a solution to these problems. Specifically, RAG
presents the information retrieval procedure that improves the
generation process by obtaining pertinent objects from accessible
data sources, resulting in increased robustness and accuracy. In
this study, we present a thorough overview of previous attempts
to include RAG methodologies into AIGC scenarios. In order to
isolate the essential abstractions of the augmentation approaches
for different retrievers and generators, we first categorize RAG
foundations based on how the retriever augments the generator.
All RAG situations are covered by this cohesive viewpoint, which
highlights developments and important technology that support
possible future breakthroughs. We also provide a summary of
further RAG enhancement techniques that help with efficient
RAG system deployment and engineering. Then, looking at things
from a different angle, we survey on real-world RAG applications
across many modalities and tasks, providing insightful references
for scholars and professionals. We also go over the shortcomings
of the existing RAG systems, present the benchmarks for RAG,
and make some recommendations for future research paths.

Index Terms—Retrieval-augmented generation, AI-generated
content, generative models, information retrieval.

I. INTRODUCTION

A. Background

Artificial Intelligence Generated Content (AIGC) has seen
a surge in attention in recent years. Large Language Models
(LLMs) such as the GPT series [1]–[3] and the LLAMA
series [4]–[6] for texts and codes, DALLE [7]–[9] and Sta-
ble Diffusion [10] for images, and Sora [11] novel model
algorithms, explosive scale of foundation models, and massive
high-quality datasets for videos are just a few examples
of the carefully designed content generation tools that can
produce a wide range of outputs across different modalities.
The term ”AIGC” highlights that sophisticated generative
models, instead of humans or rule-based methods, are used
to construct the contents. Consequently, the use of cutting-
edge model methods, enormous, high-quality datasets, and
foundation models with an exponential scale, these generative

models have demonstrated outstanding performance. In par-
ticular, image-generation tasks have moved from Generative
Adversarial Networks (GANs) [12] to Latent Diffusion Models
(LDMs) [10], while sequence-to-sequence tasks have moved
from using Long Short Term Memory (LSTM) networks [13]
to Transformer-based models [14]. It is noteworthy that the
architecture of foundation models has expanded from millions
of parameters at first [15], [16], to billions or even trillions
of parameters at this point [1], [4], [17]. The availability of
extensive, high-quality datasets [1], [18], which offer enough
training examples to completely tune model parameters, fur-
ther supports these developments.

Another essential use in computer science is information re-
trieval. Retrieval seeks to identify pertinent things that already
exist from a sizable pool of resources, as compared to genera-
tion. Web search engines, which are primarily concerned with
document retrieval, are the most common applications of re-
trieval [19], [20]. Currently, billion-scale document collections
can be handled by effective information retrieval systems [21],
[22]. Retrieval has been used for many additional modalities
in addition to documents [23]–[26].

Even with major progress in generative models, AIGC still
faces obstacles like as out-of-date knowledge, a lack of long-
tail knowledge [27], and the possibility of private training
data leaks [28]. Retrieval-Augmented Generation (RAG) uses
a flexible data store to try to alleviate these problems [29].
Retrievable knowledge serves as non-parametric memory that
may encode sensitive information, is readily updated, and can
handle a large amount of long-tail knowledge. Retrieval can
also reduce the cost of generation. Large models can be made
smaller with RAG [30], extended contexts can be supported
[31], and certain generation processes can be removed [32].

The retriever receives an input query, finds pertinent data
sources, and uses the knowledge to better the generating
process by interacting with the generator. Depending on how
the retrieved results enhance the generation, there are various
foundational paradigms (or foundations, to put it short): they
can act as an enhanced input to the generator [33], [34]; they
can join as latent representations at a mid-stage of generation
[35], [36]; they can contribute to the final generation results as
logits [37], [38]; they can even affect or omit certain generation
steps [32], [39]. Researchers have also suggested a number
of improvements to strengthen the basic RAG procedure.



These techniques include targeted improvements for particular
parts as well as comprehensive improvements targeted at the
pipeline as a whole.

Furthermore, although the idea behind RAG first surfaced
in text-to-text generation [34], this method has since found
use in a wide range of fields, includeing codes [40]–[42],
audios [43], [44], images [45]–[47], videos [48], [49], 3D
[50], [51], knowledge [52]–[54], and artificial intelligence for
science [55], [56]. Specifically, the fundamental concept and
methodology of RAG are substantially uniform throughout
modalities. It does, however, require some small modifications
to augmentation methods, and the choice of generators and
retrievers changes based on the particular modalities and
applications.

The lack of a comprehensive assessment covering all foun-
dations, advancements, and applications of RAG, in spite of
the field’s recent rapid expansion and expanding applications,
is impeding its progress. The practical relevance of the re-
search in this area is severely undermined by the lack of
discussion on RAG foundations, which prevents RAG’s full
potential from being realized. Despite of query-based RAG
in text-generation tasks having garnered most study interest,
it is important to recognize that other RAG foundations are
equally useful and have a great deal of room for expansion.
Another reason is that without a broad overview of RAG
applications, practitioners and academics tend to ignore RAG’s
advancements across a variety of modalities and are ignorant
of its potential applications.. While text creation is commonly
regarded as the primary use case for RAG, it is important to
note that RAG development in other modalities has also started
to gain traction and has produced encouraging developments.
A number of modalities have a long history of being asso-
ciated with retrieval procedures, which gives RAG its unique
qualities. Motivated by this, our goal in this study is to offer a
thorough survey that presents a methodical summary of RAG.

B. Contribution

This case study provides a thorough introduction to RAG,
addressing its origins, improvements, uses, benchmarks, con-
straints, and possible future paths. We extract the fundamentals
of RAG foundations, seeing applications as modifications of
these principles, notwithstanding differences in retrievers and
generators across modalities and workloads. The goal of this
paper is to provide scholars and practitioners with recommen-
dations and references, along with insightful information that
will help advance RAG techniques and related applications.
To summarize, the following is a list of contributions:

• This study performs a thorough analysis of RAG and
distills the foundational abstractions of RAG for different
retrievers and generators.

• Examination of the improvements made in RAG literature
and outlining the strategies used to make RAG systems
more efficient.

• Survey of existing AIGC methods that use RAG tech-
niques for different modalities and tasks, showing how
RAG adds value to existing generative models.

• RAG’s research directions and limitations, which provide
insight into possible future developments.

C. Related Work

Numerous surveys have appeared as RAG develops, al-
though they only cover a portion of the subject. Specifically,
they either only cover a small portion of RAG techniques
for specific contexts, or they solely concentrate on one RAG
foundation. Without a thorough examination of alternative
modalities, the majority of the publications that are now
available concentrate on text-related RAG activities that are
assisted by LLMs. A fundamental review of RAG is provided
in the survey by Li et al. [57], which also covers particular
applications related to text production tasks. Similar to this,
Asai et al.’s tutorial [58] focuses on retrieval-based language
models and describes their training approaches and architec-
tures. Meanwhile, RAG is examined in the context of LLMs in
a recent survey by Gao et al. [59], with a focus on query-based
RAG optimization techniques. Our approach extends RAG’s
reach to the full AIGC ecosystem, acknowledging its expan-
sion outside the text domain and enabling a more thorough
coverage of RAG research. Another survey, put forth by Zhao
et al. [60], skips over the topic of RAG foundations and instead
provides RAG applications across several modalities. Only a
portion of other modalities’ works are covered in another study
[61]. Even though certain facets of RAG have been studied in
previous research, a thorough overview including the basics,
improvements, and domain-specific applicability of RAG is
still lacking. The goal of this paper is to close this gap by
offering an organized analysis of RAG.

II. PRELIMINARY

A. Overview

The generator and the retriever are the two main modules
that make up the RAG system. The generator generates the
necessary contents, while the retriever looks for pertinent
information in the data store. The following is how the RAG
process goes: (i) The query is first sent to the retriever, which
then looks for pertinent data; (ii) The original query and the
retrieval results are then fed into the generator using a certain
augmentation process; (iii) Lastly, the generator generates the
intended results.

B. Generator

The era of AIGC has begun, thanks to generative AI’s
outstanding performance on a variety of jobs. In the RAG
system, the generating module is essential. For example,
transformer models are used for text-to-text tasks, VisualGPT
[62] is used for image-to-text tasks, Stable Diffusion [10] is
used for text-to-image tasks, Codex [2] is used for text-to-
code tasks, and so on. Various generative models are used
for different circumstances. Four common generators that are
commonly used in RAG are introduced here: the diffusion
model, GAN, LSTM, and transformer model.



1) Transformer Model: Transformer models, which com-
bine feedforward networks, layer normalization modules,
residual networks, and self-attention mechanisms, are among
the highest performing models in the field of natural language
processing (NLP) [63]. At each generating phase, vocabulary
classification is applied to a series of latent representations
obtained from tokenization and embedding to construct the
final output sequence.

2) LSTM: The Recurrent Neural Network (RNN) model
has a unique variant known as Long Short-Term Memory
(LSTM) [64]. Cell states and gating methods are used to
address the problems of exploding/vanishing gradients in
long-term dependence processing. The three gates in the
model—Input, Forget, and Output—filter data, while the
central Cell State module stores and controls the data. It
generates outputs autoregressively using the same vocabulary
classification technique as transformer models.

3) Diffusion Model: A family of deep generative models
known as diffusion models is capable of producing a wide
range of realistic data samples, such as texts, photos, videos,
molecules, and more [65]. In order to create fresh data from
noise, diffusion models first add noise to the data gradually
until it becomes random, then reverse the process. Neural
networks and probabilistic modeling serve as the foundation
for this procedure.

4) GAN: Generative Adversarial Networks (GANs) [12]
are deep learning models that can generate realistic images,
audio, and other data [66]. They consist of a generator and
a discriminator, which compete through adversarial learning.
The generator continuously improves its ability to generate re-
alistic samples, while the discriminator continuously improves
its ability to distinguish between true and false samples.

C. Retriever

Finding and obtaining pertinent information in response to
an information need is known as retrieval. In particular, let’s
look at data sources that may be thought of as a key-value
store, in which every key is associated with a value (keys and
values can be the same). The goal is to use a similarity function
to find the top k most similar keys to a given query in order
to extract the associated values. Existing retrieval techniques
can be divided into sparse retrieval, dense retrieval, and other
categories based on various similarity functions. The entire
process of commonly used sparse and dense retrieval may be
broken down into two separate stages: (i) each object is first
encoded into a particular representation, and (ii) an index is
created to arrange the data source for effective search.

1) Sparse Retriever: Sparse retrieval techniques are fre-
quently employed in document retrieval, where the documents
to be searched are represented by the keys or values. This is
done by making use of term matching metrics that examine
word statistics from texts and create inverted indices for
effective searching, such as TF-IDF [67], query probability
[68], and BM25 [19]. In general, BM25 is a robust baseline
for extensive online search that incorporates query token
occurrences, inverse document frequency weights, and other

relevant metrics. Typically, sparse retrieval uses an inverted
index to arrange items in order to facilitate effective search.
In specifics, every term in the query looks up a list of potential
documents, which are then ranked according to their statistical
rankings.

Typically, sparse retrieval uses an inverted index to arrange
items in order to facilitate effective search. In specifics, every
term in the query looks up a list of potential documents,
which are then ranked according to their statistical rankings.
Typically, sparse retrieval uses an inverted index to arrange
items in order to facilitate effective search. In specifics, every
term in the query looks up a list of potential documents, which
are then ranked according to their statistical rankings.

2) Dense Retriever: Dense retrieval techniques, in contrast
to sparse retrieval, use dense embedding vectors to represent
queries and keys and create an Approximate Nearest Neighbor
(ANN) index to expedite the search. This is true for every
modality. Recent developments in pre-trained models (like
BERT [15]) have been used to encode queries and keys
separately for text data [19]. Dense Passage Retrieval (DPR)
is a common term for this method. Models for encoding
code data [25], audio data [69], image data [24], video data
[70], and other types of data have been proposed, much like
text. Typically, measures like cosine, inner product, and L2-
distance are used to calculate the similarity score between
dense representations.

Contrastive learning is used in dense retrieval training to
make positive data more similar and negative samples less
similar. To improve model quality even more, a number of hard
negative techniques [71] have been put forth. ANN algorithms
are used for effective searching during inference. Tree [72],
[73], location sensitive hashing [74], neighbor graph indices
(e.g., HNSW [75], DiskANN [76]), and combined graph and
inverted indices (e.g., SPANN [22]) are some of the indices
created to support ANN search.

3) Others: There are more techniques for obtaining perti-
nent objects besides sparse and dense retrieval [77], [78]. Some
studies employ the edit distance between natural language texts
[79] or abstract syntax trees (AST) of code snippets [80], [81]
directly in place of computing representations. Relationships
between entities in knowledge graphs act as a pre-built index
for retrieval. K-hop neighbor searches can therefore be used
for retrieval in RAG approaches that use knowledge graphs
[82], [83]. Named Entity Recognition (NER) [84] is an addi-
tional retrieval technique in which the entities serve as keys
and the query as the input.

III. METHODOLOGIES

A. RAG Foundations

1) Query-based RAG: Originating from the concept of
prompt augmentation, query-based RAG easily incorporates
insights from retrieved data with the user’s inquiry, delivering
it straight into the generator’s input stage. This approach is
often used in RAG applications. After being retrieved, the
content is combined with the user’s initial query to generate
a composite input, which the generator processes to produce



a response. Query-based RAG is frequently used in many
different modalities.

REALM [33] uses a dual-BERT framework for text produc-
tion, combining knowledge extractors with pre-trained models
to expedite knowledge retrieval and integration. Lewis et
al. [85] used BART as the generator to efficiently improve
the generation and DPR for information retrieval. A critique
module is used by SELF-RAG [86] to assess if the retrieval
is necessary. Query-based RAG can be used in situations that
use LLM through API calls, in addition to being interoperable
with local generators. By considering the language model as
a ”black box,” REPLUG [87] adheres to this paradigm and
successfully incorporates pertinent external documents into the
query. The top-ranked documents are reordered and integrated
using a predictive reranker trained using In-Context RALM
[88], which leverages BM25 for document retrieval.

The query-based paradigm has been used in a number of
publications [42], [89]–[92] in the field of code to improve
the efficacy of downstream tasks by incorporating contextual
information from text or code into the prompt.

Recent studies on Knowledge Base Question Answering
(KBQA) have also demonstrated the important benefits of
integrating language and retrieval models. For example, by
combining inquiries and obtained data into prompts, Uni-
Parser [93], RNG-KBQA [82], and ECBRF [94] successfully
increase the accuracy and performance of QA systems.

Chat-Orthopedist [95], a tool in the AI-for-Science space,
uses recovered data in model prompts, facilitating in shared
decision-making for teenagers with idiopathic scoliosis and
increases the efficacy and accuracy of LLMs.

RetrieveGAN [45] incorporates retrieved data, such as se-
lected picture patches and their bounding boxes, into the
generator’s input stage to increase the relevance and accuracy
of generated images in the image generating task. Noise
vectors and instance characteristics are concatenated by IC-
GAN [96], which adjusts the particular conditions and details
of the generated images.

RetDream [50] uses CLIP [8] to first recover pertinent
3D elements for 3D generation. During the input phase, the
returned contents are combined with user input.

Frequently used in conjunction with LLM generators, query-
based RAG pro- vides modular flexibility that enables the rapid
integration of pretrained components for rapid deployment.
Using the retrieved data in this setting requires quick design.

2) Latent Representation-based RAG: The recovered ob-
jects are used as latent representations in generative models in
the latent representation-based RAG framework, thereby im-
proving the quality of the generated information and strength-
ening the model’s understanding capabilities.

FiD [35] and RETRO [36] are two traditional structures of
latent representation- based RAG in the text field upon which
numerous later works have made changes. FiD [35] combines
the generated latent representations for decoding by a single
decoder to generate the final output after processing each
recovered paragraph, its title, and the query through separate
encoders. After retrieving pertinent data for every segmented

sub-query, RETRO [36] uses a brand-new module called
Chunked Cross-Attention (CCA) to combine the obtained
data with each sub-query token. Other significant innovative
structures fall under the purview of latent representation-
based RAG as well. In order to enable input chunking and,
in theory, meet the long-criticized context length limits of
Transformer models, a number of studies [31], [97] have
integrated k Nearest Neighbor (kNN) search into transformer
blocks. Kuratov et al. [98] combined Transformer with RNN,
using the intermediate output of the model as the retrieval
content.

FiD has become widely used in the disciplines of science
and code, with applications in a variety of code-related do-
mains [99]–[103] and AI-for-Science [55].

Several research [104]–[107] use cross-attention techniques
in the visual domain to integrate their latent representations
and merge retrieval outcomes. On the other hand, Li et
al. [108] use an Affine Combination Module (ACM) that
concatenates hidden characteristics directly between text and
images.

Numerous studies [109]–[113] have used FiD and its deriva-
tives for downstream tasks inside the knowledge domain.
While TOME [114] shifts to a nuanced encoding of mentions,
giving mention granularity precedence over entity representa-
tions alone, EaE [115] improves the generator’s comprehen-
sion by entity-specific parameterization.

ReMoDiffuse [51] advances the field of 3D generation
by introducing a semantics-modulated attention method that
improves the precision of producing comparable 3D motions
from textual descriptions. By combining the original diffusion
process with the reference diffusion process, AMD [116]
successfully converts text to 3D motion.

Koizumi et al. [43] used an LLM in the audio domain,
directing the creation of audio captions by integrating encoded
dense information in the attention module. Deep features
are extracted from text and audio using different encoders
by ReAudioLDM [117], and these characteristics are then
included into the Latent Diffusion Model’s (LDM) attention
mechanism.

R-ConvED [48] processes retrieved video-sentence pairs
using an attention mechanism and a convolutional encoder-
decoder network, creating hidden states to generate captions
for videos. CARE [118] integrates idea representations into a
hybrid attention mechanism and presents a concept detector to
generate concept probabilities. EgoInstructor [49] enhances the
coherence and relevance of captions for egocentric videos by
combining text and visual elements via gated-cross attention.
Latent representation-based RAG combines retriever and gen-
erator hidden states and is flexible across modalities and tasks,
although it necessitates extra training to align latent spaces. It
makes it possible to create complex algorithms that smoothly
integrate the data that has been retrieved.

3) Logit-based RAG: During the decoding phase, gener-
ative models incorporate retrieval information via logits in
logit-based RAG. To calculate the probability for step-wise



generation, the logits are usually merged using straightforward
summation or models.

Language model probabilities and those derived from re-
trieval distances of identical prefixes are combined at each
decoding step in the text domain by kNN-LM [37] and its
version [38]. Using highly aligned tokens from a local database
as output, TRIME [119] and NPM [120] are radical extensions
of conventional kNNLM techniques that improve performance
especially in longtail distribution circumstances.

In addition to text, logit-based RAG is also used in other
modalities like code and images.

A number of research [80], [121] have also used the
kNN concept in the code domain to improve final output
control and attain better performance. Additionally, EDITSUM
[99] incorporates prototype summaries at the logit level to
enhance the quality of code summarisation. MA [122] uses
the kNN-LM frame work to solve the image caption problem
with positive outcomes. This makes logit-based RAG perfect
for sequence creation since it uses previous data to infer
current states and combines information at the logit level. It
emphasises generator training and makes room for cutting-
edge techniques that take advantage of probability distributions
for upcoming assignments.

4) Speculative RAG: Speculative RAG looks for ways to
economise resources and speed up reaction times by using
retrieval rather of pure production. REST [32] allows for the
creation of drafts by substituting retrieval for the tiny models
used in speculative decoding [123]. GPTCache [39] creates
a semantic cache to store LLM replies, hence resolving the
problem of excessive latency when utilising the LLM APIs.
In order to retrieve words or phrases from the documents rather
than generating them, COG [124] breaks down the text gen-
eration process into a sequence of copy-and-paste operations.
Cao et al. [125] suggested a novel paradigm that substitutes
directly retrieved phrase level content for generation in order
to remove the final result’s reliance on the calibre of the first-
stage retrieved content.

Sequential data is now the main use of speculative RAG.
Separating the generator and the retriever makes it possible
to employ pre-trained models as components directly. We can
investigate a greater variety of tactics to make efficient use of
the recovered content within this framework.

B. RAG Enhancements

1) Input Enhancement: The first input fed into the retriever
has a significant impact on the outcome of the retrieval
stage. This section presents query transformation and data
augmentation as two input enhancement techniques.

Query Transformation: By altering the input query, query
transformation can improve the retrieval outcome.

The original query is used by Query2doc [126] and HyDE
[127] to create a faux document, which is then used as the
retrieval query. Richer, pertinent information is included in the
pseudo document, which aids in the retrieval of more precise
results.

By using the obtained contents, TOC [128] breaks down
the confusing query into several distinct sub-queries, which
are then sent to the generator and combined to yield the final
output.

RQ-RAG [129] deconstructs complex or ambiguous en-
quiries into distinct subqueries for fine-grained retrieval and
combines the answers to provide a coherent response to the
initial inquiry. Tayal et al. [130] improved the generator’s
understanding of user intent by refining the original query
using context retrieval and dynamic few-shot samples.

Data Augmentation: By using methods including deleting
ambiguity, updating old documents, synthesising new data, and
removing extraneous information, data augmentation enhances
data prior to retrieval.

Make-An-Audio [44] adds random concept audio to en-
hance the original audio and employs captioning and audio-
text retrieval to create captions for language-free audio in
order to reduce data sparsity. In order to improve model
performance in response to instructional prompts, LESS [131]
analyses gradient information to optimise dataset selection
for downstream tasks. To pre-train the code retrieval model,
ReACC [92] uses data augmentation techniques including
renaming and dead code insertion. By using a ”Vocabulary
for 3GPP Specifications” and matching them to user queries
using a router module, TelcoRAG [132] improves the retrieval
accuracy.

2) Retriever Enhancement: The information sent into the
generators in RAG systems is determined by the quality of
the content that is retrieved. The likelihood of model halluci-
nations or other deterioration rises with lower content quality.
We present useful strategies to improve retrieval efficacy in
this section.

Recursive Retrieval: This method involves conducting sev-
eral searches to obtain more comprehensive and superior
content.

ReACT [133] provides deeper information by decompos-
ing questions for recursive retrieval using Chain-of-Thought
(CoT) [134]. The best retrieval material is chosen by RATP
[135] using the Monte-Carlo Tree Search for simulations. The
content is then templated and sent to the generator for output.
Chunk optimisation is the process of modifying chunk size to
enhance retrieval outcomes.

Chunk Optimization: Chunk optimization refers to adjusting
chunk size for improved retrieval results.

One of the chunk optimisation techniques used by LlamaIn-
dex [136] is based on the ”small to big” theory. Finding finer-
grained content while returning richer information is the main
idea here. Sentence-window retrieval, for example, retrieves
brief text passages and provides a window of pertinent sen-
tences that encircle the recovered section. Documents are or-
ganised in a tree structure for automerge retrieval. By initially
retrieving the child node, the method obtains the parent node,
which contains the content of its child nodes. RAPTOR [137]
uses recurrent embedding, clustering, and summarisation of
text chunks until additional clustering is impractical in order to
solve the lack of contextual information. This creates a multi-



level tree structure. By creating a table of contents beforehand,
PromptRAG [138] improves retrieval accuracy by allowing the
model to choose pertinent chapters on its own based on the
query. To increase recollection and produce better outcomes,
Raina et al. [139] divide text fragments into smaller, more
atomic assertions.

Retriever Finetuning: The core component of the RAG
system, the retriever, depends on an effective embedding
model [140]–[143] to feed the generator with relevant content
and represent it, improving system performance.

Furthermore, domain-specific or task-related data can be
used to refine embedding models with high expressive power
in order to improve performance in certain domains. REPLUG
[87] handles LM as black box, which updates the retriever
model in response to the outcomes. Python files, api names,
signatures, and descriptions are used by APICoder [89] to
refine the retriever.

After retrieval, EDITSUM [99] optimises the retriever to
reduce the jaccard distance between summaries. Target Simi-
larity Tuning (TST) is used by SYNCHROMESH [81] to fine-
tune the retriever after adding tree distance os ASTs to the
loss. Using the same data as the generator, R-ConvED [48]
optimizes the retriever. InfoNCE loss was used by Kulkarni et
al. [144] to optimise the retriever.

Hybrid Retrieval: A hybrid retrieve refers to the simultane-
ous use of a wide range of retrieval techniques or the extraction
of data from several different sources.

To increase the quality of retrieval, RAP-Gen [145], Blende-
dRAG [146], and ReACC [92] employ both dense and sparse
retrievers. Rencos [80] retrieves similar code snippets on a
syntactic level using a sparse retriever and on a semantic level
using a dense retriever. BASHEXPLAINER [100] first gathers
semantic data using a dense retriever, and then it gathers
lexical data using a sparse retriever. RetDream [50] retrieves
using text first, followed by image embedding. A retrieval
evaluator in CRAG [147] determines the relevance of doc-
uments to queries and generates three retrieval replies based
on confidence: a hybrid approach for unclear circumstances,
Web Search if results are inaccurate, and direct use of results
for Knowledge Refinement if results are accurate. By adding
DKS (Dense Knowledge Similarity) and RAC (Retriever as
Answer Classifier) to the retrieval phase and assessing answer
relevance and knowledge applicability, Huang et al. [148]
enhanced question-answering. A new type of token known as
the ”acting token,” which establishes the source from which
to obtain information, is introduced by UniMSRAG [149]. By
combining text and drawing for fine-grained retrieval, Koley et
al. [150] improve image retrieval and produce better outcomes.

Reranking: Rearranging the content that has been obtained
in order to increase diversity and improve outcomes is known
as the Rerank technique. In order to lessen the impact of infor-
mation loss brought on by text compression into vectors, Re2G
[151] uses a re-ranker [152] model after the conventional re-
triever. In order to eliminate redundant programs and produce
a diversified set of retrieved programs, AceCoder [153] reranks
the programs using a selector. Following retrieval, XRICL

[154] employs an exemplar reranker based on distillation.
Rangan, et al. [155] evaluate the similarity of data subsets and
reranks retrieval results by using the Quantised Influence Mea-
sure, which measures statistical biases between a query and
a reference. In order to create a cohesive retriever, UDAPDR
[156] use multi-teacher knowledge distillation in conjunction
with LLMs to economically produce synthetic queries that
train domain-specific rerankers. By using a static LLM for
document rating and reward model training in addition to
knowledge distillation, LLM-R [157] iteratively improves its
retriever. Progressive optimisation is made possible by the
retriever’s incremental improvement with each training cycle.
Finardi et al. [158] used monoT5 as a reranker to maximise
the quality of the results and incorporated reciprocal rank into
the retrieval process for improved text chunk relevancy. Li et
al. [159] improve the retrieval quality and factual accuracy of
LLMs by incorporating a reranking module into their end-to-
end RAG system.

Retrieval Tranformation: Retrieval transformation is the
process of reword- ing content that has been retrieved in order
to better engage the generator’s potential and provide better
output.

In order to simplify the generator’s duty and enable precise
answer prediction, FILCO [160] effectively removes unneces-
sary content from recovered text, separating just the relevant
supporting stuff. In order to significantly reduce latency time,
FiD-Light [161] first uses an encoder to transform the retrieved
content into a vector, which it subsequently compresses. Using
a template, RRR [162] combines the current query with the
top-k documents in each round before restructuring it using
LLMs that have already been trained (GPT-3.5-Turbo, etc.).

Others: There are more optimisation techniques for the
retrieval process in addition to the ones mentioned above.

For instance, meta-data filtering [163] is a technique to aid
in the processing of retrieved documents by filtering them for
better outcomes using metadata (such as time, purpose, etc.).
By asking an LLM to produce documents in response to a
specific query, GENREAD [164] and GRG [165] present a
revolutionary method that replaces or enhances the retrieval
process. In order to improve retrieval accuracy, Multi-Head-
RAG [166] uses a multi-head attention layer to capture distinct
informational features and numerous embedding models to
project the same text chunk into different vector spaces.

C. Generator Enhancement

The quality of the output results in RAG systems is fre-
quently dictated by the quality of the generator. As a result,
the maximum effectiveness of the entire RAG system is
determined by the generator’s capability.

Prompt Engineering: LLM generators in RAG systems
might benefit from technologies in prompt engineering [167]
that concentrate on enhancing the output quality of LLMs,
such prompt compression, Stepback Prompt [168], Active
Prompt [169], Chain of Thought Prompt [134], etc.

In order to speed up model inference, LLMLingua [170]
uses a tiny model to condense the query’s total length. This



lessens the detrimental effect of extraneous information on
the model and the ”Lost in the Middle” [171] issue. Using
ChatGPT, ReMoDiffuse [51] breaks down intricate explana-
tions into anatomical text scripts. To improve outcomes, ASAP
[172] adds exemplar tuples—which include input code, func-
tion definitions, analysis findings, and related comments—to
prompts. CEDAR [90] arranges code demonstration, ques-
tion, and natural language instructions into a prompt using
a pre-made prompt template. Translation pairs are added by
XRICL [154] using COT technology as a transitional stage in
cross-linguistic semantic parsing and inference. The Cognition
Nexus method is used by ACTIVERAG [173] to calibrate
LLMs’ internal cognition, and COT prompt is applied when
generating answers. Other modalities can be used as input by
Make-An-Audio [44], which can yield far more detailed data
for the process that follows.

Generator Finetuning: Among other changes, decoding
tuning entails improving generator control by adjusting hy-
perparameters for greater variability and limiting the output
vocabulary.

InferFix [91] modifies the decoder’s temperature to balance
the variety and calibre of returns. SYNCHROMESH [81]
uses a completion engine to remove implementation flaws
and restricts the decoder’s output vocabulary. Finetuning the
generator can improve the model’s capacity to suit the retriever
more accurately or have more exact domain knowledge.

RETRO combines the content of the query and retriever
by fixing the retriever’s parameters and using the chunked
cross attention mechanism in the generator. The generator
CODEGEN-MONO 350M [174] is improved by API-Coder
[90] using a shuffled new file along with code blocks and
API metadata. While maintaining the encoders and retriever
fixed, CARE [118] trains encoders using picture, audio, and
video-text pairings before optimising the decoder (generator)
to concurrently decrease caption and concept identification
loss. After using picture data to optimise the video generator,
Animate-AStory [175] fine tunes a LoRA [176] adaptor to
capture the specifics of the character’s appearance. RetDream
[50] uses the produced images to refine a LoRA adaptor [176].

D. Result Enhancement

In many situations, RAG results might not have the desired
impact; nevertheless, there are methods for improving results
that can assist mitigate this issue.

Output Rewrite: Rewriting the material produced by the
generator in specific situations to satisfy the requirements
of activities that come after is known as output rewrite. In
order to better match the real-world code context, SARGAM
[177] uses a unique Transformer in conjunction with Deletion,
Placeholder, and Insertion Classifiers to enhance outputs in
code-related activities. By reranking candidates according to
the average of the log probabilities generated by the generator
for each token, Ring [178] is able to acquire diversity out-
comes. By matching the created relations with those shown in
the knowledge graph’s immediate neighbourhood of the query
entity, CBRKBQA [54] updates the outcome.

E. RAG Pipeline Enhancement

RAG pipeline augmentation is the process of streamlining
the entire RAG process to improve performance outcomes.

Adaptive Retrieval: According to certain RAG research, re-
trieval doesn’t always improve the outcome. When the model’s
intrinsic parameterised information is sufficient to address
pertinent concerns, over-retrieval may result in resource waste
and possible misunderstanding. Thus, rule-based and model-
based techniques to assessing retrieval requirement will be
covered in this subsection.

Rule Based: Using probability, FLARE [179] actively deter-
mines when and whether to search during the generating pro-
cess. To calculate the percentage of generation and retrieval,
Efficient-KNNLM [38] includes the generation probability of
KNN-LM [37] and NPM [120] along with a hyperparameter
λ.

For high-level questions, Mallen et al. [27] used statistical
analysis to provide accurate answers, but for low-frequency
questions they used RAG. Jiang et al. [180] assessed model
confidence using fit statistics, model uncertainty, and fit un-
certainty to inform regression choices. In order to determine
whether the deduction is appropriate, Kandpal et al. [181]
investigated the relationship between the amount of relevant
text and the comprehension of model knowledge.

Model-based: In order to decide whether to execute a
retrieval based on the retrieve token under various user queries,
Self-RAG [86] makes use of a trained generator. Ren et
al. [182] employed ”Judgement Prompting” to assess LLMs’
ability to respond to pertinent queries and the accuracy of their
responses, which helped determine if a retrieval was required.

SKR [183] makes use of LLMs’ inherent capacity to de-
termine beforehand whether they are able to respond to the
inquiry; if they do, no retrieval is necessary. In order to ascer-
tain whether information retrieval is necessary, Rowen [184]
translates a query into several languages and verifies that the
responses are consistent across these languages. AdaptiveRAG
[185] uses a classifier, which is a smaller LM, to dynamically
determine whether to retrieve based on the query difficulty.

Iterative RAG: Instead of using a single round, iterative
RAG cycles through the retrieval and creation phases again
to gradually improve results.

In order to effectively utilise scattered data and enhance
results, RepoCoder [186] refines queries using previously
created code through an iterative retrieval-generation approach
to code completion. By employing the generator’s output to
identify knowledge gaps, retrieve pertinent data, and inform
subsequent generation cycles, ITER-RETGEN [187] itera-
tively improves the quality of the content. Using an iterative
retrieval-augmented generator, SelfMemory [188] creates a
large memory pool from which a memory selector selects an
output to feed the subsequent generation cycle. RAT [189]
uses a zero-shot CoT prompt to first generate material by an
LLM, then retrieves information from an external knowledge
store to update each thinking step.



IV. DISCUSSION

Despute the widespread adoption of RAG, it suffers from
several limitations by design.

A. Noises in Retrieval Results

Information loss in item representations and ANN search
makes information retrieval fundamentally faulty. RAG sys-
tems may experience failure points due to the unavoidable
noise, which may appear as irrelevant content or false in-
formation [190]. Nevertheless, current research surprisingly
discovers that noisy retrieval results may improve generation
quality, even while increasing retrieval accuracy seems obvious
for RAG efficacy [191]. One explanation is that quick building
may be facilitated by a variety of retrieval outcomes [192].
As a result, it is unclear how retrieval noise affects real
applications, which causes misunderstandings regarding metric
selection and retriever-generator interaction

B. Extra Overhead

In most situations, retrieval has non-negligible overhead,
even if it can occasionally lower generating costs [30]–
[32]. Stated differently, delay is necessarily increased by the
retrieval and interaction operations. This is enhanced when
RAG is used in conjunction with sophisticated enhancing
techniques like iterative RAG [186] and recursive retrieval
[193]. Moreover, the complexity of access and storage will
rise in tandem with the size of retrieval sources [194]. The
usefulness of RAG for latency-sensitive real-time systems is
severely hampered by this overhead.

C. The Gap between Generators and Retrievers

The interplay between retrievers and generators necessitates
careful design and optimisation because their latent spaces
and goals may not coincide. Present methods either separate
generation and retrieval or combine them in a middle stage.
The latter could gain from combined training but hinder
generality, whereas the former is more modular. Choosing an
affordable engagement strategy to close the gap is difficult and
requires careful consideration in real-world situations.

D. Increased System Complexity

The complexity of the system and the amount of hyper-
parameters to adjust inevitably rise with the addition of
retrieval. In query-based RAG, for example, a recent study
discovered that employing top-k rather than a single retrieval
enhances attribution but degrades fluency [195]. Other factors,
such metric selection, are yet not fully investigated. Therefore,
when RAG is involved, tuning the generation service calls for
greater skill.

E. Lengthy Context

RAG’s enormous context lengthening, especially the query-
based RAG, is one of its main drawbacks, rendering it
unworkable for generators with constrained context length.
Furthermore, the extended context often slows down the
creation process. These issues have been somewhat alleviated

by research developments in long-context support [196] and
quick compression [170], but at a minor cost or accuracy trade-
off.

V. CONCLUSION

This case study discussed about an extensive and in-depth
analysis of RAG in the framework of AIGC, highlighting
special attention to the applications, improvements, and foun-
dations of augmentation. We started by methodically classify-
ing and summarising the fundamental RAG concepts, offering
insights into how retrievers and generators interact. Next, we
looked at the improvements made to RAG that increase its
efficacy even more, whether they were made to the pipeline
as a whole or to individual components. We demonstrated
real-world RAG implementations in a variety of tasks and
modalities to aid researchers from a wide range of fields.

REFERENCES

[1] T. B. Brown, B. Mann et al., “Language models are few-shot learners,”
in NeurIPS, 2020.

[2] M. Chen, J. Tworek et al., “Evaluating large language models trained
on code,” arXiv:2107.03374, 2021.

[3] OpenAI, “GPT-4 technical report,” arXiv:2303.08774, 2023.
[4] H. Touvron, T. Lavril et al., “Llama: Open and efficient foundation

language models,” arXiv:2302.13971, 2023.
[5] H. Touvron, L. Martin et al., “Llama 2: Open foundation and fine-tuned

chat models,” arXiv:2307.09288, 2023.
[6] B. Rozière, J. Gehring et al., “Code llama: Open foundation models

for code,” arXiv:2308.12950, 2023.
[7] A. Ramesh, M. Pavlov, G. Goh et al., “Zero-shot text-to-image gener-

ation,” in ICML, 2021.
[8] A. Ramesh, P. Dhariwal, A. Nichol et al., “Hierarchical text-conditional

image generation with CLIP latents,” arXiv:2204.06125, 2022.
[9] J. Betker, G. Goh, L. Jing et al., “Improving image generation with

better captions,” Computer Science, vol. 2, no. 3, p. 8, 2023.
[10] R. Rombach, A. Blattmann, D. Lorenz et al., “High-resolution image

synthesis with latent diffusion models,” in IEEE/CVF, 2022.
[11] OpenAI, “Video generation models as world simulators,” https://openai.

com/research/video-generation-models-as-world-simulators, 2024.
[12] I. Goodfellow, J. Pouget-Abadie, M. Mirza et al., “Generative adver-

sarial networks,” CACM, vol. 63, no. 11, pp. 139–144, 2020.
[13] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural

Comput., vol. 9, no. 8, pp. 1735–1780, 1997.
[14] A. Vaswani, N. Shazeer, N. Parmar et al., “Attention is all you need,”

in NeurIPS, 2017.
[15] D. Guo, S. Ren et al., “Graphcodebert: Pre-training code representa-

tions with data flow,” in ICLR, 2021.
[16] C. Raffel, N. Shazeer, A. Roberts et al., “Exploring the limits of transfer

learning with a unified text-to-text transformer,” JMLR, vol. 21, pp.
140:1–140:67, 2020.

[17] W. Fedus, B. Zoph, and N. Shazeer, “Switch transformers: Scaling to
trillion parameter models with simple and efficient sparsity,” JMLR,
vol. 23, no. 120, pp. 1–39, 2022.

[18] J. Kaplan, S. McCandlish, T. Henighan et al., “Scaling laws for neural
language models,” 2020.

[19] S. E. Robertson and H. Zaragoza, “The probabilistic relevance frame-
work: BM25 and beyond,” FTIR, vol. 3, no. 4, pp. 333–389, 2009.

[20] V. Karpukhin, B. Oguz, S. Min et al., “Dense passage retrieval for
open-domain question answering,” in EMNLP, 2020.

[21] J. Johnson, M. Douze, and H. Jégou, “Billion-scale similarity search
with gpus,” IEEE Trans. Big Data, vol. 7, no. 3, pp. 535–547, 2021.

[22] Q. Chen, B. Zhao, H. Wang et al., “SPANN: highly-efficient billion-
scale approximate nearest neighborhood search,” in NeurIPS, 2021.

[23] R. Datta, D. Joshi, J. Li et al., “Image retrieval: Ideas, influences, and
trends of the new age,” CSUR, vol. 40, no. 2, pp. 5:1–5:60, 2008.

[24] A. Radford, J. W. Kim, C. Hallacy et al., “Learning transferable visual
models from natural language supervision,” in ICML, 2021.

[25] Z. Feng, D. Guo et al., “Codebert: A pre-trained model for program-
ming and natural languages,” in EMNLP Findings, 2020.

https://openai.com/research/video-generation-models-as-world-simulators
https://openai.com/research/video-generation-models-as-world-simulators


[26] Y. Wu, K. Chen, T. Zhang et al., “Large-scale contrastive language-
audio pretraining with feature fusion and keyword-to-caption augmen-
tation,” in ICASSP, 2023.

[27] A. Mallen, A. Asai, V. Zhong et al., “When not to trust language
models: Investigating effectiveness of parametric and non-parametric
memories,” in ACL, 2023.

[28] N. Carlini, F. Tramèr et al., “Extracting training data from large
language models,” in USENIX, 2021.

[29] M. Kang, N. M. Gürel et al., “C-RAG: certified generation risks for
retrieval-augmented language models,” arXiv:2402.03181, 2024.

[30] G. Izacard, P. Lewis, M. Lomeli et al., “Atlas: Few-shot learning with
retrieval augmented language models,” arXiv:2208.03299, 2022.

[31] Y. Wu, M. N. Rabe, D. Hutchins, and C. Szegedy, “Memorizing
transformers,” in ICLR, 2022.

[32] Z. He, Z. Zhong, T. Cai et al., “REST: retrieval-based speculative
decoding,” arxiv:2311.08252, 2023.

[33] K. Guu, K. Lee, Z. Tung et al., “REALM: retrieval-augmented lan-
guage model pre-training,” ICML, 2020.

[34] P. S. H. Lewis, E. Perez, A. Piktus et al., “Retrieval-augmented
generation for knowledge-intensive NLP tasks,” in NeurIPS, 2020.

[35] G. Izacard and E. Grave, “Leveraging passage retrieval with generative
models for open domain question answering,” in EACL, 2021.

[36] S. Borgeaud, A. Mensch et al., “Improving language models by
retrieving from trillions of tokens,” in ICML, 2022.

[37] U. Khandelwal, O. Levy, D. Jurafsky et al., “Generalization through
memorization: Nearest neighbor language models,” in ICLR, 2020.

[38] J. He, G. Neubig, and T. Berg-Kirkpatrick, “Efficient nearest neighbor
language models,” in EMNLP, 2021.

[39] zilliztech. (2023) Gptcache. [Online]. Available: https://github.com/
zilliztech/GPTCache

[40] M. R. Parvez, W. U. Ahmad et al., “Retrieval augmented code
generation and summarization,” in EMNLP Findings, 2021.

[41] W. U. Ahmad, S. Chakraborty, B. Ray et al., “Unified pre-training for
program understanding and generation,” in NAACL-HLT, 2021.

[42] S. Zhou, U. Alon, F. F. Xu et al., “Docprompting: Generating code by
retrieving the docs,” in ICLR, 2023.

[43] Y. Koizumi, Y. Ohishi et al., “Audio captioning using pre-trained large-
scale language model guided by audio-based similar caption retrieval,”
arXiv:2012.07331, 2020.

[44] R. Huang, J. Huang, D. Yang et al., “Make-an-audio: Text-to-audio
generation with prompt-enhanced diffusion models,” in ICML, 2023.

[45] H.-Y. Tseng, H.-Y. Lee et al., “Retrievegan: Image synthesis via
differentiable patch retrieval,” in ECCV, 2020.

[46] S. Sarto, M. Cornia, L. Baraldi, and R. Cucchiara, “Retrieval-
augmented transformer for image captioning,” in CBMI, 2022.

[47] R. Ramos, B. Martins et al., “Smallcap: lightweight image captioning
prompted with retrieval augmentation,” in CVPR, 2023.

[48] J. Chen, Y. Pan, Y. Li et al., “Retrieval augmented convolutional
encoder-decoder networks for video captioning,” TOMCCAP, vol. 19,
no. 1s, pp. 48:1–48:24, 2023.

[49] J. Xu, Y. Huang, J. Hou et al., “Retrieval-augmented egocentric video
captioning,” arXiv:2401.00789, 2024.

[50] J. Seo, S. Hong et al., “Retrieval-augmented score distillation for text-
to-3d generation,” arXiv:2402.02972, 2024.

[51] M. Zhang, X. Guo, L. Pan et al., “Remodiffuse: Retrieval-augmented
motion diffusion model,” in ICCV, 2023.

[52] X. Hu, X. Wu, Y. Shu, and Y. Qu, “Logical form generation via multi-
task learning for complex question answering over knowledge bases,”
in COLING, 2022.

[53] X. Huang, J. Kim, and B. Zou, “Unseen entity handling in complex
question answering over knowledge base via language generation,” in
EMNLP Findings, 2021.

[54] R. Das, M. Zaheer, D. Thai et al., “Case-based reasoning for natural
language queries over knowledge bases,” in EMNLP, 2021.

[55] Z. Wang, W. Nie, Z. Qiao et al., “Retrieval-based controllable molecule
generation,” in ICLR, 2022.

[56] Q. Jin, Y. Yang, Q. Chen, and Z. Lu, “Genegpt: Augmenting large
language models with domain tools for improved access to biomedical
information,” Bioinformatics, vol. 40, no. 2, p. btae075, 2024.

[57] H. Li, Y. Su, D. Cai et al., “A survey on retrieval-augmented text
generation,” arxiv:2202.01110, 2022.

[58] A. Asai, S. Min, Z. Zhong, and D. Chen, “Acl 2023 tutorial: Retrieval-
based language models and applications,” ACL 2023, 2023.

[59] Y. Gao, Y. Xiong et al., “Retrieval-augmented generation for large
language models: A survey,” arxiv:2312.10997, 2023.

[60] R. Zhao, H. Chen et al., “Retrieving multimodal information for
augmented generation: A survey,” in EMNLP, 2023.

[61] Y. Ding, W. Fan et al., “A survey on rag meets llms: Towards retrieval-
augmented large language models,” arXiv:2405.06211, 2024.

[62] J. Chen, H. Guo, K. Yi et al., “Visualgpt: Data-efficient adaptation of
pretrained language models for image captioning,” in CVPR, 2022.

[63] Y. Tay, M. Dehghani, D. Bahri, and D. Metzler, “Efficient transformers:
A survey,” CSUR, vol. 55, no. 6, pp. 109:1–109:28, 2023.

[64] G. V. Houdt et al., “A review on the long short-term memory model,”
Artif. Intell. Rev., vol. 53, no. 8, pp. 5929–5955, 2020.

[65] L. Yang, Z. Zhang et al., “Diffusion models: A comprehensive survey
of methods and applications,” CSUR, vol. 56, no. 4, pp. 1–39, 2023.

[66] J. Gui, Z. Sun, Y. Wen et al., “A review on generative adversarial
networks: Algorithms, theory, and applications,” TKDE, vol. 35, no. 4,
pp. 3313–3332, 2023.

[67] S. E. Robertson and S. Walker, “On relevance weights with little
relevance information,” in SIGIR, 1997.

[68] J. D. Lafferty and C. Zhai, “Document language models, query models,
and risk minimization for information retrieval,” in SIGIR, 2001.

[69] S. Hershey, S. Chaudhuri et al., “CNN architectures for large-scale
audio classification,” in ICASSP, 2017.

[70] J. Dong, X. Li, C. Xu et al., “Dual encoding for zero-example video
retrieval,” in CVPR, 2019.

[71] L. Xiong, C. Xiong, Y. Li et al., “Approximate nearest neighbor
negative contrastive learning for dense text retrieval,” in ICLR, 2021.

[72] J. L. Bentley, “Multidimensional binary search trees used for associa-
tive searching,” CACM, vol. 18, no. 9, pp. 509–517, 1975.

[73] W. Li, C. Feng, D. Lian et al., “Learning balanced tree indexes for
large-scale vector retrieval,” in SIGKDDg, 2023.

[74] M. Datar, N. Immorlica, P. Indyk et al., “Locality-sensitive hashing
scheme based on p-stable distributions,” in SCG, 2004.

[75] Y. A. Malkov and D. A. Yashunin, “Efficient and robust approxi-
mate nearest neighbor search using hierarchical navigable small world
graphs,” TPAMI, vol. 42, no. 4, pp. 824–836, 2018.

[76] S. Jayaram Subramanya, F. Devvrit et al., “Diskann: Fast accurate
billion-point nearest neighbor search on a single node,” NeurIPS, 2019.

[77] Y. Wang, Y. Hou, H. Wang et al., “A neural corpus indexer for
document retrieval,” in NeurIPS, 2022.

[78] H. Zhang, Y. Wang, Q. Chen et al., “Model-enhanced vector index,”
in NeurIPS, 2023.

[79] S. A. Hayati, R. Olivier, P. Avvaru et al., “Retrieval-based neural code
generation,” in EMNLP, 2018.

[80] J. Zhang, X. Wang, H. Zhang et al., “Retrieval-based neural source
code summarization,” in ICSE, 2020.

[81] G. Poesia, A. Polozov, V. Le et al., “Synchromesh: Reliable code
generation from pre-trained language models,” in ICLR, 2022.

[82] X. Ye, S. Yavuz et al., “RNG-KBQA: generation augmented iterative
ranking for knowledge base question answering,” in ACL, 2022.

[83] Y. Shu et al., “TIARA: multi-grained retrieval for robust question
answering over large knowledge bases,” arXiv:2210.12925, 2022.

[84] X. V. Lin, R. Socher et al., “Bridging textual and tabular data for
cross-domain text-to-sql semantic parsing,” arXiv:2012.12627, 2020.

[85] P. Lewis, E. Perez, A. Piktus, F. Petroni, V. Karpukhin, N. Goyal,
H. Küttler, M. Lewis, W.-t. Yih, T. Rocktäschel et al., “Retrieval-
augmented generation for knowledge-intensive nlp tasks,” Advances in
Neural Information Processing Systems, vol. 33, pp. 9459–9474, 2020.

[86] A. Asai, Z. Wu, Y. Wang et al., “Self-rag: Learning to retrieve, generate,
and critique through self-reflection,” arxiv:2310.11511, 2023.

[87] W. Shi, S. Min, M. Yasunaga et al., “Replug: Retrieval-augmented
black-box language models,” arXiv:2301.12652, 2023.

[88] O. Ram, Y. Levine, I. Dalmedigos et al., “In-context retrieval-
augmented language models,” arXiv:2302.00083, 2023.

[89] D. Zan, B. Chen, Z. Lin et al., “When language model meets private
library,” in EMNLP Findings, 2022.

[90] N. Nashid, M. Sintaha, and A. Mesbah, “Retrieval-based prompt
selection for code-related few-shot learning,” in ICSE, 2023.

[91] M. Jin, S. Shahriar, M. Tufano et al., “Inferfix: End-to-end program
repair with llms,” in ESEC/FSE, 2023.

[92] S. Lu, N. Duan, H. Han et al., “Reacc: A retrieval-augmented code
completion framework,” in ACL, 2022.

https://github.com/zilliztech/GPTCache
https://github.com/zilliztech/GPTCache


[93] Y. Liu, S. Yavuz, R. Meng, D. Radev, C. Xiong, and Y. Zhou,
“Uni-parser: Unified semantic parser for question answering on
knowledge base and database,” in Proceedings of the 2022 Conference
on Empirical Methods in Natural Language Processing, Y. Goldberg,
Z. Kozareva, and Y. Zhang, Eds. Abu Dhabi, United Arab Emirates:
Association for Computational Linguistics, Dec. 2022, pp. 8858–8869.
[Online]. Available: https://aclanthology.org/2022.emnlp-main.605/

[94] Z. Yang, X. Du, E. Cambria et al., “End-to-end case-based reasoning
for commonsense knowledge base completion,” in EACL, 2023.

[95] W. Shi, Y. Zhuang, Y. Zhu et al., “Retrieval-augmented large language
models for adolescent idiopathic scoliosis patients in shared decision-
making,” in ACM-BCB, 2023.

[96] A. Casanova, M. Careil, J. Verbeek et al., “Instance-conditioned gan,”
in NeurIPS, 2021.

[97] A. Bertsch, U. Alon, G. Neubig, and M. R. Gormley, “Unlimiformer:
Long-range transformers with unlimited length input,” 2024.

[98] Y. Kuratov, A. Bulatov et al., “In search of needles in a 10m haystack:
Recurrent memory finds what llms miss,” arXiv:2402.10790, 2024.

[99] J. Li, Y. Li, G. Li et al., “Editsum: A retrieve-and-edit framework for
source code summarization,” in ASE, 2021.

[100] C. Yu, G. Yang, X. Chen et al., “Bashexplainer: Retrieval-augmented
bash code comment generation based on fine-tuned codebert,” in
ICSME, 2022.

[101] T. B. Hashimoto, K. Guu, Y. Oren, and P. Liang, “A retrieve-and-edit
framework for predicting structured outputs,” in NeurIPS, 2018.

[102] B. Wei, Y. Li, G. Li et al., “Retrieve and refine: Exemplar-based neural
comment generation,” in ASE, 2020.

[103] E. Shi, Y. Wang, W. Tao et al., “RACE: retrieval-augmented commit
message generation,” in EMNLP, 2022.

[104] W. Chen, H. Hu, C. Saharia, and W. W. Cohen, “Re-imagen: Retrieval-
augmented text-to-image generator,” in ICLR, 2023.

[105] S. Sheynin, O. Ashual, A. Polyak et al., “Knn-diffusion: Image
generation via large-scale retrieval,” in ICLR, 2023.

[106] A. Blattmann, R. Rombach, K. Oktay et al., “Retrieval-augmented
diffusion models,” in NeurIPS, 2022.

[107] R. Rombach, A. Blattmann, and B. Ommer, “Text-guided synthe-
sis of artistic images with retrieval-augmented diffusion models,”
arXiv:2207.13038, 2022.

[108] B. Li, P. H. Torr, and T. Lukasiewicz, “Memory-driven text-to-image
generation,” arXiv:2208.07022, 2022.

[109] B. Oguz, X. Chen, V. Karpukhin et al., “Unik-qa: Unified repre-
sentations of structured and unstructured knowledge for open-domain
question answering,” in NAACL Findings, 2022.

[110] D. Yu, S. Zhang et al., “Decaf: Joint decoding of answers and logical
forms for question answering over knowledge bases,” in ICLR, 2023.

[111] G. Dong, R. Li, S. Wang et al., “Bridging the kb-text gap: Leveraging
structured knowledge-aware pre-training for KBQA,” in CIKM, 2023.

[112] K. Wang, F. Duan, S. Wang et al., “Knowledge-driven cot: Exploring
faithful reasoning in llms for knowledge-intensive question answering,”
arXiv:2308.13259, 2023.

[113] D. Yu and Y. Yang, “Retrieval-enhanced generative model for large-
scale knowledge graph completion,” in SIGIR, 2023.

[114] M. de Jong, Y. Zemlyanskiy, N. FitzGerald et al., “Mention memory:
incorporating textual knowledge into transformers through entity men-
tion attention,” in ICLR, 2021.

[115] T. Févry, L. B. Soares et al., “Entities as experts: Sparse memory access
with entity supervision,” in EMNLP, 2020.

[116] B. Jing, Y. Zhang, Z. Song et al., “Amd: Anatomical motion diffusion
with interpretable motion decomposition and fusion,” in AAAI, 2024.

[117] Y. Yuan, H. Liu, X. Liu et al., “Retrieval-augmented text-to-audio
generation,” in ICASSP, 2024.

[118] B. Yang, M. Cao, and Y. Zou, “Concept-aware video captioning:
Describing videos with effective prior information,” TIP, vol. 32, pp.
5366–5378, 2023.

[119] Z. Zhong, T. Lei, and D. Chen, “Training language models with
memory augmentation,” in EMNLP, 2022.

[120] S. Min, W. Shi, M. Lewis et al., “Nonparametric masked language
modeling,” in ACL Findings, 2023.

[121] X. Zhang, Y. Zhou, G. Yang, and T. Chen, “Syntax-aware retrieval
augmented code generation,” in EMNLP Findings, 2023.

[122] Z. Fei, “Memory-augmented image captioning,” in AAAI, 2021.
[123] Y. Leviathan, M. Kalman, and Y. Matias, “Fast inference from trans-

formers via speculative decoding,” in ICML, 2023.
[124] T. Lan, D. Cai, Y. Wang et al., “Copy is all you need,” in ICLR, 2023.

[125] B. Cao, D. Cai, L. Cui et al., “Retrieval is accurate generation,”
arXiv:2402.17532, 2024.

[126] L. Wang, N. Yang, and F. Wei, “Query2doc: Query expansion with
large language models,” in EMNLP, 2023.

[127] L. Gao, X. Ma, J. Lin, and J. Callan, “Precise zero-shot dense retrieval
without relevance labels,” in ACL, 2023.

[128] G. Kim, S. Kim, B. Jeon et al., “Tree of clarifications: Answering
ambiguous questions with retrieval-augmented large language models,”
in EMNLP, 2023.

[129] C.-M. Chan, C. Xu et al., “Rq-rag: Learning to refine queries for
retrieval augmented generation,” arXiv:2404.00610, 2024.

[130] A. Tayal and A. Tyagi, “Dynamic contexts for generating suggestion
questions in rag based conversational systems,” in WWW’24 Compan-
ion, 2024.

[131] M. Xia, S. Malladi, S. Gururangan et al., “LESS: selecting influential
data for targeted instruction tuning,” arXiv:2402.04333, 2024.

[132] A.-L. Bornea, F. Ayed et al., “Telco-rag: Navigating the challenges
of retrieval-augmented language models for telecommunications,”
arXiv:2404.15939, 2024.

[133] S. Yao, J. Zhao, D. Yu et al., “React: Synergizing reasoning and acting
in language models,” in ICLR, 2023.

[134] J. Wei, X. Wang, D. Schuurmans et al., “Chain-of-thought prompting
elicits reasoning in large language models,” in NeurIPS, 2022.

[135] T. Pouplin, H. Sun, S. Holt, and M. Van der Schaar, “Retrieval-
augmented thought process as sequential decision making,”
arXiv:2402.07812, 2024.

[136] J. Liu, “LlamaIndex,” 11 2022. [Online]. Available: https://github.
com/jerryjliu/llama index

[137] P. Sarthi, S. Abdullah, A. Tuli et al., “Raptor: Recursive abstractive
processing for tree-organized retrieval,” in ICLR, 2023.

[138] B. Kang, J. Kim et al., “Prompt-rag: Pioneering vector embedding-
free retrieval-augmented generation in niche domains, exemplified by
korean medicine,” arXiv:2401.11246, 2024.

[139] V. Raina et al., “Question-based retrieval using atomic units for
enterprise rag,” arXiv:2405.12363, 2024.

[140] S. Xiao, Z. Liu, P. Zhang et al., “C-pack: Packaged resources to
advance general chinese embedding,” arxiv:2309.07597, 2023.

[141] J. Chen, S. Xiao, P. Zhang et al., “Bge m3-embedding: Multi-lingual,
multi-functionality, multi-granularity text embeddings through self-
knowledge distillation,” arxiv:2309.07597, 2023.

[142] S. Xiao, Z. Liu, P. Zhang, and X. Xing, “Lm-cocktail: Resilient tuning
of language models via model merging,” arxiv:2311.13534, 2023.

[143] P. Zhang, S. Xiao, Z. Liu, Z. Dou, and J.-Y. Nie, “Retrieve anything
to augment large language models,” arxiv:2310.07554, 2023.

[144] M. Kulkarni, P. Tangarajan, K. Kim et al., “Reinforcement learning for
optimizing RAG for domain chatbots,” arXiv:2401.06800, 2024.

[145] W. Wang, Y. Wang et al., “Rap-gen: Retrieval-augmented patch gener-
ation with codet5 for automatic program repair,” in ESEC/FSE, 2023.

[146] K. Sawarkar, A. Mangal et al., “Blended rag: Improving rag (retriever-
augmented generation) accuracy with semantic search and hybrid
query-based retrievers,” arXiv:2404.07220, 2024.

[147] S.-Q. Yan, J.-C. Gu, Y. Zhu, and Z.-H. Ling, “Corrective retrieval
augmented generation,” arXiv:2401.15884, 2024.

[148] W. Huang, M. Lapata, P. Vougiouklis et al., “Retrieval augmented
generation with rich answer encoding,” in IJCNLP-AACL, 2023.

[149] H. Wang, W. Huang, Y. Deng et al., “Unims-rag: A unified multi-source
retrieval-augmented generation for personalized dialogue systems,”
arXiv:2401.13256, 2024.

[150] S. Koley, A. K. Bhunia et al., “You’ll never walk alone: A sketch and
text duet for fine-grained image retrieval,” in CVPR, 2024.

[151] M. R. Glass, G. Rossiello, M. F. M. Chowdhury et al., “Re2g: Retrieve,
rerank, generate,” in NAACL, 2022.

[152] R. F. Nogueira and K. Cho, “Passage re-ranking with BERT,”
arxiv:1901.04085, 2019.

[153] J. Li, Y. Zhao, Y. Li et al., “Acecoder: Utilizing existing code to
enhance code generation,” arXiv:2303.17780, 2023.

[154] P. Shi, R. Zhang, H. Bai, and J. Lin, “XRICL: cross-lingual retrieval-
augmented in-context learning for cross-lingual text-to-sql semantic
parsing,” in EMNLP Findings, 2022.

[155] K. Rangan and Y. Yin, “A fine-tuning enhanced rag system with
quantized influence measure as ai judge,” arXiv:2402.17081, 2024.

[156] J. Saad-Falcon, O. Khattab, K. Santhanam et al., “Udapdr: Unsu-
pervised domain adaptation via llm prompting and distillation of
rerankers,” in EMNLP, 2023.

https://aclanthology.org/2022.emnlp-main.605/
https://github.com/jerryjliu/llama_index
https://github.com/jerryjliu/llama_index


[157] L. Wang, N. Yang, and F. Wei, “Learning to retrieve in-context
examples for large language models,” arXiv:2307.07164, 2023.

[158] P. Finardi, L. Avila et al., “The chronicles of rag: The retriever, the
chunk and the generator,” arXiv:2401.07883, 2024.

[159] J. Li, Y. Yuan, and Z. Zhang, “Enhancing llm factual accuracy with
rag to counter hallucinations: A case study on domain-specific queries
in private knowledge-bases,” arXiv:2403.10446, 2024.

[160] Z. Wang, J. Araki, Z. Jiang et al., “Learning to filter context for
retrieval-augmented generation,” arxiv:2311.08377, 2023.

[161] S. Hofstätter, J. Chen, K. Raman, and H. Zamani, “Fid-light: Efficient
and effective retrieval-augmented text generation,” in SIGIR, 2023.

[162] D. Arora, A. Kini, S. R. Chowdhury et al., “Gar-meets-rag paradigm
for zero-shot information retrieval,” arXiv:2310.20158, 2023.

[163] https://www.pinecone.io.
[164] W. Yu, D. Iter et al., “Generate rather than retrieve: Large language

models are strong context generators,” arXiv:2209.10063, 2022.
[165] A. Abdallah and A. Jatowt, “Generator-retriever-generator: A novel ap-

proach to open-domain question answering,” arXiv:2307.11278, 2023.
[166] M. Besta, A. Kubicek et al., “Multi-head rag: Solving multi-aspect

problems with llms,” arXiv:2406.05085, 2024.
[167] E. Saravia, “Prompt Engineering Guide,” https://github.com/dair-

ai/Prompt-Engineering-Guide, 12 2022.
[168] H. S. Zheng, S. Mishra et al., “Take a step back: Evoking reasoning

via abstraction in large language models,” arxiv:2310.06117, 2023.
[169] S. Diao, P. Wang, Y. Lin, and T. Zhang, “Active prompting with chain-

of-thought for large language models,” arxiv:2302.12246, 2023.
[170] H. Jiang, Q. Wu, C. Lin et al., “Llmlingua: Compressing prompts for

accelerated inference of large language models,” in EMNLP, 2023.
[171] N. F. Liu, K. Lin, J. Hewitt et al., “Lost in the middle: How language

models use long contexts,” arxiv:2307.03172, 2023.
[172] T. Ahmed, K. S. Pai, P. Devanbu, and E. T. Barr, “Automatic semantic

augmentation of language model prompts (for code summarization),”
arXiv:2304.06815, 2024.

[173] Z. Xu, Z. Liu, Y. Liu et al., “Activerag: Revealing the treasures of
knowledge via active learning,” arXiv:2402.13547, 2024.

[174] E. Nijkamp, B. Pang, H. Hayashi et al., “A conversational paradigm
for program synthesis,” arxiv:2203.13474, 2022.

[175] Y. He, M. Xia, H. Chen et al., “Animate-a-story: Storytelling with
retrieval-augmented video generation,” arXiv:2307.06940, 2023.

[176] E. J. Hu, Y. Shen, P. Wallis et al., “Lora: Low-rank adaptation of large
language models,” in ICLR, 2022.

[177] C. Liu, P. Çetin, Y. Patodia et al., “Automated code editing with search-
generate-modify,” arXiv:2306.06490, 2023.

[178] H. Joshi, J. P. C. Sánchez, S. Gulwani et al., “Repair is nearly
generation: Multilingual program repair with llms,” in AAAI, 2023.

[179] Z. Jiang, F. F. Xu, L. Gao et al., “Active retrieval augmented genera-
tion,” arXiv:2305.06983, 2023.

[180] Z. Jiang, J. Araki, H. Ding, and G. Neubig, “How can we know When
language models know? on the calibration of language models for
question answering,” TACL, 2021.

[181] N. Kandpal, H. Deng, A. Roberts et al., “Large language models
struggle to learn long-tail knowledge,” in ICML, 2023.

[182] R. Ren, Y. Wang, Y. Qu et al., “Investigating the factual knowledge
boundary of large language models with retrieval augmentation,”
arxiv:2307.11019, 2023.

[183] Y. Wang, P. Li, M. Sun, and Y. Liu, “Self-knowledge guided retrieval
augmentation for large language models,” in EMNLP Findings, 2023.

[184] H. Ding, L. Pang, Z. Wei et al., “Retrieve only when it needs: Adaptive
retrieval augmentation for hallucination mitigation in large language
models,” arXiv:2402.10612, 2024.

[185] S. Jeong, J. Baek, S. Cho et al., “Adaptive-rag: Learning to adapt
retrieval-augmented large language models through question complex-
ity,” arXiv:2403.14403, 2024.

[186] F. Zhang, B. Chen et al., “Repocoder: Repository-level code completion
through iterative retrieval and generation,” in EMNLP, 2023.

[187] Z. Shao, Y. Gong, Y. Shen et al., “Enhancing retrieval-augmented
large language models with iterative retrieval-generation synergy,” in
EMNLP Findings, 2023.

[188] X. Cheng, D. Luo, X. Chen et al., “Lift yourself up: Retrieval-
augmented text generation with self-memory,” in NeurIPS, 2023.

[189] Z. Wang, A. Liu, H. Lin et al., “Rat: Retrieval augmented
thoughts elicit context-aware reasoning in long-horizon generation,”
arXiv:2403.05313, 2024.

[190] S. Barnett, S. Kurniawan, S. Thudumu et al., “Seven failure
points when engineering a retrieval augmented generation system,”
arXiv:2401.05856, 2024.

[191] F. Cuconasu, G. Trappolini, F. Siciliano et al., “The power of noise:
Redefining retrieval for RAG systems,” arXiv:2401.14887, 2024.

[192] L. Qiu, P. Shaw, P. Pasupat et al., “Evaluating the impact of
model scale for compositional generalization in semantic parsing,”
arXiv:2205.12253, 2022.

[193] R. Jagerman, H. Zhuang, Z. Qin et al., “Query expansion by prompting
large language models,” arxiv:2305.03653, 2023.

[194] H. Zhang, P. Zhao, X. Miao et al., “Experimental analysis of large-scale
learnable vector storage compression,” VLDB, 2023.

[195] R. Aksitov, C. Chang, D. Reitter et al., “Characterizing attribution
and fluency tradeoffs for retrieval-augmented large language models,”
arXiv:2302.05578, 2023.

[196] C. Han, Q. Wang, W. Xiong et al., “Lm-infinite: Simple on-the-fly
length generalization for large language models,” arXiv:2308.16137,
2023.

https://www.pinecone.io

	Introduction
	Background
	Contribution
	Related Work

	Preliminary
	Overview
	Generator
	Transformer Model
	LSTM
	Diffusion Model
	GAN

	Retriever
	Sparse Retriever
	Dense Retriever
	Others


	Methodologies
	RAG Foundations
	Query-based RAG
	Latent Representation-based RAG
	Logit-based RAG
	Speculative RAG

	RAG Enhancements
	Input Enhancement
	Retriever Enhancement

	Generator Enhancement
	Result Enhancement
	RAG Pipeline Enhancement

	Discussion
	Noises in Retrieval Results
	Extra Overhead
	The Gap between Generators and Retrievers
	Increased System Complexity
	Lengthy Context

	Conclusion
	References

