diff options
| -rw-r--r-- | main.cpp | 13 | ||||
| -rw-r--r-- | utils.cpp | 3 | ||||
| -rw-r--r-- | utils.h | 1 | 
3 files changed, 11 insertions, 6 deletions
| @@ -86,7 +86,7 @@ struct llama_model {  };  // load the model's weights from a file -bool llama_model_load(const std::string & fname, llama_model & model, gpt_vocab & vocab, int n_ctx) { +bool llama_model_load(const std::string & fname, llama_model & model, gpt_vocab & vocab, int n_ctx, ggml_type memory_type = GGML_TYPE_F32) {      fprintf(stderr, "%s: loading model from '%s' - please wait ...\n", __func__, fname.c_str());      std::vector<char> f_buf(1024*1024); @@ -207,8 +207,8 @@ bool llama_model_load(const std::string & fname, llama_model & model, gpt_vocab          ctx_size += n_layer*(n_ff*n_embd*ggml_type_sizef(wtype)); // w2          ctx_size += n_layer*(n_ff*n_embd*ggml_type_sizef(wtype)); // w3 -        ctx_size += n_ctx*n_layer*n_embd*ggml_type_sizef(GGML_TYPE_F32); // memory_k -        ctx_size += n_ctx*n_layer*n_embd*ggml_type_sizef(GGML_TYPE_F32); // memory_v +        ctx_size += n_ctx*n_layer*n_embd*ggml_type_sizef(memory_type); // memory_k +        ctx_size += n_ctx*n_layer*n_embd*ggml_type_sizef(memory_type); // memory_v          ctx_size += (5 + 10*n_layer)*256; // object overhead @@ -293,8 +293,8 @@ bool llama_model_load(const std::string & fname, llama_model & model, gpt_vocab          const int n_mem      = n_layer*n_ctx;          const int n_elements = n_embd*n_mem; -        model.memory_k = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_elements); -        model.memory_v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_elements); +        model.memory_k = ggml_new_tensor_1d(ctx, memory_type, n_elements); +        model.memory_v = ggml_new_tensor_1d(ctx, memory_type, n_elements);          const size_t memory_size = ggml_nbytes(model.memory_k) + ggml_nbytes(model.memory_v); @@ -814,8 +814,9 @@ int main(int argc, char ** argv) {      // load the model      { +        const ggml_type memory_type = params.memory_f16 ? GGML_TYPE_F16 : GGML_TYPE_F32;          const int64_t t_start_us = ggml_time_us(); -        if (!llama_model_load(params.model, model, vocab, params.n_ctx)) { +        if (!llama_model_load(params.model, model, vocab, params.n_ctx, memory_type)) {              fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, params.model.c_str());              return 1;          } @@ -49,6 +49,8 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {              params.top_k = std::stoi(argv[++i]);          } else if (arg == "-c" || arg == "--ctx_size") {              params.n_ctx = std::stoi(argv[++i]); +        } else if (arg == "--memory_f16") { +            params.memory_f16 = true;          } else if (arg == "--top_p") {              params.top_p = std::stof(argv[++i]);          } else if (arg == "--temp") { @@ -104,6 +106,7 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {      fprintf(stderr, "  --repeat_last_n N     last n tokens to consider for penalize (default: %d)\n", params.repeat_last_n);      fprintf(stderr, "  --repeat_penalty N    penalize repeat sequence of tokens (default: %.1f)\n", params.repeat_penalty);      fprintf(stderr, "  -c N, --ctx_size N    size of the prompt context (default: %d)\n", params.n_ctx); +    fprintf(stderr, "  --memory_f16          use f16 instead of f32 for memory key+value\n");      fprintf(stderr, "  --temp N              temperature (default: %.1f)\n", params.temp);      fprintf(stderr, "  -b N, --batch_size N  batch size for prompt processing (default: %d)\n", params.n_batch);      fprintf(stderr, "  -m FNAME, --model FNAME\n"); @@ -18,6 +18,7 @@ struct gpt_params {      int32_t n_predict = 128; // new tokens to predict      int32_t repeat_last_n = 64;  // last n tokens to penalize      int32_t n_ctx = 512; //context size +    bool memory_f16 = false; // use f16 instead of f32 for memory kv      // sampling parameters      int32_t top_k = 40; | 
