diff options
-rw-r--r-- | examples/quantize/quantize.cpp | 10 | ||||
-rw-r--r-- | ggml.c | 35 | ||||
-rw-r--r-- | ggml.h | 9 | ||||
-rw-r--r-- | llama.cpp | 67 | ||||
-rw-r--r-- | llama.h | 10 |
5 files changed, 74 insertions, 57 deletions
diff --git a/examples/quantize/quantize.cpp b/examples/quantize/quantize.cpp index 680757c..5c9e2ad 100644 --- a/examples/quantize/quantize.cpp +++ b/examples/quantize/quantize.cpp @@ -5,15 +5,15 @@ #include <string> // usage: -// ./llama-quantize models/llama/ggml-model.bin models/llama/ggml-model-quant.bin type +// ./quantize models/llama/ggml-model.bin models/llama/ggml-model-quant.bin type // int main(int argc, char ** argv) { ggml_time_init(); if (argc != 4) { fprintf(stderr, "usage: %s model-f32.bin model-quant.bin type\n", argv[0]); - fprintf(stderr, " type = 2 - q4_0\n"); - fprintf(stderr, " type = 3 - q4_1\n"); + fprintf(stderr, " type = %d - q4_0\n", LLAMA_FTYPE_MOSTLY_Q4_0); + fprintf(stderr, " type = %d - q4_1\n", LLAMA_FTYPE_MOSTLY_Q4_1); return 1; } @@ -27,7 +27,7 @@ int main(int argc, char ** argv) { const std::string fname_inp = argv[1]; const std::string fname_out = argv[2]; - const int itype = atoi(argv[3]); + const enum llama_ftype ftype = (enum llama_ftype)atoi(argv[3]); const int64_t t_main_start_us = ggml_time_us(); @@ -37,7 +37,7 @@ int main(int argc, char ** argv) { { const int64_t t_start_us = ggml_time_us(); - if (llama_model_quantize(fname_inp.c_str(), fname_out.c_str(), itype)) { + if (llama_model_quantize(fname_inp.c_str(), fname_out.c_str(), ftype)) { fprintf(stderr, "%s: failed to quantize model from '%s'\n", __func__, fname_inp.c_str()); return 1; } @@ -2560,29 +2560,26 @@ inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x // static const int GGML_BLCK_SIZE[GGML_TYPE_COUNT] = { - QK, - QK, - 1, - 1, - 1, - 1, - 1, + [GGML_TYPE_F32] = 1, + [GGML_TYPE_F16] = 1, + [GGML_TYPE_Q4_0] = QK, + [GGML_TYPE_Q4_1] = QK, + [GGML_TYPE_I8] = 1, + [GGML_TYPE_I16] = 1, + [GGML_TYPE_I32] = 1, }; - -static_assert(GGML_TYPE_COUNT == 7, "GGML_TYPE_COUNT != 5"); +static_assert(GGML_TYPE_COUNT == 7, "GGML_BLCK_SIZE is outdated"); static const size_t GGML_TYPE_SIZE[GGML_TYPE_COUNT] = { - sizeof(block_q4_0), - sizeof(block_q4_1), - sizeof(int8_t ), - sizeof(int16_t), - sizeof(int32_t), - sizeof(ggml_fp16_t), - sizeof(float ), + [GGML_TYPE_F32] = sizeof(float), + [GGML_TYPE_F16] = sizeof(ggml_fp16_t), + [GGML_TYPE_Q4_0] = sizeof(block_q4_0), + [GGML_TYPE_Q4_1] = sizeof(block_q4_1), + [GGML_TYPE_I8] = sizeof(int8_t), + [GGML_TYPE_I16] = sizeof(int16_t), + [GGML_TYPE_I32] = sizeof(int32_t), }; - -// don't forget to update the array above when adding new types -static_assert(GGML_TYPE_COUNT == 7, "GGML_TYPE_COUNT != 5"); +static_assert(GGML_TYPE_COUNT == 7, "GGML_TYPE_SIZE is outdated"); static const char * GGML_OP_LABEL[GGML_OP_COUNT] = { "NONE", @@ -198,13 +198,14 @@ struct ggml_object; struct ggml_context; enum ggml_type { - GGML_TYPE_Q4_0, - GGML_TYPE_Q4_1, + // explicitly numbered values are used in llama.cpp files + GGML_TYPE_F32 = 0, + GGML_TYPE_F16 = 1, + GGML_TYPE_Q4_0 = 2, + GGML_TYPE_Q4_1 = 3, GGML_TYPE_I8, GGML_TYPE_I16, GGML_TYPE_I32, - GGML_TYPE_F16, - GGML_TYPE_F32, GGML_TYPE_COUNT, }; @@ -82,7 +82,7 @@ struct llama_hparams { uint32_t n_head = 32; uint32_t n_layer = 32; uint32_t n_rot = 64; - uint32_t f16 = 1; + enum llama_ftype ftype = LLAMA_FTYPE_MOSTLY_F16; bool operator!=(const llama_hparams & other) const { return memcmp(this, &other, sizeof(llama_hparams)); @@ -432,7 +432,7 @@ struct llama_file_loader { hparams.n_head = file.read_u32(); hparams.n_layer = file.read_u32(); hparams.n_rot = file.read_u32(); - hparams.f16 = file.read_u32(); + hparams.ftype = (enum llama_ftype) file.read_u32(); } void read_vocab() { vocab.id_to_token.resize(hparams.n_vocab); @@ -458,20 +458,21 @@ struct llama_file_loader { llama_load_tensor_shard shard; uint32_t n_dims = file.read_u32(); uint32_t name_len = file.read_u32(); - uint32_t ftype = file.read_u32(); + shard.type = (enum ggml_type) file.read_u32(); shard.ne.resize(n_dims); file.read_raw(shard.ne.data(), sizeof(shard.ne[0]) * n_dims); std::string name = file.read_string(name_len); if (n_dims < 1 || n_dims > 2) { throw format("llama.cpp: tensor '%s' should not be %u-dimensional", name.c_str(), n_dims); } - switch (ftype) { - case 0: shard.type = GGML_TYPE_F32; break; - case 1: shard.type = GGML_TYPE_F16; break; - case 2: shard.type = GGML_TYPE_Q4_0; break; - case 3: shard.type = GGML_TYPE_Q4_1; break; + switch (shard.type) { + case GGML_TYPE_F32: + case GGML_TYPE_F16: + case GGML_TYPE_Q4_0: + case GGML_TYPE_Q4_1: + break; default: { - throw format("unrecognized ftype %u\n", ftype); + throw format("unrecognized tensor type %u\n", shard.type); } } @@ -502,18 +503,18 @@ struct llama_file_loader { struct llama_file_saver { llama_file file; llama_file_loader * any_file_loader; - llama_file_saver(const char * fname, llama_file_loader * any_file_loader, uint32_t new_f16) + llama_file_saver(const char * fname, llama_file_loader * any_file_loader, enum llama_ftype new_ftype) : file(fname, "wb"), any_file_loader(any_file_loader) { fprintf(stderr, "llama.cpp: saving model to %s\n", fname); write_magic(); - write_hparams(new_f16); + write_hparams(new_ftype); write_vocab(); } void write_magic() { file.write_u32('ggjt'); // magic file.write_u32(1); // version } - void write_hparams(uint32_t new_f16) { + void write_hparams(enum llama_ftype new_ftype) { const llama_hparams & hparams = any_file_loader->hparams; file.write_u32(hparams.n_vocab); file.write_u32(hparams.n_embd); @@ -521,7 +522,7 @@ struct llama_file_saver { file.write_u32(hparams.n_head); file.write_u32(hparams.n_layer); file.write_u32(hparams.n_rot); - file.write_u32(new_f16); + file.write_u32(new_ftype); } void write_vocab() { if (any_file_loader->file_version == LLAMA_FILE_VERSION_GGML) { @@ -536,17 +537,17 @@ struct llama_file_saver { } } void write_tensor(llama_load_tensor & tensor, enum ggml_type new_type, const void * new_data, size_t new_size) { - uint32_t ftype; switch (new_type) { - case GGML_TYPE_F32: ftype = 0; break; - case GGML_TYPE_F16: ftype = 1; break; - case GGML_TYPE_Q4_0: ftype = 2; break; - case GGML_TYPE_Q4_1: ftype = 3; break; + case GGML_TYPE_F32: + case GGML_TYPE_F16: + case GGML_TYPE_Q4_0: + case GGML_TYPE_Q4_1: + break; default: LLAMA_ASSERT(false); } file.write_u32((uint32_t) tensor.ne.size()); file.write_u32((uint32_t) tensor.name.size()); - file.write_u32(ftype); + file.write_u32(new_type); file.write_raw(tensor.ne.data(), sizeof(tensor.ne[0]) * tensor.ne.size()); file.write_raw(tensor.name.data(), tensor.name.size()); file.seek(-file.tell() & 31, SEEK_CUR); @@ -820,6 +821,16 @@ static const char *llama_file_version_name(llama_file_version version) { } } +static const char *llama_ftype_name(enum llama_ftype ftype) { + switch (ftype) { + case LLAMA_FTYPE_ALL_F32: return "all F32"; + case LLAMA_FTYPE_MOSTLY_F16: return "mostly F16"; + case LLAMA_FTYPE_MOSTLY_Q4_0: return "mostly Q4_0"; + case LLAMA_FTYPE_MOSTLY_Q4_1: return "mostly Q4_1"; + default: LLAMA_ASSERT(false); + } +} + static const char *llama_model_type_name(e_model type) { switch (type) { case MODEL_7B: return "7B"; @@ -872,7 +883,7 @@ static void llama_model_load_internal( fprintf(stderr, "%s: n_head = %u\n", __func__, hparams.n_head); fprintf(stderr, "%s: n_layer = %u\n", __func__, hparams.n_layer); fprintf(stderr, "%s: n_rot = %u\n", __func__, hparams.n_rot); - fprintf(stderr, "%s: f16 = %u\n", __func__, hparams.f16); + fprintf(stderr, "%s: ftype = %u (%s)\n", __func__, hparams.ftype, llama_ftype_name(hparams.ftype)); fprintf(stderr, "%s: n_ff = %u\n", __func__, n_ff); fprintf(stderr, "%s: n_parts = %zu\n", __func__, ml->file_loaders.size()); fprintf(stderr, "%s: model size = %s\n", __func__, llama_model_type_name(model.type)); @@ -1544,17 +1555,17 @@ static llama_vocab::id llama_sample_top_p_top_k( // quantization // -static void llama_model_quantize_internal(const std::string & fname_inp, const std::string & fname_out, int itype) { +static void llama_model_quantize_internal(const std::string & fname_inp, const std::string & fname_out, enum llama_ftype ftype) { ggml_type quantized_type; - switch (itype) { - case 2: quantized_type = GGML_TYPE_Q4_0; break; - case 3: quantized_type = GGML_TYPE_Q4_1; break; - default: throw format("invalid quantization type %d\n", itype); + switch (ftype) { + case LLAMA_FTYPE_MOSTLY_Q4_0: quantized_type = GGML_TYPE_Q4_0; break; + case LLAMA_FTYPE_MOSTLY_Q4_1: quantized_type = GGML_TYPE_Q4_1; break; + default: throw format("invalid output file type %d\n", ftype); }; std::unique_ptr<llama_model_loader> model_loader(new llama_model_loader(fname_inp.c_str(), /*use_mmap*/ false, /*vocab_only*/ false)); - llama_file_saver file_saver(fname_out.c_str(), model_loader->file_loaders.at(0).get(), (uint32_t) itype); + llama_file_saver file_saver(fname_out.c_str(), model_loader->file_loaders.at(0).get(), ftype); size_t total_size_org = 0; size_t total_size_new = 0; @@ -1745,9 +1756,9 @@ void llama_free(struct llama_context * ctx) { int llama_model_quantize( const char * fname_inp, const char * fname_out, - int itype) { + enum llama_ftype ftype) { try { - llama_model_quantize_internal(fname_inp, fname_out, itype); + llama_model_quantize_internal(fname_inp, fname_out, ftype); return 0; } catch (const std::string & err) { fprintf(stderr, "%s: failed to quantize: %s\n", __func__, err.c_str()); @@ -65,6 +65,14 @@ extern "C" { void * progress_callback_user_data; }; + // model file types + enum llama_ftype { + LLAMA_FTYPE_ALL_F32 = 0, + LLAMA_FTYPE_MOSTLY_F16 = 1, // except 1d tensors + LLAMA_FTYPE_MOSTLY_Q4_0 = 2, // except 1d tensors + LLAMA_FTYPE_MOSTLY_Q4_1 = 3, // except 1d tensors + }; + LLAMA_API struct llama_context_params llama_context_default_params(); LLAMA_API bool llama_mmap_supported(); @@ -85,7 +93,7 @@ extern "C" { LLAMA_API int llama_model_quantize( const char * fname_inp, const char * fname_out, - int itype); + enum llama_ftype ftype); // Returns the KV cache that will contain the context for the // ongoing prediction with the model. |