diff options
-rw-r--r-- | ggml-cuda.cu | 580 |
1 files changed, 368 insertions, 212 deletions
diff --git a/ggml-cuda.cu b/ggml-cuda.cu index a4dd6bb..e0192bc 100644 --- a/ggml-cuda.cu +++ b/ggml-cuda.cu @@ -1362,22 +1362,185 @@ static __global__ void dequantize_block(const void * __restrict__ vx, float * __ } // VDR = vec dot ratio, how many contiguous integers each thread processes when the vec dot kernel is called +// MMVQ = mul_mat_vec_q, MMQ = mul_mat_q -#define VDR_q4_0_q8_1 1 +#define VDR_Q4_0_Q8_1_MMVQ 2 +#define VDR_Q4_0_Q8_1_MMQ 4 -static __device__ __forceinline__ float vec_dot_q4_0_q8_1_impl( - const int & vi, const int & ui0, const int & ui1, const half & d4, const half2 & ds8) { +template <int vdr> static __device__ __forceinline__ float vec_dot_q4_0_q8_1_impl( + const int * v, const int * u, const float & d4, const half2 & ds8) { #if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics - // subtract 8 from each quantized value - const int vi0 = (vi >> 0) & 0x0F0F0F0F; - const int vi1 = (vi >> 4) & 0x0F0F0F0F; + int sumi = 0; - // SIMD dot product of quantized values - int sumi = __dp4a(vi0, ui0, 0); - sumi = __dp4a(vi1, ui1, sumi); +#pragma unroll + for (int i = 0; i < vdr; ++i) { + const int vi0 = (v[i] >> 0) & 0x0F0F0F0F; + const int vi1 = (v[i] >> 4) & 0x0F0F0F0F; + + // SIMD dot product of quantized values + sumi = __dp4a(vi0, u[2*i+0], sumi); + sumi = __dp4a(vi1, u[2*i+1], sumi); + } + + // second part effectively subtracts 8 from each quant value + return d4 * (sumi * __half2float(ds8.x) - (8*vdr/QI4_0) * __half2float(ds8.y)); +#else + return 0.0f; // only to satisfy the compiler +#endif // __CUDA_ARCH__ >= MIN_CC_DP4A +} + +#define VDR_Q4_1_Q8_1_MMVQ 2 +#define VDR_Q4_1_Q8_1_MMQ 4 + +template <int vdr> static __device__ __forceinline__ float vec_dot_q4_1_q8_1_impl( + const int * v, const int * u, const half2 & dm4, const half2 & ds8) { + +#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics + int sumi = 0; + +#pragma unroll + for (int i = 0; i < vdr; ++i) { + const int vi0 = (v[i] >> 0) & 0x0F0F0F0F; + const int vi1 = (v[i] >> 4) & 0x0F0F0F0F; + + // SIMD dot product of quantized values + sumi = __dp4a(vi0, u[2*i+0], sumi); + sumi = __dp4a(vi1, u[2*i+1], sumi); + } + +#ifdef GGML_CUDA_F16 + const half2 tmp = __hmul2(dm4, ds8); + const float d4d8 = __half2float(tmp.x); + const float m4s8 = __half2float(tmp.y); +#else + const float d4d8 = __half2float(dm4.x) * __half2float(ds8.x); + const float m4s8 = __half2float(dm4.y) * __half2float(ds8.y); +#endif // GGML_CUDA_F16 + + // scale second part of sum by QI8_1/(vdr * QR4_1) to compensate for multiple threads adding it + return sumi * d4d8 + m4s8 / (QI8_1 / (vdr * QR4_1)); +#else + return 0.0f; // only to satisfy the compiler +#endif // __CUDA_ARCH__ >= MIN_CC_DP4A +} + +#define VDR_Q5_0_Q8_1_MMVQ 2 +#define VDR_Q5_0_Q8_1_MMQ 4 + +template <int vdr> static __device__ __forceinline__ float vec_dot_q5_0_q8_1_impl( + const int * vl, const int * vh, const int * u, const float & d5, const half2 & ds8) { + +#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics + int sumi = 0; + + for (int i = 0; i < vdr; ++i) { + int vi0 = (vl[i] >> 0) & 0x0F0F0F0F; // lower 4 qs bits, still need qh as 5th bits + vi0 |= (vh[i] << 4) & 0x00000010; // 0 -> 4 + vi0 |= (vh[i] << 11) & 0x00001000; // 1 -> 12 + vi0 |= (vh[i] << 18) & 0x00100000; // 2 -> 20 + vi0 |= (vh[i] << 25) & 0x10000000; // 3 -> 28 + sumi = __dp4a(vi0, u[2*i+0], sumi); // SIMD dot product of quantized values + + int vi1 = (vl[i] >> 4) & 0x0F0F0F0F; // upper 4 qs bits, still need qh as 5th bits + vi1 |= (vh[i] >> 12) & 0x00000010; // 16 -> 4 + vi1 |= (vh[i] >> 5) & 0x00001000; // 17 -> 12 + vi1 |= (vh[i] << 2) & 0x00100000; // 18 -> 20 + vi1 |= (vh[i] << 9) & 0x10000000; // 19 -> 28 + sumi = __dp4a(vi1, u[2*i+1], sumi); // SIMD dot product of quantized values + } + + // second part effectively subtracts 16 from each quant value + return d5 * (sumi*__half2float(ds8.x) - (16*vdr/QI5_0) * __half2float(ds8.y)); +#else + return 0.0f; // only to satisfy the compiler +#endif // __CUDA_ARCH__ >= MIN_CC_DP4A +} + +#define VDR_Q5_1_Q8_1_MMVQ 2 +#define VDR_Q5_1_Q8_1_MMQ 4 + +template <int vdr> static __device__ __forceinline__ float vec_dot_q5_1_q8_1_impl( + const int * vl, const int * vh, const int * u, const half2 & dm5, const half2 & ds8) { + +#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics + int sumi = 0; + + for (int i = 0; i < vdr; ++i) { + int vi0 = (vl[i] >> 0) & 0x0F0F0F0F; // lower 4 qs bits, still need qh as 5th bits + vi0 |= (vh[i] << 4) & 0x00000010; // 0 -> 4 + vi0 |= (vh[i] << 11) & 0x00001000; // 1 -> 12 + vi0 |= (vh[i] << 18) & 0x00100000; // 2 -> 20 + vi0 |= (vh[i] << 25) & 0x10000000; // 3 -> 28 + sumi = __dp4a(vi0, u[2*i+0], sumi); // SIMD dot product of quantized values + + int vi1 = (vl[i] >> 4) & 0x0F0F0F0F; // upper 4 qs bits, still need qh as 5th bits + vi1 |= (vh[i] >> 12) & 0x00000010; // 16 -> 4 + vi1 |= (vh[i] >> 5) & 0x00001000; // 17 -> 12 + vi1 |= (vh[i] << 2) & 0x00100000; // 18 -> 20 + vi1 |= (vh[i] << 9) & 0x10000000; // 19 -> 28 + sumi = __dp4a(vi1, u[2*i+1], sumi); // SIMD dot product of quantized values + } + +#ifdef GGML_CUDA_F16 + const half2 tmp = __hmul2(dm5, ds8); + const float d5d8 = __half2float(tmp.x); + const float m5s8 = __half2float(tmp.y); +#else + const float d5d8 = __half2float(dm5.x) * __half2float(ds8.x); + const float m5s8 = __half2float(dm5.y) * __half2float(ds8.y); +#endif // GGML_CUDA_F16 + + // scale second part of sum by QI5_1 / vdr to compensate for multiple threads adding it + return sumi*d5d8 + m5s8 / (QI5_1 / vdr); - return __half2float(d4) * (sumi * __half2float(ds8.x) - (8/QI4_0) * __half2float(ds8.y)); +#else + return 0.0f; // only to satisfy the compiler +#endif // __CUDA_ARCH__ >= MIN_CC_DP4A +} + +#define VDR_Q8_0_Q8_1_MMVQ 2 +#define VDR_Q8_0_Q8_1_MMQ 8 + +template <int vdr> static __device__ __forceinline__ float vec_dot_q8_0_q8_1_impl( + const int * v, const int * u, const float & d8_0, const half2 & ds8_1) { + +#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics + int sumi = 0; + + for (int i = 0; i < vdr; ++i) { + // SIMD dot product of quantized values + sumi = __dp4a(v[i], u[i], sumi); + } + + return sumi * d8_0 * __half2float(ds8_1.x); +#else + return 0.0f; // only to satisfy the compiler +#endif // __CUDA_ARCH__ >= MIN_CC_DP4A +} + +template <int vdr> static __device__ __forceinline__ float vec_dot_q8_1_q8_1_impl( + const int * v, const int * u, const half2 & dm8, const half2 & ds8) { + +#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics + int sumi = 0; + + for (int i = 0; i < vdr; ++i) { + // SIMD dot product of quantized values + sumi = __dp4a(v[i], u[i], sumi); + } + +#ifdef GGML_CUDA_F16 + const half2 tmp = __hmul2(dm8, ds8); + const float d8d8 = __half2float(tmp.x); + const float m8s8 = __half2float(tmp.y); +#else + const float d8d8 = __half2float(dm8.x) * __half2float(ds8.x); + const float m8s8 = __half2float(dm8.y) * __half2float(ds8.y); +#endif // GGML_CUDA_F16 + + // scale second part of sum by QI8_1/ vdr to compensate for multiple threads adding it + return sumi*d8d8 + m8s8 / (QI8_1 / vdr); #else return 0.0f; // only to satisfy the compiler #endif // __CUDA_ARCH__ >= MIN_CC_DP4A @@ -1388,20 +1551,26 @@ static __device__ __forceinline__ float vec_dot_q4_0_q8_1( const block_q4_0 * bq4_0 = (const block_q4_0 *) vbq; - const int vi = get_int_from_uint8(bq4_0->qs, iqs); - const int ui0 = get_int_from_int8_aligned(bq8_1->qs, iqs); - const int ui1 = get_int_from_int8_aligned(bq8_1->qs, iqs + QI4_0); + int v[VDR_Q4_0_Q8_1_MMVQ]; + int u[2*VDR_Q4_0_Q8_1_MMVQ]; - return vec_dot_q4_0_q8_1_impl(vi, ui0, ui1, bq4_0->d, bq8_1->ds); +#pragma unroll + for (int i = 0; i < VDR_Q4_0_Q8_1_MMVQ; ++i) { + v[i] = get_int_from_uint8(bq4_0->qs, iqs + i); + u[2*i+0] = get_int_from_int8_aligned(bq8_1->qs, iqs + i); + u[2*i+1] = get_int_from_int8_aligned(bq8_1->qs, iqs + i + QI4_0); + } + + return vec_dot_q4_0_q8_1_impl<VDR_Q4_0_Q8_1_MMVQ>(v, u, bq4_0->d, bq8_1->ds); } static __device__ __forceinline__ void allocate_tiles_q4_0(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) { __shared__ int tile_x_qs[GGML_CUDA_MMQ_Y * (WARP_SIZE) + GGML_CUDA_MMQ_Y]; - __shared__ half2 tile_x_d[GGML_CUDA_MMQ_Y * (WARP_SIZE/QI4_0) + GGML_CUDA_MMQ_Y/QI4_0]; + __shared__ float tile_x_d[GGML_CUDA_MMQ_Y * (WARP_SIZE/QI4_0) + GGML_CUDA_MMQ_Y/QI4_0]; *x_ql = tile_x_qs; - *x_dm = tile_x_d; + *x_dm = (half2 *) tile_x_d; } template <bool need_check> static __device__ __forceinline__ void load_tiles_q4_0( @@ -1418,6 +1587,8 @@ template <bool need_check> static __device__ __forceinline__ void load_tiles_q4_ const block_q4_0 * bx0 = (block_q4_0 *) vx; + float * x_dmf = (float *) x_dm; + #pragma unroll for (int i0 = 0; i0 < GGML_CUDA_MMQ_Y; i0 += 8) { int i = i0 + i_offset; @@ -1429,7 +1600,7 @@ template <bool need_check> static __device__ __forceinline__ void load_tiles_q4_ const block_q4_0 * bxi = bx0 + i*blocks_per_row + kbx; x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_uint8(bxi->qs, kqsx); - x_dm[i * (WARP_SIZE/QI4_0) + i / QI4_0 + kbx].x = bxi->d; + x_dmf[i * (WARP_SIZE/QI4_0) + i / QI4_0 + kbx] = bxi->d; } // const int blocks_per_tile_x_row = WARP_SIZE / QI4_0; @@ -1462,39 +1633,19 @@ static __device__ __forceinline__ float vec_dot_q4_0_q8_1_mul_mat( __builtin_assume(k < WARP_SIZE); const int kyqs = k % (QI8_1/2) + QI8_1 * (k / (QI8_1/2)); + const float * x_dmf = (float *) x_dm; - return vec_dot_q4_0_q8_1_impl( - x_ql[i * (WARP_SIZE + 1) + k], y_qs[j * (2*WARP_SIZE) + kyqs], y_qs[j * (2*WARP_SIZE) + kyqs + (QI8_1/2)], - x_dm[i * (WARP_SIZE/QI4_0) + i/QI4_0 + k/QI4_0].x, y_ds[j * (2*WARP_SIZE/QI8_1) + 2*k/QI8_1]); -} - -#define VDR_q4_1_q8_1 1 - -static __device__ __forceinline__ float vec_dot_q4_1_q8_1_impl( - const int & vi, const int & ui0, const int & ui1, const half2 & dm4, const half2 & ds8) { + int u[2*VDR_Q4_0_Q8_1_MMQ]; -#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics - const int vi0 = (vi >> 0) & 0x0F0F0F0F; - const int vi1 = (vi >> 4) & 0x0F0F0F0F; - - // SIMD dot product of quantized values - int sumi = __dp4a(vi0, ui0, 0); - sumi = __dp4a(vi1, ui1, sumi); - -#ifdef GGML_CUDA_F16 - const half2 tmp = __hmul2(dm4, ds8); - const float d4d8 = __half2float(tmp.x); - const float m4s8 = __half2float(tmp.y); -#else - const float d4d8 = __half2float(dm4.x) * __half2float(ds8.x); - const float m4s8 = __half2float(dm4.y) * __half2float(ds8.y); -#endif // GGML_CUDA_F16 +#pragma unroll + for (int l = 0; l < VDR_Q4_0_Q8_1_MMQ; ++l) { + u[2*l+0] = y_qs[j * (2*WARP_SIZE) + kyqs + l]; + u[2*l+1] = y_qs[j * (2*WARP_SIZE) + kyqs + l + QI4_0]; + } - // scale second part of sum by QI8_1/QR4_1 to compensate for multiple threads adding it - return sumi * d4d8 + m4s8 / (QI8_1 / QR4_1); -#else - return 0.0f; // only to satisfy the compiler -#endif // __CUDA_ARCH__ >= MIN_CC_DP4A + return vec_dot_q4_0_q8_1_impl<VDR_Q4_0_Q8_1_MMQ> + (&x_ql[i * (WARP_SIZE + 1) + k], u, x_dmf[i * (WARP_SIZE/QI4_0) + i/QI4_0 + k/QI4_0], + y_ds[j * (2*WARP_SIZE/QI8_1) + 2*k/QI8_1]); } static __device__ __forceinline__ float vec_dot_q4_1_q8_1( @@ -1502,11 +1653,17 @@ static __device__ __forceinline__ float vec_dot_q4_1_q8_1( const block_q4_1 * bq4_1 = (const block_q4_1 *) vbq; - const int vi = get_int_from_uint8_aligned(bq4_1->qs, iqs); - const int ui0 = get_int_from_int8_aligned(bq8_1->qs, iqs); - const int ui1 = get_int_from_int8_aligned(bq8_1->qs, iqs + QI4_1); + int v[VDR_Q4_1_Q8_1_MMVQ]; + int u[2*VDR_Q4_1_Q8_1_MMVQ]; - return vec_dot_q4_1_q8_1_impl(vi, ui0, ui1, bq4_1->dm, bq8_1->ds); +#pragma unroll + for (int i = 0; i < VDR_Q4_1_Q8_1_MMVQ; ++i) { + v[i] = get_int_from_uint8_aligned(bq4_1->qs, iqs + i); + u[2*i+0] = get_int_from_int8_aligned(bq8_1->qs, iqs + i); + u[2*i+1] = get_int_from_int8_aligned(bq8_1->qs, iqs + i + QI4_1); + } + + return vec_dot_q4_1_q8_1_impl<VDR_Q4_1_Q8_1_MMVQ>(v, u, bq4_1->dm, bq8_1->ds); } static __device__ __forceinline__ void allocate_tiles_q4_1(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) { @@ -1575,35 +1732,17 @@ static __device__ __forceinline__ float vec_dot_q4_1_q8_1_mul_mat( const int kyqs = k % (QI8_1/2) + QI8_1 * (k / (QI8_1/2)); - return vec_dot_q4_1_q8_1_impl( - x_ql[i * (WARP_SIZE + 1) + k], y_qs[j * (2*WARP_SIZE) + kyqs], y_qs[j * (2*WARP_SIZE) + kyqs + (QI8_1/2)], - x_dm[i * (WARP_SIZE/QI4_1) + i/QI4_1 + k/QI4_1], y_ds[j * (2*WARP_SIZE/QI8_1) + 2*k/QI8_1]); -} - -#define VDR_q5_0_q8_1 1 + int u[2*VDR_Q4_1_Q8_1_MMQ]; -static __device__ __forceinline__ float vec_dot_q5_0_q8_1_impl( - const int & qs, const int & qh, const int & ui0, const int & ui1, const half & d5, const half2 & ds8) { +#pragma unroll + for (int l = 0; l < VDR_Q4_1_Q8_1_MMQ; ++l) { + u[2*l+0] = y_qs[j * (2*WARP_SIZE) + kyqs + l]; + u[2*l+1] = y_qs[j * (2*WARP_SIZE) + kyqs + l + QI4_1]; + } -#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics - int vi0 = (qs >> 0) & 0x0F0F0F0F; // lower 4 qs bits, still need qh as 5th bits - vi0 |= (qh << 4) & 0x00000010; // 0 -> 4 - vi0 |= (qh << 11) & 0x00001000; // 1 -> 12 - vi0 |= (qh << 18) & 0x00100000; // 2 -> 20 - vi0 |= (qh << 25) & 0x10000000; // 3 -> 28 - int sumi = __dp4a(vi0, ui0, 0); // SIMD dot product of quantized values - - int vi1 = (qs >> 4) & 0x0F0F0F0F; // upper 4 qs bits, still need qh as 5th bits - vi1 |= (qh >> 12) & 0x00000010; // 16 -> 4 - vi1 |= (qh >> 5) & 0x00001000; // 17 -> 12 - vi1 |= (qh << 2) & 0x00100000; // 18 -> 20 - vi1 |= (qh << 9) & 0x10000000; // 19 -> 28 - sumi = __dp4a(vi1, ui1, sumi); // SIMD dot product of quantized values - - return __half2float(d5) * (sumi*__half2float(ds8.x) - (16/QI5_0) * __half2float(ds8.y)); -#else - return 0.0f; // only to satisfy the compiler -#endif // __CUDA_ARCH__ >= MIN_CC_DP4A + return vec_dot_q4_1_q8_1_impl<VDR_Q4_1_Q8_1_MMQ> + (&x_ql[i * (WARP_SIZE + 1) + k], u, x_dm[i * (WARP_SIZE/QI4_1) + i/QI4_1 + k/QI4_1], + y_ds[j * (2*WARP_SIZE/QI8_1) + 2*k/QI8_1]); } static __device__ __forceinline__ float vec_dot_q5_0_q8_1( @@ -1611,23 +1750,28 @@ static __device__ __forceinline__ float vec_dot_q5_0_q8_1( const block_q5_0 * bq5_0 = (const block_q5_0 *) vbq; - const int qs = get_int_from_uint8(bq5_0->qs, iqs); - const int qh = get_int_from_uint8(bq5_0->qh, 0) >> (4 * iqs); - const int ui0 = get_int_from_int8_aligned(bq8_1->qs, iqs); - const int ui1 = get_int_from_int8_aligned(bq8_1->qs, iqs + QI5_0); + int vl[VDR_Q5_0_Q8_1_MMVQ]; + int vh[VDR_Q5_0_Q8_1_MMVQ]; + int u[2*VDR_Q5_0_Q8_1_MMVQ]; - return vec_dot_q5_0_q8_1_impl(qs, qh, ui0, ui1, bq5_0->d, bq8_1->ds); +#pragma unroll + for (int i = 0; i < VDR_Q5_0_Q8_1_MMVQ; ++i) { + vl[i] = get_int_from_uint8(bq5_0->qs, iqs + i); + vh[i] = get_int_from_uint8(bq5_0->qh, 0) >> (4 * (iqs + i)); + u[2*i+0] = get_int_from_int8_aligned(bq8_1->qs, iqs + i); + u[2*i+1] = get_int_from_int8_aligned(bq8_1->qs, iqs + i + QI5_0); + } + + return vec_dot_q5_0_q8_1_impl<VDR_Q5_0_Q8_1_MMVQ>(vl, vh, u, bq5_0->d, bq8_1->ds); } static __device__ __forceinline__ void allocate_tiles_q5_0(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) { - __shared__ int tile_x_ql[GGML_CUDA_MMQ_Y * (WARP_SIZE) + GGML_CUDA_MMQ_Y]; - __shared__ int tile_x_qh[GGML_CUDA_MMQ_Y * (WARP_SIZE/QI5_0) + GGML_CUDA_MMQ_Y/QI5_0]; - __shared__ half2 tile_x_d[GGML_CUDA_MMQ_Y * (WARP_SIZE/QI5_0) + GGML_CUDA_MMQ_Y/QI5_0]; + __shared__ int tile_x_ql[GGML_CUDA_MMQ_Y * (2*WARP_SIZE) + GGML_CUDA_MMQ_Y]; + __shared__ float tile_x_d[GGML_CUDA_MMQ_Y * (WARP_SIZE/QI5_0) + GGML_CUDA_MMQ_Y/QI5_0]; *x_ql = tile_x_ql; - *x_qh = tile_x_qh; - *x_dm = tile_x_d; + *x_dm = (half2 *) tile_x_d; } template <bool need_check> static __device__ __forceinline__ void load_tiles_q5_0( @@ -1654,11 +1798,31 @@ template <bool need_check> static __device__ __forceinline__ void load_tiles_q5_ const block_q5_0 * bxi = bx0 + i*blocks_per_row + kbx; - x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_uint8(bxi->qs, kqsx); + const int ql = get_int_from_uint8(bxi->qs, kqsx); + const int qh = get_int_from_uint8(bxi->qh, 0) >> (4 * (k % QI5_0)); + + int qs0 = (ql >> 0) & 0x0F0F0F0F; + qs0 |= (qh << 4) & 0x00000010; // 0 -> 4 + qs0 |= (qh << 11) & 0x00001000; // 1 -> 12 + qs0 |= (qh << 18) & 0x00100000; // 2 -> 20 + qs0 |= (qh << 25) & 0x10000000; // 3 -> 28 + qs0 = __vsubss4(qs0, 0x10101010); // subtract 16 + + x_ql[i * (2*WARP_SIZE + 1) + 2*k+0] = qs0; + + int qs1 = (ql >> 4) & 0x0F0F0F0F; + qs1 |= (qh >> 12) & 0x00000010; // 16 -> 4 + qs1 |= (qh >> 5) & 0x00001000; // 17 -> 12 + qs1 |= (qh << 2) & 0x00100000; // 18 -> 20 + qs1 |= (qh << 9) & 0x10000000; // 19 -> 28 + qs1 = __vsubss4(qs1, 0x10101010); // subtract 16 + + x_ql[i * (2*WARP_SIZE + 1) + 2*k+1] = qs1; } const int blocks_per_tile_x_row = WARP_SIZE / QI5_0; const int kbxd = k % blocks_per_tile_x_row; + float * x_dmf = (float *) x_dm; #pragma unroll for (int i0 = 0; i0 < GGML_CUDA_MMQ_Y; i0 += 8 * QI5_0) { @@ -1670,8 +1834,7 @@ template <bool need_check> static __device__ __forceinline__ void load_tiles_q5_ const block_q5_0 * bxi = bx0 + i*blocks_per_row + kbxd; - x_qh[i * (WARP_SIZE/QI5_0) + i / QI5_0 + kbxd] = get_int_from_uint8(bxi->qh, 0); - x_dm[i * (WARP_SIZE/QI5_0) + i / QI5_0 + kbxd].x = bxi->d; + x_dmf[i * (WARP_SIZE/QI5_0) + i / QI5_0 + kbxd] = bxi->d; } } @@ -1688,46 +1851,18 @@ static __device__ __forceinline__ float vec_dot_q5_0_q8_1_mul_mat( const int kyqs = k % (QI8_1/2) + QI8_1 * (k / (QI8_1/2)); const int index_bx = i * (WARP_SIZE/QI5_0) + i/QI5_0 + k/QI5_0; + const float * x_dmf = (float *) x_dm; - return vec_dot_q5_0_q8_1_impl( - x_ql[i * (WARP_SIZE + 1) + k], x_qh[index_bx] >> (4 * (k % QI5_0)), y_qs[j * (2*WARP_SIZE) + kyqs], - y_qs[j * (2*WARP_SIZE) + kyqs + (QI8_1/2)], x_dm[index_bx].x, y_ds[j * (2*WARP_SIZE/QI8_1) + 2*k/QI8_1]); -} - -#define VDR_q5_1_q8_1 1 - -static __device__ __forceinline__ float vec_dot_q5_1_q8_1_impl( - const int & qs, const int & qh, const int & ui0, const int & ui1, const half2 & dm5, const half2 & ds8) { - -#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics - int vi0 = (qs >> 0) & 0x0F0F0F0F; // lower 4 qs bits, still need qh0 as 5th bits - vi0 |= (qh << 4) & 0x00000010; // 0 -> 4 - vi0 |= (qh << 11) & 0x00001000; // 1 -> 12 - vi0 |= (qh << 18) & 0x00100000; // 2 -> 20 - vi0 |= (qh << 25) & 0x10000000; // 3 -> 28 - int sumi = __dp4a(vi0, ui0, 0); // SIMD dot product of quantized values - - int vi1 = (qs >> 4) & 0x0F0F0F0F; // upper 4 qs bits, still need qh1 as 5th bits - vi1 |= (qh >> 12) & 0x00000010; // 16 -> 4 - vi1 |= (qh >> 5) & 0x00001000; // 17 -> 12 - vi1 |= (qh << 2) & 0x00100000; // 18 -> 20 - vi1 |= (qh << 9) & 0x10000000; // 19 -> 28 - sumi = __dp4a(vi1, ui1, sumi); // SIMD dot product of quantized values - -#ifdef GGML_CUDA_F16 - const half2 tmp = __hmul2(dm5, ds8); - const float d5d8 = __half2float(tmp.x); - const float m5s8 = __half2float(tmp.y); -#else - const float d5d8 = __half2float(dm5.x) * __half2float(ds8.x); - const float m5s8 = __half2float(dm5.y) * __half2float(ds8.y); -#endif // GGML_CUDA_F16 + int u[2*VDR_Q5_0_Q8_1_MMQ]; - return sumi*d5d8 + m5s8/QI5_1; // scale sum by QI5_1 because there are QI5_1 threads working on this block +#pragma unroll + for (int l = 0; l < VDR_Q5_0_Q8_1_MMQ; ++l) { + u[2*l+0] = y_qs[j * (2*WARP_SIZE) + kyqs + l]; + u[2*l+1] = y_qs[j * (2*WARP_SIZE) + kyqs + l + QI5_0]; + } -#else - return 0.0f; // only to satisfy the compiler -#endif // __CUDA_ARCH__ >= MIN_CC_DP4A + return vec_dot_q8_0_q8_1_impl<QR5_0*VDR_Q5_0_Q8_1_MMQ> + (&x_ql[i * (2*WARP_SIZE + 1) + 2 * k], u, x_dmf[index_bx], y_ds[j * (2*WARP_SIZE/QI8_1) + 2*k/QI8_1]); } static __device__ __forceinline__ float vec_dot_q5_1_q8_1( @@ -1735,22 +1870,27 @@ static __device__ __forceinline__ float vec_dot_q5_1_q8_1( const block_q5_1 * bq5_1 = (const block_q5_1 *) vbq; - const int qs = get_int_from_uint8_aligned(bq5_1->qs, iqs); - const int qh = get_int_from_uint8_aligned(bq5_1->qh, 0) >> (4 * iqs); - const int ui0 = get_int_from_int8_aligned(bq8_1->qs, iqs); - const int ui1 = get_int_from_int8_aligned(bq8_1->qs, iqs + QI5_1); + int vl[VDR_Q5_1_Q8_1_MMVQ]; + int vh[VDR_Q5_1_Q8_1_MMVQ]; + int u[2*VDR_Q5_1_Q8_1_MMVQ]; + +#pragma unroll + for (int i = 0; i < VDR_Q5_1_Q8_1_MMVQ; ++i) { + vl[i] = get_int_from_uint8_aligned(bq5_1->qs, iqs + i); + vh[i] = get_int_from_uint8_aligned(bq5_1->qh, 0) >> (4 * (iqs + i)); + u[2*i+0] = get_int_from_int8_aligned(bq8_1->qs, iqs + i); + u[2*i+1] = get_int_from_int8_aligned(bq8_1->qs, iqs + i + QI5_1); + } - return vec_dot_q5_1_q8_1_impl(qs, qh, ui0, ui1, bq5_1->dm, bq8_1->ds); + return vec_dot_q5_1_q8_1_impl<VDR_Q5_1_Q8_1_MMVQ>(vl, vh, u, bq5_1->dm, bq8_1->ds); } static __device__ __forceinline__ void allocate_tiles_q5_1(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) { - __shared__ int tile_x_ql[GGML_CUDA_MMQ_Y * (WARP_SIZE ) + GGML_CUDA_MMQ_Y]; - __shared__ int tile_x_qh[GGML_CUDA_MMQ_Y * (WARP_SIZE/QI5_1) + GGML_CUDA_MMQ_Y/QI5_1]; + __shared__ int tile_x_ql[GGML_CUDA_MMQ_Y * (2*WARP_SIZE) + GGML_CUDA_MMQ_Y]; __shared__ half2 tile_x_dm[GGML_CUDA_MMQ_Y * (WARP_SIZE/QI5_1) + GGML_CUDA_MMQ_Y/QI5_1]; *x_ql = tile_x_ql; - *x_qh = tile_x_qh; *x_dm = tile_x_dm; } @@ -1778,7 +1918,24 @@ template <bool need_check> static __device__ __forceinline__ void load_tiles_q5_ const block_q5_1 * bxi = bx0 + i*blocks_per_row + kbx; - x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_uint8_aligned(bxi->qs, kqsx); + const int ql = get_int_from_uint8_aligned(bxi->qs, kqsx); + const int qh = get_int_from_uint8_aligned(bxi->qh, 0) >> (4 * (k % QI5_1)); + + int qs0 = (ql >> 0) & 0x0F0F0F0F; + qs0 |= (qh << 4) & 0x00000010; // 0 -> 4 + qs0 |= (qh << 11) & 0x00001000; // 1 -> 12 + qs0 |= (qh << 18) & 0x00100000; // 2 -> 20 + qs0 |= (qh << 25) & 0x10000000; // 3 -> 28 + + x_ql[i * (2*WARP_SIZE + 1) + 2*k+0] = qs0; + + int qs1 = (ql >> 4) & 0x0F0F0F0F; + qs1 |= (qh >> 12) & 0x00000010; // 16 -> 4 + qs1 |= (qh >> 5) & 0x00001000; // 17 -> 12 + qs1 |= (qh << 2) & 0x00100000; // 18 -> 20 + qs1 |= (qh << 9) & 0x10000000; // 19 -> 28 + + x_ql[i * (2*WARP_SIZE + 1) + 2*k+1] = qs1; } const int blocks_per_tile_x_row = WARP_SIZE / QI5_1; @@ -1794,7 +1951,6 @@ template <bool need_check> static __device__ __forceinline__ void load_tiles_q5_ const block_q5_1 * bxi = bx0 + i*blocks_per_row + kbxd; - x_qh[i * (WARP_SIZE/QI5_1) + i / QI5_1 + kbxd] = get_int_from_uint8_aligned(bxi->qh, 0); x_dm[i * (WARP_SIZE/QI5_1) + i / QI5_1 + kbxd] = bxi->dm; } } @@ -1813,24 +1969,16 @@ static __device__ __forceinline__ float vec_dot_q5_1_q8_1_mul_mat( const int kyqs = k % (QI8_1/2) + QI8_1 * (k / (QI8_1/2)); const int index_bx = i * (WARP_SIZE/QI5_1) + + i/QI5_1 + k/QI5_1; - return vec_dot_q5_1_q8_1_impl( - x_ql[i * (WARP_SIZE + 1) + k], x_qh[index_bx] >> (4 * (k % QI5_1)), y_qs[j * (2*WARP_SIZE) + kyqs], - y_qs[j * (2*WARP_SIZE) + kyqs + (QI8_1/2)], x_dm[index_bx], y_ds[j * (2*WARP_SIZE/QI8_1) + 2*k/QI8_1]); -} - -#define VDR_q8_0_q8_1 1 + int u[2*VDR_Q5_1_Q8_1_MMQ]; -static __device__ __forceinline__ float vec_dot_q8_0_q8_1_impl( - const int & vi, const int & ui, const half & d8_0, const half2 & ds8_1) { - -#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics - // SIMD dot product of quantized values - const int sumi = __dp4a(vi, ui, 0); +#pragma unroll + for (int l = 0; l < VDR_Q5_1_Q8_1_MMQ; ++l) { + u[2*l+0] = y_qs[j * (2*WARP_SIZE) + kyqs + l]; + u[2*l+1] = y_qs[j * (2*WARP_SIZE) + kyqs + l + QI5_1]; + } - return sumi * __half2float(d8_0) * __half2float(ds8_1.x); -#else - return 0.0f; // only to satisfy the compiler -#endif // __CUDA_ARCH__ >= MIN_CC_DP4A + return vec_dot_q8_1_q8_1_impl<QR5_1*VDR_Q5_1_Q8_1_MMQ> + (&x_ql[i * (2*WARP_SIZE + 1) + 2 * k], u, x_dm[index_bx], y_ds[j * (2*WARP_SIZE/QI8_1) + 2*k/QI8_1]); } static __device__ __forceinline__ float vec_dot_q8_0_q8_1( @@ -1838,19 +1986,24 @@ static __device__ __forceinline__ float vec_dot_q8_0_q8_1( const block_q8_0 * bq8_0 = (const block_q8_0 *) vbq; - const int vi = get_int_from_int8(bq8_0->qs, iqs); - const int ui = get_int_from_int8_aligned(bq8_1->qs, iqs); + int v[VDR_Q8_0_Q8_1_MMVQ]; + int u[VDR_Q8_0_Q8_1_MMVQ]; - return vec_dot_q8_0_q8_1_impl(vi, ui, bq8_0->d, bq8_1->ds); + for (int i = 0; i < VDR_Q8_0_Q8_1_MMVQ; ++i) { + v[i] = get_int_from_int8(bq8_0->qs, iqs + i); + u[i] = get_int_from_int8_aligned(bq8_1->qs, iqs + i); + } + + return vec_dot_q8_0_q8_1_impl<VDR_Q8_0_Q8_1_MMVQ>(v, u, bq8_0->d, bq8_1->ds); } static __device__ __forceinline__ void allocate_tiles_q8_0(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) { __shared__ int tile_x_qs[GGML_CUDA_MMQ_Y * (WARP_SIZE) + GGML_CUDA_MMQ_Y]; - __shared__ half2 tile_x_d[GGML_CUDA_MMQ_Y * (WARP_SIZE/QI8_0) + GGML_CUDA_MMQ_Y/QI8_0]; + __shared__ float tile_x_d[GGML_CUDA_MMQ_Y * (WARP_SIZE/QI8_0) + GGML_CUDA_MMQ_Y/QI8_0]; *x_ql = tile_x_qs; - *x_dm = tile_x_d; + *x_dm = (half2 *) tile_x_d; } template <bool need_check> static __device__ __forceinline__ void load_tiles_q8_0( @@ -1864,6 +2017,7 @@ template <bool need_check> static __device__ __forceinline__ void load_tiles_q8_ const int kbx = k / QI8_0; const int kqsx = k % QI8_0; + float * x_dmf = (float *) x_dm; const block_q8_0 * bx0 = (block_q8_0 *) vx; @@ -1878,7 +2032,7 @@ template <bool need_check> static __device__ __forceinline__ void load_tiles_q8_ const block_q8_0 * bxi = bx0 + i*blocks_per_row + kbx; x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_int8(bxi->qs, kqsx); - x_dm[i * (WARP_SIZE/QI8_0) + i / QI8_0 + kbx].x = bxi->d; + x_dmf[i * (WARP_SIZE/QI8_0) + i / QI8_0 + kbx] = bxi->d; } // const int blocks_per_tile_x_row = WARP_SIZE / QI8_0; @@ -1912,9 +2066,11 @@ static __device__ __forceinline__ float vec_dot_q8_0_q8_1_mul_mat( __builtin_assume(k >= 0); __builtin_assume(k < WARP_SIZE); - return vec_dot_q8_0_q8_1_impl( - x_ql[i * (WARP_SIZE + 1) + k], y_qs[j*WARP_SIZE + k], - x_dm[i * (WARP_SIZE/QI8_0) + i/QI8_0 + k/QI8_0].x, y_ds[j * (WARP_SIZE/QI8_1) + k/QI8_1]); + const float * x_dmf = (float *) x_dm; + + return vec_dot_q8_0_q8_1_impl<VDR_Q8_0_Q8_1_MMQ> + (&x_ql[i * (WARP_SIZE + 1) + k], &y_qs[j * WARP_SIZE + k], x_dmf[i * (WARP_SIZE/QI8_0) + i/QI8_0 + k/QI8_0], + y_ds[j * (WARP_SIZE/QI8_1) + k/QI8_1]); } #define VDR_q2_K_q8_1 1 @@ -2288,15 +2444,15 @@ static __device__ __forceinline__ float vec_dot_q4_K_q8_1( int u[2*QR4_K]; float d8[QR4_K]; - // iqs is in 0...15. bq8_offset = 2 * (iqs/4) -> bq8_offset = 0, 2, 4, 6 - const int bq8_offset = QR4_K * (iqs / (QI8_1/2)); + // iqs is in 0,2..30. bq8_offset = iqs/4 -> bq8_offset = 0, 2, 4, 6 + const int bq8_offset = QR4_K * ((iqs/2) / (QI8_1/2)); // iqs = 0....3 -> bq8_offset = 0, want q4_offset = 0, 4, 8, 12 // iqs = 4....7 -> bq8_offset = 2, want q4_offset = 32, 36, 40, 44 // iqs = 8...11 -> bq8_offset = 4, want q4_offset = 64, 68, 72, 76 // iqs = 12..15 -> bq8_offset = 6, want q4_offset = 96, 100, 104, 108 - const int * q4 = (const int *)(bq4_K->qs + 16 * bq8_offset + 4 * (iqs%4)); + const int * q4 = (const int *)(bq4_K->qs + 16 * bq8_offset + 4 * ((iqs/2)%4)); v[0] = q4[0]; v[1] = q4[4]; @@ -2317,7 +2473,7 @@ static __device__ __forceinline__ float vec_dot_q4_K_q8_1( const block_q8_1 * bq8i = bq8_1 + bq8_offset + i; d8[i] = bq8i->ds.x; - const int * q8 = (const int *)bq8i->qs + (iqs%4); + const int * q8 = (const int *)bq8i->qs + ((iqs/2)%4); u[2*i+0] = q8[0]; u[2*i+1] = q8[4]; } @@ -2345,12 +2501,12 @@ static __device__ __forceinline__ float vec_dot_q4_K_q8_1( const float d8_1 = bq8_1[0].ds.x; const float d8_2 = bq8_1[1].ds.x; - const int ui1 = *((const int *)bq8_1[0].qs + iqs); - const int ui2 = *((const int *)bq8_1[0].qs + iqs + 4); - const int ui3 = *((const int *)bq8_1[1].qs + iqs); - const int ui4 = *((const int *)bq8_1[1].qs + iqs + 4); + const int ui1 = *((const int *)bq8_1[0].qs + (iqs/2)); + const int ui2 = *((const int *)bq8_1[0].qs + (iqs/2) + 4); + const int ui3 = *((const int *)bq8_1[1].qs + (iqs/2)); + const int ui4 = *((const int *)bq8_1[1].qs + (iqs/2) + 4); - const int * q4 = (const int *)bq4_K->qs + iqs; + const int * q4 = (const int *)bq4_K->qs + (iqs/2); const int v1 = q4[0]; const int v2 = q4[4]; @@ -2457,11 +2613,11 @@ static __device__ __forceinline__ float vec_dot_q4_K_q8_1_mul_mat( int u[2*QR4_K]; float d8[QR4_K]; - // iqs is in 0...15. bq8_offset = 2 * (iqs/4) -> bq8_offset = 0, 2, 4, 6 - const int bq8_offset = QR4_K * (kqsx / (QI8_1/2)); + // kqsx is in 0,2...30. bq8_offset = 2 * (kqsx/4) -> bq8_offset = 0, 2, 4, 6 + const int bq8_offset = QR4_K * ((kqsx/2) / (QI8_1/2)); - v[0] = x_ql[i * (WARP_SIZE + 1) + 4 * bq8_offset + kqsx % 4 + 0]; - v[1] = x_ql[i * (WARP_SIZE + 1) + 4 * bq8_offset + kqsx % 4 + 4]; + v[0] = x_ql[i * (WARP_SIZE + 1) + 4 * bq8_offset + (kqsx/2) % 4 + 0]; + v[1] = x_ql[i * (WARP_SIZE + 1) + 4 * bq8_offset + (kqsx/2) % 4 + 4]; const uint16_t * scales = (const uint16_t *) &x_sc[i * (WARP_SIZE/8) + i/8 + kbx * 4]; uint16_t aux[2]; @@ -2477,7 +2633,7 @@ static __device__ __forceinline__ float vec_dot_q4_K_q8_1_mul_mat( const uint8_t * m = sc + 2; for (int l = 0; l < QR4_K; ++l) { - const int kqsy = j * (QR4_K*WARP_SIZE) + kbx * (QR4_K*QI4_K) + (bq8_offset + l) * QI8_1 + kqsx % (QI8_1/2); + const int kqsy = j * (QR4_K*WARP_SIZE) + kbx * (QR4_K*QI4_K) + (bq8_offset + l) * QI8_1 + (kqsx/2) % (QI8_1/2); u[2*l+0] = y_qs[kqsy + 0*(QI8_1/2)]; u[2*l+1] = y_qs[kqsy + 1*(QI8_1/2)]; d8[l] = y_ds[kqsy / QI8_1].x; @@ -2532,9 +2688,9 @@ static __device__ __forceinline__ float vec_dot_q5_K_q8_1( int u[2*QR5_K]; float d8[QR5_K]; - const int bq8_offset = QR5_K * (iqs / (QI8_1/2)); - const int * ql = (const int *)(bq5_K->qs + 16 * bq8_offset + 4 * (iqs%4)); - const int * qh = (const int *)(bq5_K->qh + 4 * (iqs%4)); + const int bq8_offset = QR5_K * ((iqs/2) / (QI8_1/2)); + const int * ql = (const int *)(bq5_K->qs + 16 * bq8_offset + 4 * ((iqs/2)%4)); + const int * qh = (const int *)(bq5_K->qh + 4 * ((iqs/2)%4)); vl[0] = ql[0]; vl[1] = ql[4]; @@ -2559,7 +2715,7 @@ static __device__ __forceinline__ float vec_dot_q5_K_q8_1( const block_q8_1 * bq8i = bq8_1 + bq8_offset + i; d8[i] = bq8i->ds.x; - const int * q8 = (const int *)bq8i->qs + (iqs%4); + const int * q8 = (const int *)bq8i->qs + ((iqs/2)%4); u[2*i+0] = q8[0]; u[2*i+1] = q8[4]; } @@ -2578,17 +2734,17 @@ static __device__ __forceinline__ float vec_dot_q5_K_q8_1( const float d8_1 = bq8_1[0].ds.x; const float d8_2 = bq8_1[1].ds.x; - const int ui1 = *((const int *)bq8_1[0].qs + iqs); - const int ui2 = *((const int *)bq8_1[0].qs + iqs + 4); - const int ui3 = *((const int *)bq8_1[1].qs + iqs); - const int ui4 = *((const int *)bq8_1[1].qs + iqs + 4); + const int ui1 = *((const int *)bq8_1[0].qs + (iqs/2)); + const int ui2 = *((const int *)bq8_1[0].qs + (iqs/2) + 4); + const int ui3 = *((const int *)bq8_1[1].qs + (iqs/2)); + const int ui4 = *((const int *)bq8_1[1].qs + (iqs/2) + 4); - const int * ql = (const int *)bq5_K->qs + iqs; + const int * ql = (const int *)bq5_K->qs + (iqs/2); const int vl1 = ql[0]; const int vl2 = ql[4]; - const int step = 4 * iqs; // 0, 4, 8, 12 - const int im = step/8; // = 0 for iqs = 0, 1, = 1 for iqs = 2, 3 + const int step = 4 * (iqs/2); // 0, 4, 8, 12 + const int im = step/8; // = 0 for iqs = 0, 2, = 1 for iqs = 4, 6 const int in = step%8; // 0, 4, 0, 4 const int vh = (*((const int *)(bq5_K->qh + in))) >> im; @@ -2711,13 +2867,13 @@ static __device__ __forceinline__ float vec_dot_q5_K_q8_1_mul_mat( int u[2*QR4_K]; float d8[QR4_K]; - const int bq8_offset = QR5_K * (kqsx / (QI8_1/2)); + const int bq8_offset = QR5_K * ((kqsx/2) / (QI8_1/2)); - vl[0] = x_ql[i * (WARP_SIZE + 1) + 4 * bq8_offset + kqsx % 4 + 0]; - vl[1] = x_ql[i * (WARP_SIZE + 1) + 4 * bq8_offset + kqsx % 4 + 4]; + vl[0] = x_ql[i * (WARP_SIZE + 1) + 4 * bq8_offset + (kqsx/2) % 4 + 0]; + vl[1] = x_ql[i * (WARP_SIZE + 1) + 4 * bq8_offset + (kqsx/2) % 4 + 4]; - vh[0] = x_qh[i * (WARP_SIZE/4) + i/4 + kqsx % 4 + 0] >> bq8_offset; - vh[1] = x_qh[i * (WARP_SIZE/4) + i/4 + kqsx % 4 + 4] >> bq8_offset; + vh[0] = x_qh[i * (WARP_SIZE/4) + i/4 + (kqsx/2) % 4 + 0] >> bq8_offset; + vh[1] = x_qh[i * (WARP_SIZE/4) + i/4 + (kqsx/2) % 4 + 4] >> bq8_offset; const uint16_t * scales = (const uint16_t *) &x_sc[i * (WARP_SIZE/8) + i/8 + kbx * 4]; uint16_t aux[2]; @@ -2733,7 +2889,7 @@ static __device__ __forceinline__ float vec_dot_q5_K_q8_1_mul_mat( const uint8_t * m = sc + 2; for (int l = 0; l < QR5_K; ++l) { - const int kqsy = j * (QR5_K*WARP_SIZE) + kbx * (QR5_K*QI5_K) + (bq8_offset + l) * QI8_1 + kqsx % (QI8_1/2); + const int kqsy = j * (QR5_K*WARP_SIZE) + kbx * (QR5_K*QI5_K) + (bq8_offset + l) * QI8_1 + (kqsx/2) % (QI8_1/2); u[2*l+0] = y_qs[kqsy + 0*(QI8_1/2)]; u[2*l+1] = y_qs[kqsy + 1*(QI8_1/2)]; d8[l] = y_ds[kqsy / QI8_1].x; @@ -2982,7 +3138,7 @@ static __global__ void mul_mat_q( #if __CUDA_ARCH__ >= 700 // Unrolling the loop is slower on Pascal #pragma unroll #endif // __CUDA_ARCH__ >= 700 - for (int k = 0; k < WARP_SIZE/vdr; ++k) { + for (int k = 0; k < WARP_SIZE; k += vdr) { #pragma unroll for (int j = 0; j < WARP_SIZE; j += 8) { #pragma unroll @@ -3034,9 +3190,9 @@ static __global__ void mul_mat_vec_q(const void * __restrict__ vx, const void * for (int i = 0; i < blocks_per_row; i += blocks_per_warp) { const int ibx = row*blocks_per_row + i + threadIdx.x / (qi/vdr); // x block index - const int iby = (i + threadIdx.x / (qi/vdr)) * qk/QK8_1; // y block index that aligns with ibx + const int iby = (i + threadIdx.x / (qi/vdr)) * (qk/QK8_1); // y block index that aligns with ibx - const int iqs = threadIdx.x % (qi/vdr); // x block quant index when casting the quants to int + const int iqs = vdr * (threadIdx.x % (qi/vdr)); // x block quant index when casting the quants to int tmp += vec_dot_q_cuda(&x[ibx], &y[iby], iqs); } @@ -3579,7 +3735,7 @@ static void mul_mat_vec_q4_0_q8_1_cuda(const void * vx, const void * vy, float * const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y; const dim3 block_nums(1, block_num_y, 1); const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1); - mul_mat_vec_q<QK4_0, QI4_0, block_q4_0, VDR_q4_0_q8_1, vec_dot_q4_0_q8_1> + mul_mat_vec_q<QK4_0, QI4_0, block_q4_0, VDR_Q4_0_Q8_1_MMVQ, vec_dot_q4_0_q8_1> <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols, nrows); } @@ -3588,7 +3744,7 @@ static void mul_mat_vec_q4_1_q8_1_cuda(const void * vx, const void * vy, float * const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y; const dim3 block_nums(1, block_num_y, 1); const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1); - mul_mat_vec_q<QK4_0, QI4_1, block_q4_1, VDR_q4_1_q8_1, vec_dot_q4_1_q8_1> + mul_mat_vec_q<QK4_0, QI4_1, block_q4_1, VDR_Q4_1_Q8_1_MMVQ, vec_dot_q4_1_q8_1> <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols, nrows); } @@ -3597,7 +3753,7 @@ static void mul_mat_vec_q5_0_q8_1_cuda(const void * vx, const void * vy, float * const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y; const dim3 block_nums(1, block_num_y, 1); const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1); - mul_mat_vec_q<QK5_0, QI5_0, block_q5_0, VDR_q5_0_q8_1, vec_dot_q5_0_q8_1> + mul_mat_vec_q<QK5_0, QI5_0, block_q5_0, VDR_Q5_0_Q8_1_MMVQ, vec_dot_q5_0_q8_1> <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols, nrows); } @@ -3606,7 +3762,7 @@ static void mul_mat_vec_q5_1_q8_1_cuda(const void * vx, const void * vy, float * const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y; const dim3 block_nums(1, block_num_y, 1); const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1); - mul_mat_vec_q<QK5_1, QI5_1, block_q5_1, VDR_q5_1_q8_1, vec_dot_q5_1_q8_1> + mul_mat_vec_q<QK5_1, QI5_1, block_q5_1, VDR_Q5_1_Q8_1_MMVQ, vec_dot_q5_1_q8_1> <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols, nrows); } @@ -3615,7 +3771,7 @@ static void mul_mat_vec_q8_0_q8_1_cuda(const void * vx, const void * vy, float * const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y; const dim3 block_nums(1, block_num_y, 1); const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1); - mul_mat_vec_q<QK8_0, QI8_0, block_q8_0, VDR_q8_0_q8_1, vec_dot_q8_0_q8_1> + mul_mat_vec_q<QK8_0, QI8_0, block_q8_0, VDR_Q8_0_Q8_1_MMVQ, vec_dot_q8_0_q8_1> <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols, nrows); } @@ -3717,10 +3873,10 @@ static void ggml_mul_mat_q4_0_q8_1_cuda( const dim3 block_dims(WARP_SIZE, WARP_SIZE/4, 1); if (nrows_x % GGML_CUDA_MMQ_Y == 0) { - mul_mat_q<QK4_0, QR4_0, QI4_0, block_q4_0, allocate_tiles_q4_0, load_tiles_q4_0<false>, VDR_q4_0_q8_1, vec_dot_q4_0_q8_1_mul_mat> + mul_mat_q<QK4_0, QR4_0, QI4_0, block_q4_0, allocate_tiles_q4_0, load_tiles_q4_0<false>, VDR_Q4_0_Q8_1_MMQ, vec_dot_q4_0_q8_1_mul_mat> <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst); } else { - mul_mat_q<QK4_0, QR4_0, QI4_0, block_q4_0, allocate_tiles_q4_0, load_tiles_q4_0<true>, VDR_q4_0_q8_1, vec_dot_q4_0_q8_1_mul_mat> + mul_mat_q<QK4_0, QR4_0, QI4_0, block_q4_0, allocate_tiles_q4_0, load_tiles_q4_0<true>, VDR_Q4_0_Q8_1_MMQ, vec_dot_q4_0_q8_1_mul_mat> <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst); } } @@ -3735,10 +3891,10 @@ static void ggml_mul_mat_q4_1_q8_1_cuda( const dim3 block_dims(WARP_SIZE, WARP_SIZE/4, 1); if (nrows_x % GGML_CUDA_MMQ_Y == 0) { - mul_mat_q<QK4_1, QR4_1, QI4_1, block_q4_1, allocate_tiles_q4_1, load_tiles_q4_1<false>, VDR_q4_1_q8_1, vec_dot_q4_1_q8_1_mul_mat> + mul_mat_q<QK4_1, QR4_1, QI4_1, block_q4_1, allocate_tiles_q4_1, load_tiles_q4_1<false>, VDR_Q4_1_Q8_1_MMQ, vec_dot_q4_1_q8_1_mul_mat> <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst); } else { - mul_mat_q<QK4_1, QR4_1, QI4_1, block_q4_1, allocate_tiles_q4_1, load_tiles_q4_1<true>, VDR_q4_1_q8_1, vec_dot_q4_1_q8_1_mul_mat> + mul_mat_q<QK4_1, QR4_1, QI4_1, block_q4_1, allocate_tiles_q4_1, load_tiles_q4_1<true>, VDR_Q4_1_Q8_1_MMQ, vec_dot_q4_1_q8_1_mul_mat> <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst); } } @@ -3753,10 +3909,10 @@ static void ggml_mul_mat_q5_0_q8_1_cuda( const dim3 block_dims(WARP_SIZE, WARP_SIZE/4, 1); if (nrows_x % GGML_CUDA_MMQ_Y == 0) { - mul_mat_q<QK5_0, QR5_0, QI5_0, block_q5_0, allocate_tiles_q5_0, load_tiles_q5_0<false>, VDR_q5_0_q8_1, vec_dot_q5_0_q8_1_mul_mat> + mul_mat_q<QK5_0, QR5_0, QI5_0, block_q5_0, allocate_tiles_q5_0, load_tiles_q5_0<false>, VDR_Q5_0_Q8_1_MMQ, vec_dot_q5_0_q8_1_mul_mat> <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst); } else { - mul_mat_q<QK5_0, QR5_0, QI5_0, block_q5_0, allocate_tiles_q5_0, load_tiles_q5_0<true>, VDR_q5_0_q8_1, vec_dot_q5_0_q8_1_mul_mat> + mul_mat_q<QK5_0, QR5_0, QI5_0, block_q5_0, allocate_tiles_q5_0, load_tiles_q5_0<true>, VDR_Q5_0_Q8_1_MMQ, vec_dot_q5_0_q8_1_mul_mat> <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst); } } @@ -3771,10 +3927,10 @@ static void ggml_mul_mat_q5_1_q8_1_cuda( const dim3 block_dims(WARP_SIZE, WARP_SIZE/4, 1); if (nrows_x % GGML_CUDA_MMQ_Y == 0) { - mul_mat_q<QK5_1, QR5_1, QI5_1, block_q5_1, allocate_tiles_q5_1, load_tiles_q5_1<false>, VDR_q5_1_q8_1, vec_dot_q5_1_q8_1_mul_mat> + mul_mat_q<QK5_1, QR5_1, QI5_1, block_q5_1, allocate_tiles_q5_1, load_tiles_q5_1<false>, VDR_Q5_1_Q8_1_MMQ, vec_dot_q5_1_q8_1_mul_mat> <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst); } else { - mul_mat_q<QK5_1, QR5_1, QI5_1, block_q5_1, allocate_tiles_q5_1, load_tiles_q5_1<true>, VDR_q5_1_q8_1, vec_dot_q5_1_q8_1_mul_mat> + mul_mat_q<QK5_1, QR5_1, QI5_1, block_q5_1, allocate_tiles_q5_1, load_tiles_q5_1<true>, VDR_Q5_1_Q8_1_MMQ, vec_dot_q5_1_q8_1_mul_mat> <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst); } } @@ -3789,10 +3945,10 @@ static void ggml_mul_mat_q8_0_q8_1_cuda( const dim3 block_dims(WARP_SIZE, WARP_SIZE/4, 1); if (nrows_x % GGML_CUDA_MMQ_Y == 0) { - mul_mat_q<QK8_0, QR8_0, QI8_0, block_q8_0, allocate_tiles_q8_0, load_tiles_q8_0<false>, VDR_q8_0_q8_1, vec_dot_q8_0_q8_1_mul_mat> + mul_mat_q<QK8_0, QR8_0, QI8_0, block_q8_0, allocate_tiles_q8_0, load_tiles_q8_0<false>, VDR_Q8_0_Q8_1_MMQ, vec_dot_q8_0_q8_1_mul_mat> <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst); } else { - mul_mat_q<QK8_0, QR8_0, QI8_0, block_q8_0, allocate_tiles_q8_0, load_tiles_q8_0<true>, VDR_q8_0_q8_1, vec_dot_q8_0_q8_1_mul_mat> + mul_mat_q<QK8_0, QR8_0, QI8_0, block_q8_0, allocate_tiles_q8_0, load_tiles_q8_0<true>, VDR_Q8_0_Q8_1_MMQ, vec_dot_q8_0_q8_1_mul_mat> <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst); } } |