diff options
-rw-r--r-- | README.md | 4 | ||||
-rw-r--r-- | convert-ggml-to-pth.py | 299 | ||||
-rw-r--r-- | convert-gpt4all-to-ggml.py | 107 | ||||
-rw-r--r-- | convert-gptq-to-ggml.py | 172 | ||||
-rw-r--r-- | convert-pth-to-ggml.py | 277 | ||||
-rw-r--r-- | convert-unversioned-ggml-to-ggml.py | 100 | ||||
-rw-r--r-- | convert.py | 1143 | ||||
-rw-r--r-- | migrate-ggml-2023-03-30-pr613.py | 311 | ||||
-rw-r--r-- | requirements.txt | 2 |
9 files changed, 1154 insertions, 1261 deletions
@@ -192,10 +192,10 @@ ls ./models 65B 30B 13B 7B tokenizer_checklist.chk tokenizer.model # install Python dependencies -python3 -m pip install torch numpy sentencepiece +python3 -m pip install -r requirements.txt # convert the 7B model to ggml FP16 format -python3 convert-pth-to-ggml.py models/7B/ 1 +python3 convert.py models/7B/ # quantize the model to 4-bits (using method 2 = q4_0) ./quantize ./models/7B/ggml-model-f16.bin ./models/7B/ggml-model-q4_0.bin 2 diff --git a/convert-ggml-to-pth.py b/convert-ggml-to-pth.py deleted file mode 100644 index 25a4423..0000000 --- a/convert-ggml-to-pth.py +++ /dev/null @@ -1,299 +0,0 @@ -# Author: github.com/ductai199x -import argparse -import os -import struct - -import numpy as np -import torch -from numba import njit -from tqdm.auto import tqdm - - -def read_header(fin): - values = struct.unpack("i" * 9, fin.read(4 * 9)) - _, _, vocab_size, dim, multiple_of, n_heads, n_layers, rot, ftype = values - return { - "vocab_size": vocab_size, - "dim": dim, - "multiple_of": multiple_of, - "n_heads": n_heads, - "n_layers": n_layers, - }, ftype - - -def read_tokens(fin, vocab_size): - tokens = [] - for _ in range(vocab_size): - text_len = struct.unpack("i", fin.read(4))[0] - text_bytes = fin.read(text_len) - try: - text = text_bytes.decode() - except UnicodeDecodeError: - text = text_bytes.decode(errors="replace") - score = struct.unpack("f", fin.read(4))[0] - tokens.append((text, score)) - return tokens - - -@njit -def dequantize_weights_numba(fin_data, n_rows, n_cols): - qk = 32 - nb = n_cols // qk - bs = 4 + (qk // 2) - - weights = np.zeros((n_rows, n_cols), dtype=np.float32) - data_pos = 0 - - for row in range(n_rows): - for block in range(nb): - d = np.frombuffer(fin_data[data_pos : data_pos + 4], dtype=np.float32)[0] - data_pos += 4 - packed_values = fin_data[data_pos : data_pos + (qk // 2)] - data_pos += qk // 2 - - for i in range(qk // 2): - packed_value = packed_values[i] - v0 = np.float32((packed_value & 0b00001111) - 8) * d - v1 = np.float32((packed_value >> 4) - 8) * d - - weights[row, block * qk + 2 * i] = v0 - weights[row, block * qk + 2 * i + 1] = v1 - - return weights - - -def dequantize_weights(fin, n_rows, n_cols): - qk = 32 - nb = n_cols // qk - data_size = n_rows * n_cols // 2 + n_rows * nb * 4 - fin_data = fin.read(data_size) - return dequantize_weights_numba(fin_data, n_rows, n_cols) - - -def read_variables(fin): - model = {} - pbar = tqdm(total=os.path.getsize(fin.name), unit="B", unit_scale=True, desc="Reading variables") - while True: - start_pos = fin.tell() - try: - n_dims, name_length, ftype_cur = struct.unpack("iii", fin.read(4 * 3)) - except struct.error: - break - - shape = tuple(struct.unpack("i" * n_dims, fin.read(4 * n_dims))) - shape = shape[::-1] - name = fin.read(name_length).decode() - - # ensure tensor data is aligned - tensor_data_offset = fin.tell() - tensor_data_offset = (tensor_data_offset + 31) & -32 - fin.seek(tensor_data_offset) - - if ftype_cur == 2: - # 4-bit quantized weights - dtype = np.uint8 - data = dequantize_weights(fin, shape[0], shape[1]) - data = data.reshape(shape) - elif ftype_cur == 0: - dtype = np.float32 - data_size = np.prod(shape) - data = np.fromfile(fin, dtype=dtype, count=data_size).reshape(shape) - elif ftype_cur == 1: - dtype = np.float16 - data_size = np.prod(shape) - data = np.fromfile(fin, dtype=dtype, count=data_size).reshape(shape) - - model[name] = torch.tensor(data, dtype=torch.float32 if dtype == np.float32 else torch.float16) - - pbar.update(fin.tell() - start_pos) - - return model - - -def convert_to_hf_format(model, hparams): - # This works for llama 7B, need to test with other models - n_layers = hparams["n_layers"] - n_heads = hparams["n_heads"] - dim = hparams["dim"] - dims_per_head = dim // n_heads - base = 10000.0 - inv_freq = 1.0 / (base ** (torch.arange(0, dims_per_head, 2).float() / dims_per_head)) - - # permute for sliced rotary - def permute(w): - return w.view(n_heads, dim // n_heads // 2, 2, dim).transpose(1, 2).reshape(dim, dim) - - state_dict = {} - for layer_i in range(n_layers): - state_dict.update( - { - f"model.layers.{layer_i}.self_attn.q_proj.weight": permute( - model[f"layers.{layer_i}.attention.wq.weight"] - ), - f"model.layers.{layer_i}.self_attn.k_proj.weight": permute( - model[f"layers.{layer_i}.attention.wk.weight"] - ), - f"model.layers.{layer_i}.self_attn.v_proj.weight": model[ - f"layers.{layer_i}.attention.wv.weight" - ], - f"model.layers.{layer_i}.self_attn.o_proj.weight": model[ - f"layers.{layer_i}.attention.wo.weight" - ], - f"model.layers.{layer_i}.mlp.gate_proj.weight": model[ - f"layers.{layer_i}.feed_forward.w1.weight" - ], - f"model.layers.{layer_i}.mlp.down_proj.weight": model[ - f"layers.{layer_i}.feed_forward.w2.weight" - ], - f"model.layers.{layer_i}.mlp.up_proj.weight": model[ - f"layers.{layer_i}.feed_forward.w3.weight" - ], - f"model.layers.{layer_i}.input_layernorm.weight": model[ - f"layers.{layer_i}.attention_norm.weight" - ], - f"model.layers.{layer_i}.post_attention_layernorm.weight": model[ - f"layers.{layer_i}.ffn_norm.weight" - ], - } - ) - state_dict[f"model.layers.{layer_i}.self_attn.rotary_emb.inv_freq"] = inv_freq - state_dict.update( - { - "model.embed_tokens.weight": model["tok_embeddings.weight"], - "model.norm.weight": model["norm.weight"], - "lm_head.weight": model["output.weight"], - } - ) - - return state_dict - - -def chat(model, hparams, llama_dir): - from transformers import (GenerationConfig, LlamaForCausalLM, - LlamaTokenizer, StoppingCriteria, - StoppingCriteriaList) - from transformers.models.llama.configuration_llama import LlamaConfig - - class StoppingCriteriaSub(StoppingCriteria): - def __init__(self): - super().__init__() - - def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, stops=[]): - print(tokenizer.decode(input_ids[0]), end="", flush=True) - if input_ids[0][-1] == 13: - return True - - return False - - config = LlamaConfig( - vocab_size=hparams["vocab_size"], - dim=hparams["dim"], - num_hidden_layers=hparams["n_layers"], - num_attention_heads=hparams["n_heads"], - ) - - llama = LlamaForCausalLM(config=config) - llama.load_state_dict(state_dict=model, strict=True) - tokenizer = LlamaTokenizer.from_pretrained(llama_dir) - - device = torch.device("cpu") - llama = llama.to(device) - - ctx = """You are AI. -This is a dialog, where User interacts with AI. AI is helpful, kind, obedient, honest, respectful, direct, concise, should try to protect User's privacy, and knows its own limits. Also, AI must answer User and AI cannot stop the conversation by itself. -User: Hello, AI. -AI: Hello! How can I assist you today? -""" - print(ctx.rstrip("\n")) - while True: - print("-" * 60) - prompt = input("User: ") - if ctx != "": - ctx = f"{ctx}User: {prompt}\n" - else: - ctx = f"{prompt}\nAI:" - - ctx = (ctx[-1920:]) if len(ctx) >= 2048 else ctx - - print("-" * 60) - if len(ctx.strip()) > 0: - input_ids = tokenizer(ctx, return_tensors="pt")["input_ids"].to(device) - generation_config = GenerationConfig( - temperature=0.8, - top_p=0.95, - top_k=50, - repetition_penalty=1.1764, - ) - with torch.no_grad(): - generation_output = llama.generate( - input_ids=input_ids, - generation_config=generation_config, - return_dict_in_generate=True, - output_scores=True, - max_length=2048, - do_sample=True, - stopping_criteria=StoppingCriteriaList([StoppingCriteriaSub()]), - ) - s = generation_output.sequences[0] - decoded = tokenizer.decode(s) - ctx = f"{decoded}\n" - - -def main(): - parser = argparse.ArgumentParser() - parser.add_argument( - "--input_dir", "-i", type=str, required=True, help="The input directory containing the ggml files." - ) - parser.add_argument( - "--prefix", - "-p", - type=str, - required=True, - help="The prefix of the ggml files (ggml-model-f16 or ggml-model-q4_0).", - ) - parser.add_argument( - "--hf", - action="store_true", - help="Whether to save the model in the Hugging Face format. (default: False)", - ) - parser.add_argument( - "--chat", "-c", action="store_true", help="Whether to open a chat with the model. (default: False)" - ) - args = parser.parse_args() - - llama_dir = os.path.abspath(f"{args.input_dir}/../") - - ggml_files = sorted( - [f"{args.input_dir}/{f}" for f in os.listdir(args.input_dir) if f.startswith(args.prefix)] - ) - - fin = open(ggml_files[0], "rb") - hparams, ftype = read_header(fin) - tokens = read_tokens(fin, hparams["vocab_size"]) - model = read_variables(fin) - - for f in tqdm(ggml_files[1:]): - fin = open(f, "rb") - read_header(fin) - read_tokens(fin, hparams["vocab_size"]) - model.update(read_variables(fin)) - - if args.hf: - model = convert_to_hf_format(model, hparams) - - pth_ckpt = { - "state_dict": model, - "hparams": hparams, - "tokens": tokens, - } - - torch.save(pth_ckpt, f"{args.input_dir}/{args.prefix}-to-torch.pth") - - if args.chat: - if not args.hf: - model = convert_to_hf_format(model, hparams) - chat(model, hparams, llama_dir) - - -if __name__ == "__main__": - main() diff --git a/convert-gpt4all-to-ggml.py b/convert-gpt4all-to-ggml.py deleted file mode 100644 index b1a5e05..0000000 --- a/convert-gpt4all-to-ggml.py +++ /dev/null @@ -1,107 +0,0 @@ -#!/usr/bin/env python3 - -# -# TODO: deduplicate GPT4All with convert-unversioned-ggml-to-ggml.py -# - -# Original by https://github.com/eiz -# https://github.com/ggerganov/llama.cpp/issues/324#issuecomment-1476227818 -import argparse -import glob -import os -import struct -import sys -from sentencepiece import SentencePieceProcessor - -HPARAMS = keys = ["vocab_size", "dim", "multiple_of", "n_heads", "n_layers"] - -def parse_args(): - parser = argparse.ArgumentParser(description='Upgrade a GPT4All model to the current format') - parser.add_argument('gpt4all_model', help='path to gpt4all-lora-quantized.bin') - parser.add_argument('tokenizer_model', help='path to LLaMA tokenizer.model file') - return parser.parse_args() - -def read_header(f_in): - struct_fmt = "i" * (3 + len(HPARAMS)) - struct_size = struct.calcsize(struct_fmt) - buf = f_in.read(struct_size) - return struct.unpack(struct_fmt, buf) - -def write_header(f_out, header): - (magic, vocab_size, dim, multiple_of, n_heads, n_layers, rot, ftype) = header - - if magic != 0x67676d6c: - raise Exception('Invalid file magic. Must be an old style ggml file.') - - values = [ - 0x67676d66, # magic: ggml in hex - 1, # file version - vocab_size, - dim, - multiple_of, - n_heads, - n_layers, - rot, - ftype - ] - f_out.write(struct.pack("i" * len(values), *values)) - -def write_tokens(fout, tokenizer): - for i in range(tokenizer.vocab_size()): - if tokenizer.is_unknown(i): - text = " \u2047 ".encode() - elif tokenizer.is_control(i): - text = b"" - elif tokenizer.is_byte(i): - piece = tokenizer.id_to_piece(i) - if len(piece) != 6: - print(f"Invalid token: {piece}") - sys.exit(1) - byte_value = int(piece[3:-1], 16) - text = struct.pack("B", byte_value) - else: - text = tokenizer.id_to_piece(i).replace("\u2581", " ").encode() - fout.write(struct.pack("i", len(text))) - fout.write(text) - fout.write(struct.pack("f", tokenizer.get_score(i))) - - # TODO: GPT4All - add extra <pad> token - text = "<pad>".encode() - fout.write(struct.pack("i", len(text))) - fout.write(text) - fout.write(struct.pack("f", 0.0)) - -def read_tokens(f_in, tokenizer): - for i in range(tokenizer.vocab_size()): - len_b = f_in.read(4) - (length,) = struct.unpack("i", len_b) - f_in.read(length) - -def copy_all_data(f_out, f_in): - while True: - buf = f_in.read(1024 * 1024) - if not buf: - break - f_out.write(buf) - -def convert_one_file(path_in, tokenizer): - path_tmp = f"{path_in}.tmp" - path_orig= f"{path_in}.orig" - print(f"converting {path_in}") - with open(path_in, "rb") as f_in, open(path_tmp, "wb") as f_out: - write_header(f_out, read_header(f_in)) - read_tokens(f_in, tokenizer) - write_tokens(f_out, tokenizer) - copy_all_data(f_out, f_in) - os.rename(path_in, path_orig) - os.rename(path_tmp, path_in) - -def main(): - args = parse_args() - - tokenizer = SentencePieceProcessor(args.tokenizer_model) - - convert_one_file(args.gpt4all_model, tokenizer) - -if __name__ == "__main__": - main() diff --git a/convert-gptq-to-ggml.py b/convert-gptq-to-ggml.py deleted file mode 100644 index 42e99c2..0000000 --- a/convert-gptq-to-ggml.py +++ /dev/null @@ -1,172 +0,0 @@ -# Convert a GPTQ quantized LLaMA model to a ggml compatible file -# Based on: https://github.com/qwopqwop200/GPTQ-for-LLaMa -# -import os -import re -import sys -import json -import struct -import numpy as np -import torch -from sentencepiece import SentencePieceProcessor - -if len(sys.argv) != 4: - print("Usage: convert-gptq-to-ggml.py llamaXXb-4bit.pt tokenizer.model out.bin\n") - sys.exit(1) - -fname_model = sys.argv[1] -fname_tokenizer = sys.argv[2] -dir_out = sys.argv[3] - -model = torch.load(fname_model, map_location="cpu") - -n_vocab, n_embd = model['model.embed_tokens.weight'].shape -n_layer = 1 + max(int(m.group(1)) for name in model - if (m := re.match(r'model\.layers\.([0-9]+)', name))) - -# hardcoded: -n_mult = 256 -n_head = {32: 32, 40: 40, 60: 52, 80: 64}[n_layer] - -tokenizer = SentencePieceProcessor(fname_tokenizer) - -assert tokenizer.vocab_size() == n_vocab - -fname_out = sys.argv[3] - -fout = open(fname_out, "wb") - -fout.write(struct.pack("i", 0x67676d66)) # magic: ggmf in hex -fout.write(struct.pack("i", 1)) # file version -fout.write(struct.pack("i", n_vocab)) -fout.write(struct.pack("i", n_embd)) -fout.write(struct.pack("i", n_mult)) -fout.write(struct.pack("i", n_head)) -fout.write(struct.pack("i", n_layer)) -fout.write(struct.pack("i", n_embd // n_head)) # rot (obsolete) -fout.write(struct.pack("i", 4)) - - -# This loop unchanged from convert-pth-to-ggml.py: -for i in range(tokenizer.vocab_size()): - if tokenizer.is_unknown(i): - text = " \u2047 ".encode() - elif tokenizer.is_control(i): - text = b"" - elif tokenizer.is_byte(i): - piece = tokenizer.id_to_piece(i) - if len(piece) != 6: - print(f"Invalid token: {piece}") - sys.exit(1) - byte_value = int(piece[3:-1], 16) - text = struct.pack("B", byte_value) - else: - text = tokenizer.id_to_piece(i).replace("\u2581", " ").encode() - fout.write(struct.pack("i", len(text))) - fout.write(text) - fout.write(struct.pack("f", tokenizer.get_score(i))) - -def write_header(shape, dst_name, ftype_cur): - sname = dst_name.encode() - fout.write(struct.pack("iii", len(shape), len(sname), ftype_cur)) - fout.write(struct.pack("i" * len(shape), *shape[::-1])) - fout.write(sname) - - # ensure tensor data is aligned - tensor_data_offset = fout.tell() - tensor_data_offset = (tensor_data_offset + 31) & -32 - fout.seek(tensor_data_offset) - -def convert_non_q4(src_name, dst_name): - v = model[src_name] - shape = v.shape - print(f"Processing non-Q4 variable: {src_name} with shape: {shape} and type: {v.dtype}") - if len(shape) == 1: - print(" Converting to float32") - v = v.to(torch.float32) - - ftype_cur = {torch.float16: 1, torch.float32: 0}[v.dtype] - - # header - write_header(shape, dst_name, ftype_cur) - - # data - v.numpy().tofile(fout) - -def convert_q4(src_name, dst_name, permute=False): - zeros = model[f"{src_name}.zeros"].numpy() - scales = model[f"{src_name}.scales"].numpy() - bias = model[f"{src_name}.bias"].numpy() - qweight = model[f"{src_name}.qweight"].numpy().T # transpose - - # Q4_1 does not support bias; good thing the bias is always all zeros. - assert not np.any(bias) - - # Each int32 item is actually 8 int4 items packed together, and it's transposed. - shape = (qweight.shape[0], qweight.shape[1] * 8) - - print(f"Processing Q4 variable: {src_name} with shape: {shape}") - - # The output format has the int4 weights in groups of 32 rather than 8. - # It looks like this: - # For each row: - # For each group of 32 columns: - # - addend (float32, 4 bytes) - # - scale (float32, 4 bytes) - # - weights (int4 * 32, 16 bytes) - # Note that in the input, the scales and addends are shared between all - # the columns in a row, so we end up wasting quite a bit of memory with - # repeated scales and addends. - - addends = -zeros # flip sign - - # Since the output format is mixed between integers and floats, we have - # to hackily view the floats as int32s just so numpy will let us - # concatenate them. - addends_view = addends.view(dtype=np.int32) - scales_view = scales.view(dtype=np.int32) - - # Split into groups of 4 columns (i.e. 32 columns of quantized data): - grouped = qweight.reshape([qweight.shape[0], qweight.shape[1] // 4, 4]) - - # Repeat addends and scales: - addends_rep = np.atleast_3d(addends_view).repeat(grouped.shape[1], axis=1) - scales_rep = np.atleast_3d(scales_view).repeat(grouped.shape[1], axis=1) - - blob = np.concatenate([scales_rep, addends_rep, grouped], axis=2, casting='no') - - if permute: - # Permute some rows to undo the permutation done by convert_llama_weights_to_hf.py. - # This can be done after the above conversion because it doesn't affect column order/layout. - blob = (blob.reshape(n_head, 2, shape[0] // n_head // 2, *blob.shape[1:]) - .swapaxes(1, 2) - .reshape(blob.shape)) - - # header - write_header(shape, dst_name, 3) # ftype = Q4_1 - - # data - blob.tofile(fout) - -convert_non_q4("model.embed_tokens.weight", "tok_embeddings.weight") -convert_non_q4("model.norm.weight", "norm.weight") -convert_non_q4("lm_head.weight", "output.weight") - -for i in range(n_layer): - convert_q4(f"model.layers.{i}.self_attn.q_proj", f"layers.{i}.attention.wq.weight", permute=True) - convert_q4(f"model.layers.{i}.self_attn.k_proj", f"layers.{i}.attention.wk.weight", permute=True) - convert_q4(f"model.layers.{i}.self_attn.v_proj", f"layers.{i}.attention.wv.weight") - convert_q4(f"model.layers.{i}.self_attn.o_proj", f"layers.{i}.attention.wo.weight") - - convert_q4(f"model.layers.{i}.mlp.gate_proj", f"layers.{i}.feed_forward.w1.weight") - convert_q4(f"model.layers.{i}.mlp.down_proj", f"layers.{i}.feed_forward.w2.weight") - convert_q4(f"model.layers.{i}.mlp.up_proj", f"layers.{i}.feed_forward.w3.weight") - - convert_non_q4(f"model.layers.{i}.input_layernorm.weight", f"layers.{i}.attention_norm.weight") - convert_non_q4(f"model.layers.{i}.post_attention_layernorm.weight", f"layers.{i}.ffn_norm.weight") - - -fout.close() - -print(f"Done. Output file: {fname_out}") -print() diff --git a/convert-pth-to-ggml.py b/convert-pth-to-ggml.py index dcef2f6..f87ac27 100644 --- a/convert-pth-to-ggml.py +++ b/convert-pth-to-ggml.py @@ -1,274 +1,11 @@ -# Convert a LLaMA model checkpoint to a ggjt compatible file -# -# Load the model using Torch -# Iterate over all variables and write them to a binary file. -# -# For each variable, write the following: -# - Number of dimensions (int) -# - Name length (int) -# - Dimensions (int[n_dims]) -# - Name (char[name_length]) -# - Data (float[n_dims]) -# -# At the start of the ggml file we write the model parameters -# and vocabulary. -# +# Compatibility stub import argparse -import os -import sys -import json -import struct -import numpy as np -import torch -from sentencepiece import SentencePieceProcessor +import convert -QK = 32 - -GGML_TYPE_Q4_0 = 0 -GGML_TYPE_Q4_1 = 1 -GGML_TYPE_I8 = 2 -GGML_TYPE_I16 = 3 -GGML_TYPE_I32 = 4 -GGML_TYPE_F16 = 5 -GGML_TYPE_F32 = 6 - -WTYPES = { - 0: GGML_TYPE_F32, - 1: GGML_TYPE_F16, - 2: GGML_TYPE_Q4_0, - 3: GGML_TYPE_Q4_1, -} - -GGML_BLCK_SIZE = { - GGML_TYPE_Q4_0: QK, - GGML_TYPE_Q4_1: QK, - GGML_TYPE_I8: 1, - GGML_TYPE_I16: 1, - GGML_TYPE_I32: 1, - GGML_TYPE_F16: 1, - GGML_TYPE_F32: 1, -} - -GGML_TYPE_SIZE = { - GGML_TYPE_Q4_0: 4 + QK//2, - GGML_TYPE_Q4_1: 4*2 + QK//2, - GGML_TYPE_I8: 1, - GGML_TYPE_I16: 2, - GGML_TYPE_I32: 4, - GGML_TYPE_F16: 2, - GGML_TYPE_F32: 4, -} - -def ggml_nelements(shape): - r = 1 - for i in shape: - r *= i - return r - -def ggml_nbytes(shape, ftype): - x = ggml_nelements(shape) - t = WTYPES[ftype] - x *= GGML_TYPE_SIZE[t] - x //= GGML_BLCK_SIZE[t] - return x - -def parse_args(): - parser = argparse.ArgumentParser(description='Convert a LLaMA model checkpoint to a ggml compatible file') - parser.add_argument('dir_model', help='directory containing the model checkpoint') - parser.add_argument('ftype', help='file type (0: float32, 1: float16)', type=int, choices=[0, 1], default=1) - parser.add_argument('vocab_only', help='only write vocab to file', type=int, default=0, nargs='?') - return parser.parse_args() - -def get_n_parts(dim): - mappings = {4096: 1, 5120: 2, 6656: 4, 8192: 8} - n_parts = mappings.get(dim) - if n_parts is None: - print(f"Invalid dim: {dim}") - sys.exit(1) - - print(f"n_parts = {n_parts}\n") - return n_parts - -def load_hparams_and_tokenizer(dir_model): - # `dir_model` is something like `models/7B` or `models/7B/`. - # "tokenizer.model" is expected under model's parent dir. - # When `dir_model` is a symlink, f"{dir_model}/../tokenizer.model" would not be found. - # Let's use the model's parent dir directly. - model_parent_dir = os.path.dirname(os.path.normpath(dir_model)) - fname_hparams = f"{dir_model}/params.json" - fname_tokenizer = f"{model_parent_dir}/tokenizer.model" - with open(fname_hparams, "r") as f: - hparams = json.load(f) - print(hparams) - tokenizer = SentencePieceProcessor(fname_tokenizer) - hparams.update({"vocab_size": tokenizer.vocab_size()}) - return hparams, tokenizer - -def write_header(fout, hparams, ftype): - keys = ["vocab_size", "dim", "multiple_of", "n_heads", "n_layers"] - values = [ - 0x67676a74, # magic: ggjt in hex - 1, # file version - *[hparams[key] for key in keys], - hparams["dim"] // hparams["n_heads"], # rot (obsolete) - ftype - ] - fout.write(struct.pack("i" * len(values), *values)) - -def write_tokens(fout, tokenizer): - for i in range(tokenizer.vocab_size()): - if tokenizer.is_unknown(i): - text = " \u2047 ".encode() - elif tokenizer.is_control(i): - text = b"" - elif tokenizer.is_byte(i): - piece = tokenizer.id_to_piece(i) - if len(piece) != 6: - print(f"Invalid token: {piece}") - sys.exit(1) - byte_value = int(piece[3:-1], 16) - text = struct.pack("B", byte_value) - else: - text = tokenizer.id_to_piece(i).replace("\u2581", " ").encode() - fout.write(struct.pack("i", len(text))) - fout.write(text) - fout.write(struct.pack("f", tokenizer.get_score(i))) - -def process_and_write_variables(fout, model, ftype, part_id, n_parts): - for name, datao in model.items(): - if name.endswith("freqs"): - continue - - # remove dimensions with a single element - data = datao.numpy().squeeze() - partshape = data.shape - n_dims = len(data.shape) - assert n_dims in (1, 2) - - print(f"Processing variable: {name} with shape: {partshape} and type: {datao.dtype}") - - # coerce single-dimensional tensors from float16 to float32 - ftype_cur = 1 - if ftype == 0 or n_dims == 1: - print(" Converting to float32") - data = data.astype(np.float32) - ftype_cur = 0 - blck_size = GGML_BLCK_SIZE[WTYPES[ftype_cur]] - type_size = GGML_TYPE_SIZE[WTYPES[ftype_cur]] - - # determine dimension along which multipart tensor is sharded - # - # split_dim 0 regex: - # - output.* - # - layers.*.attention.wq.weight - # - layers.*.attention.wk.weight - # - layers.*.attention.wv.weight - # - layers.*.feed_forward.w1.weight - # - layers.*.feed_forward.w3.weight - # - # split_dim 1 regex: - # - tok_embeddings.* - # - layers.*.attention.wo.weight - # - layers.*.feed_forward.w2.weight - # - if n_dims > 1: - split_dim = 1 - if "tok_embeddings" in name: - split_dim = 1 - elif "layers" in name: - if "attention.wo.weight" in name: - split_dim = 1 - elif "feed_forward.w2.weight" in name: - split_dim = 1 - else: - split_dim = 0 - elif "output" in name: - split_dim = 0 - - # output tensor header - fullshape = list(partshape) - if n_dims > 1: - fullshape[split_dim] *= n_parts - sname = name.encode() - fout.write(struct.pack("iii", n_dims, len(sname), ftype_cur)) - for dim in reversed(fullshape): - fout.write(struct.pack("i", dim)) - fout.write(sname) - - # ensure tensor data is aligned - tensor_data_offset = fout.tell() - while tensor_data_offset % QK != 0: - fout.write(struct.pack("B", 0)) - tensor_data_offset += 1 - - # output unified mappable tensor data - if n_dims == 1 or n_parts == 1: - # copy tensor which we thankfully received in one piece - if part_id == 0: - data.tofile(fout) - elif split_dim == 0: - # reassemble multifile tensor containing some of the rows - rows_per_chunk = partshape[0] - current_row = part_id * rows_per_chunk - bytes_per_row = fullshape[1] // blck_size * type_size - offset = current_row * bytes_per_row - fout.seek(tensor_data_offset + offset) - data.tofile(fout) - elif split_dim == 1: - # reassemble multifile tensor containing some of the cols - cols_per_chunk = partshape[1] - current_col = part_id * cols_per_chunk - bytes_per_row = fullshape[1] // blck_size * type_size - offset_current_col = current_col // blck_size * type_size - for row in range(partshape[0]): - offset_row = row * bytes_per_row - offset = offset_row + offset_current_col - fout.seek(tensor_data_offset + offset) - data[row].tofile(fout) - - # advance file position to next tensor - fout.seek(tensor_data_offset + ggml_nbytes(fullshape, ftype_cur)) - -def main(): - args = parse_args() - dir_model = args.dir_model - ftype = args.ftype - ftype_str = ["f32", "f16"] - hparams, tokenizer = load_hparams_and_tokenizer(dir_model) - - print(args) - - # if only writing vocab to file - if args.vocab_only: - fname_model = f"{dir_model}/consolidated.00.pth" - fname_out = f"{dir_model}/ggml-vocab.bin" - print(f"Extracting only the vocab from '{fname_model}'\n") - with open(fname_out, "wb") as fout: - write_header(fout, hparams, ftype) - write_tokens(fout, tokenizer) - print(f"Done. Output file: {fname_out}\n") - return - - n_parts = get_n_parts(hparams["dim"]) - fname_out = f"{dir_model}/ggml-model-{ftype_str[ftype]}.bin" - - # we output a single file for ggml - with open(fname_out, "wb") as fout: - write_header(fout, hparams, ftype) - write_tokens(fout, tokenizer) - offset_of_tensors = fout.tell() - # the tensors we load could be split across multiple files - for part_id in range(n_parts): - fout.seek(offset_of_tensors) - print(f"Processing part {part_id+1} of {n_parts}\n") - fname_model = f"{dir_model}/consolidated.0{part_id}.pth" - model = torch.load(fname_model, map_location="cpu") - process_and_write_variables(fout, model, ftype, part_id, n_parts) - del model - - print(f"Done. Output file: {fname_out}\n") - -if __name__ == "__main__": - main() +parser = argparse.ArgumentParser(description='Convert a LLaMA model checkpoint to a ggml compatible file') +parser.add_argument('dir_model', help='directory containing the model checkpoint') +parser.add_argument('ftype', help='file type (0: float32, 1: float16)', type=int, choices=[0, 1], default=1) +args = parser.parse_args() +convert.main(['--outtype', 'f16' if args.ftype == 1 else 'f32', '--', args.dir_model]) diff --git a/convert-unversioned-ggml-to-ggml.py b/convert-unversioned-ggml-to-ggml.py deleted file mode 100644 index 5151d90..0000000 --- a/convert-unversioned-ggml-to-ggml.py +++ /dev/null @@ -1,100 +0,0 @@ -#!/usr/bin/env python3 -# Original by https://github.com/eiz -# https://github.com/ggerganov/llama.cpp/issues/324#issuecomment-1476227818 -import argparse -import glob -import os -import struct -import sys -from sentencepiece import SentencePieceProcessor - -HPARAMS = keys = ["vocab_size", "dim", "multiple_of", "n_heads", "n_layers"] - -def parse_args(): - parser = argparse.ArgumentParser(description='Upgrade old ggml model files to the current format') - parser.add_argument('dir_model', help='directory containing ggml .bin files') - parser.add_argument('tokenizer_model', help='path to LLaMA tokenizer.model file') - return parser.parse_args() - -def read_header(f_in): - struct_fmt = "i" * (3 + len(HPARAMS)) - struct_size = struct.calcsize(struct_fmt) - buf = f_in.read(struct_size) - return struct.unpack(struct_fmt, buf) - -def write_header(f_out, header): - (magic, vocab_size, dim, multiple_of, n_heads, n_layers, rot, ftype) = header - - if magic != 0x67676d6c: - raise Exception('Invalid file magic. Must be an old style ggml file.') - - values = [ - 0x67676d66, # magic: ggml in hex - 1, # file version - vocab_size, - dim, - multiple_of, - n_heads, - n_layers, - rot, - ftype - ] - f_out.write(struct.pack("i" * len(values), *values)) - -def write_tokens(fout, tokenizer): - for i in range(tokenizer.vocab_size()): - if tokenizer.is_unknown(i): - text = " \u2047 ".encode() - elif tokenizer.is_control(i): - text = b"" - elif tokenizer.is_byte(i): - piece = tokenizer.id_to_piece(i) - if len(piece) != 6: - print(f"Invalid token: {piece}") - sys.exit(1) - byte_value = int(piece[3:-1], 16) - text = struct.pack("B", byte_value) - else: - text = tokenizer.id_to_piece(i).replace("\u2581", " ").encode() - fout.write(struct.pack("i", len(text))) - fout.write(text) - fout.write(struct.pack("f", tokenizer.get_score(i))) - -def read_tokens(f_in, tokenizer): - for i in range(tokenizer.vocab_size()): - len_b = f_in.read(4) - (length,) = struct.unpack("i", len_b) - f_in.read(length) - -def copy_all_data(f_out, f_in): - while True: - buf = f_in.read(1024 * 1024) - if not buf: - break - f_out.write(buf) - -def convert_one_file(path_in, tokenizer): - path_tmp = f"{path_in}.tmp" - path_orig= f"{path_in}.orig" - print(f"converting {path_in}") - with open(path_in, "rb") as f_in, open(path_tmp, "wb") as f_out: - write_header(f_out, read_header(f_in)) - read_tokens(f_in, tokenizer) - write_tokens(f_out, tokenizer) - copy_all_data(f_out, f_in) - os.rename(path_in, path_orig) - os.rename(path_tmp, path_in) - -def main(): - args = parse_args() - files = [] - files.extend(glob.glob(f"{args.dir_model}/*.bin")) - files.extend(glob.glob(f"{args.dir_model}/*.bin.*")) - - tokenizer = SentencePieceProcessor(args.tokenizer_model) - - for file in files: - convert_one_file(file, tokenizer) - -if __name__ == "__main__": - main() diff --git a/convert.py b/convert.py new file mode 100644 index 0000000..f35163f --- /dev/null +++ b/convert.py @@ -0,0 +1,1143 @@ +import argparse +import concurrent.futures +import copy +import enum +import faulthandler +import functools +import io +import itertools +import json +import math +import mmap +import pickle +import re +import signal +import struct +import sys +import zipfile +from abc import ABCMeta, abstractmethod +from dataclasses import dataclass +from pathlib import Path +import numpy as np +from sentencepiece import SentencePieceProcessor # type: ignore +from typing import (IO, Any, Callable, Iterable, Literal, Optional, Sequence, + TypeVar, Union, List, Dict, Tuple, TYPE_CHECKING) +if TYPE_CHECKING: + from typing_extensions import TypeAlias + +if hasattr(faulthandler, 'register') and hasattr(signal, 'SIGUSR1'): + faulthandler.register(signal.SIGUSR1) + +NDArray: 'TypeAlias' = 'np.ndarray[Any, Any]' + + +@dataclass(frozen=True) +class UnquantizedDataType: + name: str + + +DT_F16 = UnquantizedDataType('F16') +DT_F32 = UnquantizedDataType('F32') +DT_I32 = UnquantizedDataType('I32') +DT_BF16 = UnquantizedDataType('BF16') + + +@dataclass(frozen=True) +class QuantizedDataType: + groupsize: int + have_addends: bool + have_g_idx: bool + + +DT_Q4_0 = QuantizedDataType(groupsize=32, have_addends=False, have_g_idx=False) +DT_Q4_1 = QuantizedDataType(groupsize=32, have_addends=True, have_g_idx=False) + +DataType = Union[UnquantizedDataType, QuantizedDataType] + +DATA_TYPE_TO_FTYPE: Dict[DataType, int] = { + DT_F32: 0, + DT_F16: 1, + DT_Q4_0: 2, + DT_Q4_1: 3, +} + +FTYPE_TO_DATA_TYPE: Dict[int, DataType] = \ + {ftype: dtype for (dtype, ftype) in DATA_TYPE_TO_FTYPE.items()} + +DATA_TYPE_TO_NUMPY: Dict[DataType, 'np.dtype[Any]'] = { + DT_F16: np.dtype(np.float16), + DT_F32: np.dtype(np.float32), + DT_I32: np.dtype(np.int32), +} + +NUMPY_TYPE_TO_DATA_TYPE: Dict['np.dtype[Any]', DataType] = \ + {dtype: data_type for (data_type, dtype) in DATA_TYPE_TO_NUMPY.items()} + + +class GGMLFileType(enum.Enum): + AllF32 = 0 + MostlyF16 = 1 # except 1d tensors + MostlyQ4_0 = 2 # except 1d tensors + MostlyQ4_1 = 3 # except 1d tensors + PerLayerIsQ4_1 = 4 # but tok_embeddings.weight and output.weight are F16 + + def type_for_tensor(self, name: str, tensor: 'LazyTensor') -> DataType: + if len(tensor.shape) == 1: + # 1D tensors are always F32. + return DT_F32 + elif self == GGMLFileType.AllF32: + return DT_F32 + elif self == GGMLFileType.MostlyF16: + return DT_F16 + elif self == GGMLFileType.MostlyQ4_0: + return DT_Q4_0 + elif self == GGMLFileType.MostlyQ4_1: + return DT_Q4_1 + elif self == GGMLFileType.PerLayerIsQ4_1: + if name in ('output.weight', 'tok_embeddings.weight'): + return DT_F16 + else: + return DT_Q4_1 + else: + raise ValueError(self) + + +def make_tensors_list() -> List[str]: + ret = [ + 'tok_embeddings.weight', + 'norm.weight', + 'output.weight', + ] + for i in range(80): # maximum number of layer + ret += [ + f'layers.{i}.attention.wq.weight', + f'layers.{i}.attention.wk.weight', + f'layers.{i}.attention.wv.weight', + f'layers.{i}.attention.wo.weight', + f'layers.{i}.attention_norm.weight', + f'layers.{i}.feed_forward.w1.weight', + f'layers.{i}.feed_forward.w2.weight', + f'layers.{i}.feed_forward.w3.weight', + f'layers.{i}.atttention_norm.weight', + f'layers.{i}.ffn_norm.weight', + ] + return ret + + +TENSORS_LIST = make_tensors_list() +TENSORS_SET = set(TENSORS_LIST) + + +@dataclass +class Params: + n_vocab: int + n_embd: int + n_mult: int + n_head: int + n_layer: int + file_type: GGMLFileType + + @staticmethod + def guessed(model: 'LazyModel', file_type: GGMLFileType) -> 'Params': + n_vocab, n_embd = model["tok_embeddings.weight"].shape + + return Params( + n_vocab=n_vocab, + n_embd=n_embd, + n_mult=256, + n_head=n_embd // 128, + n_layer=next(i for i in itertools.count() if f"layers.{i}.attention.wq.weight" not in model), + file_type=file_type, + ) + + +class SentencePieceVocab: + def __init__(self, fname_tokenizer: Path, fname_added_tokens: Optional[Path]) -> None: + self.sentencepiece_tokenizer = SentencePieceProcessor(str(fname_tokenizer)) + added_tokens: Dict[str, int] + if fname_added_tokens is not None: + added_tokens = json.load(open(fname_added_tokens)) + else: + added_tokens = {} + vocab_size: int = self.sentencepiece_tokenizer.vocab_size() + expected_ids = list(range(vocab_size, vocab_size + len(added_tokens))) + actual_ids = sorted(added_tokens.values()) + if expected_ids != actual_ids: + raise Exception(f"Expected added token IDs to be sequential and start at {len(added_tokens)}; got {actual_ids}") + items = sorted(added_tokens.items(), key=lambda text_idx: text_idx[1]) + self.added_tokens_list = [text for (text, idx) in items] + self.vocab_size_base: int = vocab_size + self.vocab_size: int = self.vocab_size_base + len(self.added_tokens_list) + self.fname_tokenizer = fname_tokenizer + self.fname_added_tokens = fname_added_tokens + + def sentencepiece_tokens(self) -> Iterable[Tuple[bytes, float]]: + tokenizer = self.sentencepiece_tokenizer + for i in range(tokenizer.vocab_size()): + text: bytes + if tokenizer.is_unknown(i): + text = " \u2047 ".encode("utf-8") + elif tokenizer.is_control(i): + text = b"" + elif tokenizer.is_byte(i): + piece = tokenizer.id_to_piece(i) + if len(piece) != 6: + raise Exception(f"Invalid token: {piece}") + byte_value = int(piece[3:-1], 16) + text = struct.pack("B", byte_value) + else: + text = tokenizer.id_to_piece(i).replace("\u2581", " ").encode("utf-8") + score: float = tokenizer.get_score(i) + yield text, score + + def added_tokens(self) -> Iterable[Tuple[bytes, float]]: + for text in self.added_tokens_list: + score = -1000.0 + yield text.encode("utf-8"), score + + def all_tokens(self) -> Iterable[Tuple[bytes, float]]: + yield from self.sentencepiece_tokens() + yield from self.added_tokens() + + def __repr__(self) -> str: + return f"<SentencePieceVocab with {self.vocab_size_base} base tokens and {len(self.added_tokens_list)} added tokens>" + + +class GGMLVocab: + def __init__(self, tokens: List[Tuple[bytes, float]]): + self.tokens = tokens + self.vocab_size = len(tokens) + + def all_tokens(self) -> Iterable[Tuple[bytes, float]]: + return self.tokens + + def __repr__(self) -> str: + return f"<GGMLVocab with {self.vocab_size} tokens>" + + +Vocab = Union[SentencePieceVocab, GGMLVocab] + + +def permute(weights: NDArray, n_head: int) -> NDArray: + return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:]) + .swapaxes(1, 2) + .reshape(weights.shape)) + + +def dequantize_q4(qvalues_pack32: NDArray, scales: NDArray, addends: Optional[NDArray], g_idx: Optional[NDArray]) -> NDArray: + # First reinterpret each row from a list of int32s containing 8 values each + # to a list of uint8s containing 2 values each. + qvalues_pack8 = qvalues_pack32.view(np.uint8) + + # Then split out the two values per int8 (which requires an actual + # conversion because numpy doesn't natively support int4s). + qvalues = np.zeros([qvalues_pack8.shape[0], qvalues_pack8.shape[1] * 2], dtype=np.uint8) + qvalues[:, 0::2] = qvalues_pack8 & 0xf + qvalues[:, 1::2] = qvalues_pack8 >> 4 + + assert addends is None or addends.shape == scales.shape + assert qvalues.shape[0] == scales.shape[0] + assert qvalues.shape[1] % scales.shape[1] == 0 + if g_idx is None: + repeat_count = qvalues.shape[1] // scales.shape[1] + scales = scales[:, :, np.newaxis] + if addends is not None: + addends = addends[:, :, np.newaxis] + # Reshape so that the below computation broadcasts over scales and addends: + qvalues.shape = (qvalues.shape[0], scales.shape[1], int(repeat_count)) + else: + # In this case the scale and addend is selected for each column by g_idx: + assert addends is not None + scales = scales[:, g_idx] + addends = addends[:, g_idx] + if addends is None: + # Q4_0 + qvalues = qvalues.view(np.int8) + qvalues -= 8 + # And do the actual 'value = scale * qvalue + addend' computation. + values = scales * qvalues + if addends is not None: + values += addends + if g_idx is None: + values.shape = (values.shape[0], values.shape[1] * values.shape[2]) + return values + + +class Tensor(metaclass=ABCMeta): + data_type: DataType + + @abstractmethod + def astype(self, data_type: DataType) -> 'Tensor': ... + @abstractmethod + def permute(self, n_head: int) -> 'Tensor': ... + @abstractmethod + def to_ggml(self) -> 'GGMLCompatibleTensor': ... + + +class UnquantizedTensor(Tensor): + def __init__(self, ndarray: NDArray) -> None: + assert isinstance(ndarray, np.ndarray) + self.ndarray = ndarray + self.data_type = NUMPY_TYPE_TO_DATA_TYPE[ndarray.dtype] + + def astype(self, data_type: DataType) -> Tensor: + dtype = DATA_TYPE_TO_NUMPY[data_type] + return UnquantizedTensor(self.ndarray.astype(dtype)) + + def to_ggml(self) -> 'UnquantizedTensor': + return self + + def permute(self, n_head: int) -> 'UnquantizedTensor': + return UnquantizedTensor(permute(self.ndarray, n_head)) + + +def load_unquantized(lazy_tensor: 'LazyTensor', expected_dtype: Any = None, convert: bool = False) -> NDArray: + tensor = lazy_tensor.load() + assert isinstance(tensor, UnquantizedTensor) + + # double-check: + actual_shape = list(tensor.ndarray.shape) + assert actual_shape == lazy_tensor.shape, (actual_shape, lazy_tensor.shape) + if expected_dtype is not None and expected_dtype != tensor.ndarray.dtype: + if convert: + tensor.ndarray = tensor.ndarray.astype(expected_dtype) + else: + raise ValueError(f'expected this tensor to have dtype {expected_dtype}, got {tensor.ndarray.dtype}') + + return tensor.ndarray + + +class GGMLQuantizedTensor(Tensor): + data_type: QuantizedDataType + + def __init__(self, ndarray: NDArray, shape: List[int], data_type: DataType) -> None: + rows, columns = shape + assert data_type in (DT_Q4_1, DT_Q4_0) # for now + assert isinstance(data_type, QuantizedDataType) # redundant, but mypy complains without this + assert columns % data_type.groupsize == 0 + words_in_block = 6 if data_type == DT_Q4_1 else 5 + self.ndarray = ndarray.view(dtype=np.uint32).reshape((rows, columns // data_type.groupsize, words_in_block)) + self.shape = shape[:] + self.data_type = data_type + + def astype(self, data_type: DataType) -> Tensor: + if data_type == self.data_type: + return self + scales = self.ndarray[:, :, 0].view(np.float32) + if self.data_type.have_addends: + addends = self.ndarray[:, :, 1].view(np.float32) + else: + addends = None + qweights = self.ndarray[:, :, -4:].reshape([self.shape[0], self.shape[1] // 8]) + + dq = dequantize_q4(qweights, scales, addends, g_idx=None) + return UnquantizedTensor(dq).astype(data_type) + + def to_ggml(self) -> 'GGMLQuantizedTensor': + return self + + def permute(self, n_head: int) -> 'GGMLQuantizedTensor': + return GGMLQuantizedTensor(permute(self.ndarray, n_head), self.shape, self.data_type) + + +GGMLCompatibleTensor = Union[UnquantizedTensor, GGMLQuantizedTensor] + + +class DeferredPermutedTensor(Tensor): + def __init__(self, base: Tensor, n_head: int) -> None: + self.base = base + self.n_head = n_head + self.data_type = self.base.data_type + + def astype(self, data_type: DataType) -> Tensor: + return self.base.astype(data_type).permute(self.n_head) + + def to_ggml(self) -> GGMLCompatibleTensor: + return self.base.to_ggml().permute(self.n_head) + + def permute(self, n_head: int) -> Tensor: + raise Exception("shouldn't permute twice") + + +class GPTQForLLaMaQuantizedTensor(Tensor): + def __init__(self, model: 'LazyModel', namebase: str) -> None: + qweight = load_unquantized(model[f"{namebase}.qweight"], np.int32) + scales = load_unquantized(model[f"{namebase}.scales"], np.float32, convert=True) + + bias = model.get(f"{namebase}.bias") + if bias is not None: + # Q4_1 does not support bias; good thing the bias is always all zeros. + assert not np.any(load_unquantized(bias)) + + if f"{namebase}.zeros" in model: + zeros = load_unquantized(model[f"{namebase}.zeros"], np.float32) + else: + qzeros = load_unquantized(model[f"{namebase}.qzeros"], np.int32) + assert qzeros.dtype == np.int32 + zeros = dequantize_q4(qzeros, scales, scales, g_idx=None) + assert zeros.dtype == np.float32 + + assert zeros.shape == scales.shape + + # Output is transposed compared to the input, and addends have their sign flipped. + # Scales and zeros similarly must be transposed but only for newer + # versions of GPTQ-for-LLaMa; the older versions can be identified by + # having shape (n_embd, 1). + qweight = qweight.T + if scales.shape[1] != 1: + scales = scales.T + zeros = zeros.T + + # Output also has signs flipped for the addends. + self.qweight = qweight + self.scales = scales + self.addends = -zeros + + self.g_idx: Optional[NDArray] + if f"{namebase}.g_idx" in model: + self.g_idx = load_unquantized(model[f"{namebase}.g_idx"], np.int32) + assert self.g_idx.shape == (qweight.shape[1] * 8,) + else: + self.g_idx = None + + self.shape = [self.qweight.shape[0], self.qweight.shape[1] * 8] + self.data_type = QuantizedDataType(groupsize=self.groupsize(), have_addends=True, + have_g_idx=(self.g_idx is not None)) + + def inspect(self, row: int, col: int) -> None: + '''For debugging.''' + qweight = (self.qweight[row, col // 8] >> (4 * (col & 7))) & 0xf + if self.g_idx is not None: + group = self.g_idx[col] + else: + group = int(col // self.groupsize()) + scale = self.scales[row, group] + addend = self.addends[row, group] + with np.printoptions(precision=None, suppress=True): + print(f'scale:{scale} addend:{addend} qweight:{qweight}') + print('possible values:', np.arange(16) * scale + addend) + print('actual value:', qweight * scale + addend) + + def astype(self, data_type: DataType) -> Tensor: + if isinstance(data_type, QuantizedDataType): + assert self.g_idx is None and data_type.have_addends is True and data_type.have_g_idx is False + return self.regroup(data_type.groupsize) + + dequantized = dequantize_q4(np.ascontiguousarray(self.qweight), self.scales, self.addends, self.g_idx) + return UnquantizedTensor(dequantized).astype(data_type) + + def groupsize(self) -> int: + assert self.addends.shape == self.scales.shape + assert self.shape[1] % self.scales.shape[1] == 0 + return self.shape[1] // self.scales.shape[1] + + def regroup(self, new_groupsize: int = 32) -> 'GPTQForLLaMaQuantizedTensor': + # Old versions of GPTQ-for-LLaMa shared scales and addends between all the + # columns in a row. Newer versions share them between every set of N + # columns in a row, where N is the `groupsize` parameter, usually 128. The + # output format shares them between every set of 32 columns. To handle + # this, duplicate scales and addends for every smaller group. + # (In the above, 'row' and 'column' are in the sense of the output.) + assert self.g_idx is None + old_groupsize = self.groupsize() + assert old_groupsize >= new_groupsize and old_groupsize % new_groupsize == 0, old_groupsize + ret = copy.copy(self) + ret.addends = self.addends.repeat(old_groupsize // new_groupsize, axis=1) + ret.scales = self.scales.repeat(old_groupsize // new_groupsize, axis=1) + ret.data_type = QuantizedDataType(groupsize=new_groupsize, have_addends=True, have_g_idx=False) + return ret + + def permute(self, n_head: int) -> Tensor: + return DeferredPermutedTensor(self, n_head) + + def to_ggml(self) -> GGMLQuantizedTensor: + # The output format looks like this: + # For each row: + # For each group of 32 columns: + # - addend (float32, 4 bytes) + # - scale (float32, 4 bytes) + # - weights (int4 * 32, 16 bytes) + + if self.groupsize() != 32: + raise Exception("should have been regrouped before converting to ggml") + + # Since the output format is mixed between integers and floats, we have + # to hackily view the floats as int32s just so numpy will let us + # concatenate them. + addends_view = self.addends.view(dtype=np.int32)[:, :, np.newaxis] + scales_view = self.scales.view(dtype=np.int32)[:, :, np.newaxis] + + # Split into groups of 4 columns (i.e. 32 columns of quantized data): + grouped = self.qweight.reshape([self.qweight.shape[0], self.qweight.shape[1] // 4, 4]) + + # And concatenate: + grouped = np.concatenate([scales_view, addends_view, grouped], axis=2, casting='no') + + return GGMLQuantizedTensor(grouped, self.shape, DT_Q4_1) + + +@dataclass +class LazyTensor: + _load: Callable[[], Tensor] + shape: List[int] + data_type: DataType + description: str + + def load(self) -> Tensor: + ret = self._load() + assert ret.data_type == self.data_type, (self.data_type, ret.data_type, self.description) + return ret + + def astype(self, data_type: DataType) -> 'LazyTensor': + self.validate_conversion_to(data_type) + + def load() -> Tensor: + return self.load().astype(data_type) + return LazyTensor(load, self.shape, data_type, f'convert({data_type}) {self.description}') + + def validate_conversion_to(self, data_type: DataType) -> None: + if data_type == self.data_type: + return + if isinstance(data_type, QuantizedDataType): + if not isinstance(self.data_type, QuantizedDataType): + raise Exception(f"Can't turn an unquantized tensor into a quantized type ({data_type})") + if self.data_type.have_g_idx: + sys.stderr.write("Error: Input uses the newer GPTQ-for-LLaMa format (using g_idx), which is not yet natively supported by GGML. For now you can still convert this model by passing `--outtype f16` to dequantize, but that will result in a much larger output file for no quality benefit.\n") + sys.exit(1) + assert not data_type.have_g_idx and self.data_type.have_addends and data_type.have_addends + + +LazyModel = Dict[str, LazyTensor] + + +@dataclass +class ModelPlus: + model: LazyModel + paths: List[Path] # Where this was read from. + format: Literal['ggml', 'torch', 'safetensors'] + vocab: Optional[Vocab] # For GGML models (which have vocab built in), the vocab. + + +def merge_sharded(models: List[LazyModel]) -> LazyModel: + # Original LLaMA models have each file contain one part of each tensor. + # Use a dict instead of a set to preserve order. + names = {name: None for model in models for name in model} + + def convert(name: str) -> LazyTensor: + lazy_tensors: List[LazyTensor] = [model[name] for model in models] + if len(lazy_tensors) == 1: + # only one file; don't go through this procedure since there might + # be quantized tensors + return lazy_tensors[0] + if len(lazy_tensors[0].shape) == 1: + # the tensor is just duplicated in every file + return lazy_tensors[0] + if name.startswith('tok_embeddings.') or \ + name.endswith('.attention.wo.weight') or \ + name.endswith('.feed_forward.w2.weight'): + # split by columns + axis = 1 + else: + # split by rows + axis = 0 + concatenated_shape = list(lazy_tensors[0].shape) + concatenated_shape[axis] = sum(tensor.shape[axis] for tensor in lazy_tensors) + + def load() -> UnquantizedTensor: + ndarrays = [load_unquantized(tensor) for tensor in lazy_tensors] + concatenated: NDArray = np.concatenate(ndarrays, axis=axis) + return UnquantizedTensor(concatenated) + description = 'concatenated[[' + '] | ['.join(lt.description for lt in lazy_tensors) + ']]' + return LazyTensor(load, concatenated_shape, lazy_tensors[0].data_type, description) + return {name: convert(name) for name in names} + + +def merge_multifile_models(models_plus: List[ModelPlus]) -> ModelPlus: + formats = set(mp.format for mp in models_plus) + assert len(formats) == 1, "different formats?" + format = formats.pop() + paths = [path for mp in models_plus for path in mp.paths] + # Use the first non-None vocab, if any. + try: + vocab = next(mp.vocab for mp in models_plus if mp.vocab is not None) + except StopIteration: + vocab = None + + if any("model.embed_tokens.weight" in mp.model for mp in models_plus): + # Transformers models put different tensors in different files, but + # don't split indivdual tensors between files. + model: LazyModel = {} + for mp in models_plus: + model.update(mp.model) + else: + model = merge_sharded([mp.model for mp in models_plus]) + + return ModelPlus(model, paths, format, vocab) + + +def permute_lazy(lazy_tensor: LazyTensor, n_head: int) -> LazyTensor: + def load() -> Tensor: + return lazy_tensor.load().permute(n_head) + return LazyTensor(load, lazy_tensor.shape, lazy_tensor.data_type, f'permute({n_head}) ' + lazy_tensor.description) + + +def convert_transformers_to_orig(model: LazyModel) -> LazyModel: + out: LazyModel = {} + out["tok_embeddings.weight"] = model["model.embed_tokens.weight"] + out["norm.weight"] = model["model.norm.weight"] + out["output.weight"] = model["lm_head.weight"] + + n_head = model["model.layers.0.self_attn.q_proj.weight"].shape[1] // 128 + for i in itertools.count(): + if f"model.layers.{i}.self_attn.q_proj.weight" not in model: + break + out[f"layers.{i}.attention.wq.weight"] = permute_lazy(model[f"model.layers.{i}.self_attn.q_proj.weight"], n_head) + out[f"layers.{i}.attention.wk.weight"] = permute_lazy(model[f"model.layers.{i}.self_attn.k_proj.weight"], n_head) + out[f"layers.{i}.attention.wv.weight"] = model[f"model.layers.{i}.self_attn.v_proj.weight"] + out[f"layers.{i}.attention.wo.weight"] = model[f"model.layers.{i}.self_attn.o_proj.weight"] + + out[f"layers.{i}.feed_forward.w1.weight"] = model[f"model.layers.{i}.mlp.gate_proj.weight"] + out[f"layers.{i}.feed_forward.w2.weight"] = model[f"model.layers.{i}.mlp.down_proj.weight"] + out[f"layers.{i}.feed_forward.w3.weight"] = model[f"model.layers.{i}.mlp.up_proj.weight"] + + out[f"layers.{i}.attention_norm.weight"] = model[f"model.layers.{i}.input_layernorm.weight"] + out[f"layers.{i}.ffn_norm.weight"] = model[f"model.layers.{i}.post_attention_layernorm.weight"] + return out + + +def handle_quantization(model: LazyModel) -> LazyModel: + '''Convert a model with entries for 'foo.qweight', 'foo.scales', etc. + (which resolve to UnquantizedTensors with the raw data) to one with entries + for 'foo.weight' (which resolve to QuantizedTensors). + ''' + def convert(name: str) -> Tuple[str, LazyTensor]: + if name.endswith(".qweight"): + namebase = name.rsplit('.', 1)[0] + orig_name = namebase + ".weight" + + lazy_tensor = model[name] + assert len(lazy_tensor.shape) == 2 + real_shape = [lazy_tensor.shape[1], lazy_tensor.shape[0] * 8] + + # Calculate type. This replicates the logic in + # GPTQForLLaMaQuantizedTensor (which is executed when the modelis + # actually loaded). + lazy_scales = model[f"{namebase}.scales"] + scales_width = 1 if lazy_scales.shape[1] == 1 else lazy_scales.shape[0] + assert real_shape[1] % scales_width == 0 + groupsize = real_shape[1] // scales_width + have_g_idx = f"{namebase}.g_idx" in model + data_type = QuantizedDataType(groupsize=groupsize, have_addends=True, have_g_idx=have_g_idx) + + def load() -> Tensor: + return GPTQForLLaMaQuantizedTensor(model, namebase) + + return (orig_name, LazyTensor(load, real_shape, data_type, '[quantized]')) + else: + return (name, model[name]) + return dict(convert(name) for name in model) + +# Functionality that simulates `torch.load` but where individual tensors are +# only loaded into memory on demand, not all at once. +# PyTorch can't do this natively as of time of writing: +# - https://github.com/pytorch/pytorch/issues/64327 +# This allows us to de-shard without multiplying RAM usage, and also +# conveniently drops the PyTorch dependency (though we still need numpy). + + +@dataclass +class LazyStorageKind: + data_type: DataType + + +@dataclass +class LazyStorage: + load: Callable[[int, int], NDArray] + kind: LazyStorageKind + description: str + + +class LazyUnpickler(pickle.Unpickler): + def __init__(self, fp: IO[bytes], data_base_path: str, zip_file: zipfile.ZipFile): + super().__init__(fp) + self.data_base_path = data_base_path + self.zip_file = zip_file + + def persistent_load(self, pid: Any) -> Any: + assert pid[0] == 'storage' + assert isinstance(pid[1], LazyStorageKind) + data_type = pid[1].data_type + filename_stem = pid[2] + filename = self.data_base_path + '/' + filename_stem + info = self.zip_file.getinfo(filename) + + def load(offset: int, elm_count: int) -> NDArray: + dtype = DATA_TYPE_TO_NUMPY.get(data_type) + if dtype is None: + raise Exception("tensor stored in unsupported format") + fp = self.zip_file.open(info) + fp.seek(offset * dtype.itemsize) + size = elm_count * dtype.itemsize + data = fp.read(size) + assert len(data) == size + return np.frombuffer(data, dtype) + description = f'storage data_type={data_type} path-in-zip={filename} path={self.zip_file.filename}' + return LazyStorage(load=load, kind=pid[1], description=description) + + def lazy_rebuild_tensor_v2(storage: Any, storage_offset: Any, size: Any, stride: Any, # pyright: ignore[reportSelfClsParameterName] + requires_grad: Any, backward_hooks: Any, metadata: Any = None) -> LazyTensor: + assert isinstance(storage, LazyStorage) + + def load() -> UnquantizedTensor: + elm_count = stride[0] * size[0] + return UnquantizedTensor(storage.load(storage_offset, elm_count).reshape(size)) + description = f'pickled storage_offset={storage_offset} in {storage.description}' + return LazyTensor(load, list(size), storage.kind.data_type, description) + + CLASSES: Dict[Any, Any] = { + ('torch._utils', '_rebuild_tensor_v2'): lazy_rebuild_tensor_v2, + ('torch', 'BFloat16Storage'): LazyStorageKind(DT_BF16), + ('torch', 'HalfStorage'): LazyStorageKind(DT_F16), + ('torch', 'FloatStorage'): LazyStorageKind(DT_F32), + ('torch', 'IntStorage'): LazyStorageKind(DT_I32), + } + + def find_class(self, module: str, name: str) -> Any: + if not module.startswith('torch'): + return super().find_class(module, name) + return self.CLASSES[(module, name)] + + +def lazy_load_torch_file(outer_fp: IO[bytes], path: Path) -> ModelPlus: + zf = zipfile.ZipFile(outer_fp) + pickle_paths = [name for name in zf.namelist() if name.endswith('.pkl')] + assert len(pickle_paths) == 1, pickle_paths + pickle_fp = zf.open(pickle_paths[0], 'r') + unpickler = LazyUnpickler(pickle_fp, + data_base_path=pickle_paths[0][:-4], + zip_file=zf) + model = unpickler.load() + as_dict = dict(model.items()) + return ModelPlus(model=as_dict, paths=[path], format='torch', vocab=None) + + +SAFETENSORS_DATA_TYPES: Dict[str, DataType] = { + 'F16': DT_F16, + 'F32': DT_F32, + 'I32': DT_I32, +} + + +def lazy_load_safetensors_file(fp: IO[bytes], path: Path) -> ModelPlus: + header_size, = struct.unpack('<Q', fp.read(8)) + header: Dict[str, Dict[str, Any]] = json.loads(fp.read(header_size)) + # Use mmap for the actual data to avoid race conditions with the file offset. + mapped = memoryview(mmap.mmap(fp.fileno(), 0, access=mmap.ACCESS_READ)) + byte_buf = mapped[fp.tell():] + + def convert(info: Dict[str, Any]) -> LazyTensor: + data_type = SAFETENSORS_DATA_TYPES[info['dtype']] + numpy_dtype = DATA_TYPE_TO_NUMPY[data_type] + shape: List[int] = info['shape'] + begin, end = info['data_offsets'] + assert 0 <= begin <= end <= len(byte_buf) + assert end - begin == math.prod(shape) * numpy_dtype.itemsize + buf = byte_buf[begin:end] + + def load() -> UnquantizedTensor: + return UnquantizedTensor(np.frombuffer(buf, dtype=numpy_dtype).reshape(shape)) + description = f'safetensors begin={begin} end={end} type={data_type} path={path}' + return LazyTensor(load, shape, data_type, description) + model = {name: convert(info) for (name, info) in header.items()} + return ModelPlus(model=model, paths=[path], format='safetensors', vocab=None) + + +def must_read(fp: IO[bytes], length: int) -> bytes: + ret = fp.read(length) + if len(ret) < length: + raise Exception("unexpectedly reached end of file") + return ret + + +def lazy_load_ggml_file(fp: IO[bytes], path: Path) -> ModelPlus: + magic = must_read(fp, 4)[::-1] + if magic in (b'ggmf', b'ggjt'): + version, = struct.unpack("i", must_read(fp, 4)) + assert version == 1 + else: + assert magic == b'ggml' + version = None + n_vocab, n_embd, n_mult, n_head, n_layer, rot, file_type = struct.unpack('<7i', must_read(fp, 28)) + + tokens: List[Tuple[bytes, float]] = [] + for i in range(n_vocab): + if i == 32000: + # HACK: GPT4All messed with the format without changing the magic + # number. Specifically, they changed the vocab section to contain + # `n_vocab - 1` tokens instead of `n_vocab` (i.e. omitting the + # extra pad token). Try to detect if we're reading a file like + # this. + orig_pos = fp.tell() + fp.seek(20, io.SEEK_CUR) + is_gpt4all = fp.read(21) == b'tok_embeddings.weight' + fp.seek(orig_pos) + if is_gpt4all: + break + + length, = struct.unpack("i", must_read(fp, 4)) + text = must_read(fp, length) + if magic != b'ggml': + score, = struct.unpack("f", must_read(fp, 4)) + tokens.append((text, score)) + vocab = GGMLVocab(tokens) if magic != b'ggml' else None + + model: LazyModel = {} + # Use mmap for the actual data to avoid race conditions with the file offset. + mapped = memoryview(mmap.mmap(fp.fileno(), 0, access=mmap.ACCESS_READ)) + + def read_tensor() -> None: # this is a function so that variables captured in `load` don't change + shape_len, name_len, ftype = struct.unpack("iii", must_read(fp, 12)) + assert 0 <= shape_len <= 3 + shape: List[int] = list(struct.unpack(f"{shape_len}i", must_read(fp, 4 * shape_len))) + shape = shape[::-1] + name = must_read(fp, name_len).decode('utf-8') + data_type = FTYPE_TO_DATA_TYPE[ftype] + + if magic == b'ggjt': + fp.seek((fp.tell() + 31) & -32) + + if data_type == DT_Q4_1: + # See GPTQForLLaMaQuantizedTensor.ggml_ndarray() + size = 24 * (shape[1] // 32) * shape[0] + elif data_type == DT_Q4_0: + size = 20 * (shape[1] // 32) * shape[0] + else: + numpy_dtype = DATA_TYPE_TO_NUMPY[data_type] + elm_count = math.prod(shape) + size = elm_count * numpy_dtype.itemsize + offset = fp.tell() + buf = mapped[offset:offset+size] + fp.seek(size, io.SEEK_CUR) + + def load() -> Tensor: + if isinstance(data_type, QuantizedDataType): + ndarray = np.frombuffer(buf, dtype=np.uint32) + return GGMLQuantizedTensor(ndarray, shape, data_type) + else: + return UnquantizedTensor(np.frombuffer(buf, dtype=numpy_dtype).reshape(shape)) + description = f'ggml offset={offset} type={data_type} path={path}' + model[name] = LazyTensor(load, shape, data_type, description) + + while fp.read(1) != b'': + fp.seek(-1, io.SEEK_CUR) + read_tensor() + + return ModelPlus(model=model, paths=[path], format='ggml', vocab=vocab) + + +@functools.lru_cache(maxsize=None) +def lazy_load_file(path: Path) -> ModelPlus: + fp = open(path, 'rb') + first8 = fp.read(8) + fp.seek(0) + if first8[:2] == b'PK': + # A zip file, i.e. PyTorch format + return lazy_load_torch_file(fp, path) + elif first8[2:4] == b'gg': + # GGML format + return lazy_load_ggml_file(fp, path) + elif struct.unpack('<Q', first8)[0] < 16 * 1024 * 1024: + # Probably safetensors + return lazy_load_safetensors_file(fp, path) + else: + raise ValueError(f"unknown format: {path}") + + +In = TypeVar('In') +Out = TypeVar('Out') + + +def bounded_parallel_map(func: Callable[[In], Out], iterable: Iterable[In], concurrency: int) -> Iterable[Out]: + '''Parallel map, but with backpressure. If the caller doesn't call `next` + fast enough, this will stop calling `func` at some point rather than + letting results pile up in memory. Specifically, there is a max of one + output value buffered per thread.''' + with concurrent.futures.ThreadPoolExecutor() as executor: + futures: List[concurrent.futures.Future[Out]] = [] + items_rev = list(iterable)[::-1] + for i in range(min(concurrency, len(items_rev))): + futures.append(executor.submit(func, items_rev.pop())) + while futures: + result = futures.pop(0).result() + if items_rev: + futures.append(executor.submit(func, items_rev.pop())) + yield result + + +def check_vocab_size(params: Params, vocab: Vocab) -> None: + if params.n_vocab != vocab.vocab_size: + # GGMLVocab comes from the same file as the model so shouldn't mismatch: + assert isinstance(vocab, SentencePieceVocab) + if params.n_vocab == vocab.vocab_size_base: + print("Ignoring added_tokens.json since model matches vocab size without it.") + vocab.added_tokens_list = [] + vocab.vocab_size = vocab.vocab_size_base + return + msg = f"Vocab size mismatch (model has {params.n_vocab}, but {vocab.fname_tokenizer}" + if vocab.fname_added_tokens is not None: + msg += f" combined with {vocab.fname_added_tokens}" + msg += f" has {vocab.vocab_size})." + if vocab.vocab_size < params.n_vocab < vocab.vocab_size + 20 and vocab.fname_added_tokens is None: + msg += f" Most likely you are missing added_tokens.json (should be in {vocab.fname_tokenizer.parent})." + raise Exception(msg) + + +class OutputFile: + def __init__(self, fname_out: Path) -> None: + self.fout = open(fname_out, "wb") + + def write_file_header(self, params: Params) -> None: + self.fout.write(b"ggjt"[::-1]) # magic + values = [ + 1, # file version + params.n_vocab, + params.n_embd, + params.n_mult, + params.n_head, + params.n_layer, + params.n_embd // params.n_head, # rot (obsolete) + params.file_type.value, + ] + self.fout.write(struct.pack("i" * len(values), *values)) + + def write_tensor_header(self, name: str, shape: Sequence[int], data_type: DataType) -> None: + sname = name.encode('utf-8') + self.fout.write(struct.pack("iii", len(shape), len(sname), DATA_TYPE_TO_FTYPE[data_type])) + self.fout.write(struct.pack("i" * len(shape), *shape[::-1])) + self.fout.write(sname) + self.fout.seek((self.fout.tell() + 31) & -32) + + def write_vocab(self, vocab: Vocab) -> None: + for text, score in vocab.all_tokens(): + self.fout.write(struct.pack("i", len(text))) + self.fout.write(text) + self.fout.write(struct.pack("f", score)) + + @staticmethod + def write_vocab_only(fname_out: Path, vocab: Vocab) -> None: + of = OutputFile(fname_out) + params = Params(n_vocab=vocab.vocab_size, n_embd=0, n_mult=0, + n_head=1, n_layer=0, file_type=GGMLFileType.AllF32) + of = OutputFile(fname_out) + of.write_file_header(params) + of.write_vocab(vocab) + of.fout.close() + + @staticmethod + def write_all(fname_out: Path, params: Params, model: LazyModel, vocab: Vocab) -> None: + check_vocab_size(params, vocab) + of = OutputFile(fname_out) + of.write_file_header(params) + print("Writing vocab...") + of.write_vocab(vocab) + + def do_item(item: Tuple[str, LazyTensor]) -> NDArray: + name, lazy_tensor = item + return lazy_tensor.load().to_ggml().ndarray + + ndarrays = bounded_parallel_map(do_item, model.items(), concurrency=8) + for i, ((name, lazy_tensor), ndarray) in enumerate(zip(model.items(), ndarrays)): + size = ' x '.join(map(str, lazy_tensor.shape)) + print(f"[{i+1}/{len(model)}] Writing tensor {name}, size {size}...") + of.write_tensor_header(name, lazy_tensor.shape, lazy_tensor.data_type) + ndarray.tofile(of.fout) + of.fout.close() + + +def pick_output_type(model: LazyModel, output_type_str: Optional[str]) -> GGMLFileType: + wq_type = model["layers.0.attention.wq.weight"].data_type + if output_type_str == "f32" or (output_type_str is None and wq_type == DT_F32): + return GGMLFileType.AllF32 + if output_type_str == "f16" or (output_type_str is None and wq_type == DT_F16): + return GGMLFileType.MostlyF16 + if output_type_str == "q4_1" or (output_type_str is None and isinstance(wq_type, QuantizedDataType) and + wq_type.have_addends): + if isinstance(model["output.weight"].data_type, QuantizedDataType): + return GGMLFileType.MostlyQ4_1 + else: + return GGMLFileType.PerLayerIsQ4_1 + if output_type_str == "q4_0" or (output_type_str is None and isinstance(wq_type, QuantizedDataType)): + return GGMLFileType.MostlyQ4_0 + name_to_type = {name: lazy_tensor.data_type for (name, lazy_tensor) in model.items()} + raise Exception(f"Unexpected combination of types: {name_to_type}") + + +def do_necessary_conversions(model: LazyModel) -> LazyModel: + model = handle_quantization(model) + + if "lm_head.weight" in model: + model = convert_transformers_to_orig(model) + model = filter_and_sort_tensors(model) + + return model + + +def convert_to_output_type(model: LazyModel, output_type: GGMLFileType) -> LazyModel: + return {name: tensor.astype(output_type.type_for_tensor(name, tensor)) + for (name, tensor) in model.items()} + + +def nth_multifile_path(path: Path, n: int) -> Optional[Path]: + '''Given any path belonging to a multi-file model (e.g. foo.bin.1), return + the nth path in the model. + ''' + # Support the following patterns: + patterns: List[Tuple[str, str]] = [ + # - x.00.pth, x.01.pth, etc. + (r'\.[0-9]{2}\.pth$', f'.{n:02}.pth'), + # - x-00001-of-00002.bin, x-00002-of-00002.bin, etc. + (r'-[0-9]{5}-of-(.*)$', fr'-{n:05}-of-\1'), + # x.bin, x.bin.1, etc. + (r'(\.[0-9]+)?$', r'\1' if n == 0 else fr'\1.{n}') + ] + for regex, replacement in patterns: + if re.search(regex, path.name): + new_path = path.with_name(re.sub(regex, replacement, path.name)) + if new_path.exists(): + return new_path + return None + + +def find_multifile_paths(path: Path) -> List[Path]: + '''Given any path belonging to a multi-file model (e.g. foo.bin.1), return + the whole list of paths in the model. + ''' + ret: List[Path] = [] + for i in itertools.count(): + nth_path = nth_multifile_path(path, i) + if nth_path is None: + break + ret.append(nth_path) + if not ret: + # No matches. This should only happen if the file was named, e.g., + # foo.0, and there was no file named foo. Oh well, try to process it + # as a single file. + return [path] + return ret + + +def load_some_model(path: Path) -> ModelPlus: + '''Load a model of any supported format.''' + # Be extra-friendly and accept either a file or a directory: + if path.is_dir(): + globs = ["consolidated.00.pth", "pytorch_model-00001-of-*.bin", "*.pt"] + files = [file for glob in globs for file in path.glob(glob)] + if not files: + # Try GGML too, but with lower priority, since if both a non-GGML + # model and a GGML model exist in the same directory, we assume the + # latter was converted from the former. + files = list(path.glob("ggml-model*.bin*")) + if not files: + raise Exception(f"Can't find model in directory {path}") + if len(files) > 1: + raise Exception(f"Found multiple models in {path}, not sure which to pick: {files}") + path = files[0] + + paths = find_multifile_paths(path) + models_plus: List[ModelPlus] = [] + for path in paths: + print(f"Loading model file {path}") + models_plus.append(lazy_load_file(path)) + + model_plus = merge_multifile_models(models_plus) + return model_plus + + +def filter_and_sort_tensors(model: LazyModel) -> LazyModel: + return {name: model[name] for name in TENSORS_LIST if name in model} + + +def load_vocab(path: Path) -> SentencePieceVocab: + # Be extra-friendly and accept either a file or a directory. Also, if it's + # a directory, it might be the model directory, and tokenizer.model might + # be in the parent of that. + if path.is_dir(): + path2 = path / "tokenizer.model" + # Use `.parent` instead of /.. to handle the symlink case better. + path3 = path.parent / "tokenizer.model" + if path2.exists(): + path = path2 + elif path3.exists(): + path = path3 + else: + raise FileNotFoundError(f"Could not find tokenizer.model in {path} or its parent; if it's in another directory, pass the directory as --vocab-dir") + added_tokens_path = path.parent / "added_tokens.json" + print(f"Loading vocab file {path}") + return SentencePieceVocab(path, added_tokens_path if added_tokens_path.exists() else None) + + +def default_outfile(model_paths: List[Path], params: Params) -> Path: + namestr = { + GGMLFileType.AllF32: "f32", + GGMLFileType.MostlyF16: "f16", + GGMLFileType.MostlyQ4_1: "q4_1", + GGMLFileType.PerLayerIsQ4_1: "q4_1", + }[params.file_type] + ret = model_paths[0].parent / f"ggml-model-{namestr}.bin" + if ret in model_paths: + sys.stderr.write(f"Error: Default output path ({ret}) would overwrite the input. Please explicitly specify a path using --outfile.\n") + sys.exit(1) + return ret + + +def do_dump_model(model_plus: ModelPlus) -> None: + print(f"model_plus.paths = {model_plus.paths!r}") + print(f"model_plus.format = {model_plus.format!r}") + print(f"model_plus.vocab = {model_plus.vocab!r}") + for name, lazy_tensor in model_plus.model.items(): + print(f"{name}: shape={lazy_tensor.shape} type={lazy_tensor.data_type}; {lazy_tensor.description}") + + +def main(args_in: Optional[List[str]] = None) -> None: + parser = argparse.ArgumentParser(description="Convert a LLaMa model to a GGML compatible file") + parser.add_argument("--dump", action="store_true", help="don't convert, just show what's in the model") + parser.add_argument("--dump-single", action="store_true", help="don't convert, just show what's in a single model file") + parser.add_argument("--vocab-only", action="store_true", help="extract only the vocab") + parser.add_argument("--outtype", choices=["f32", "f16", "q4_1"], help="output format (default: based on input)") + parser.add_argument("--vocab-dir", type=Path, help="directory containing tokenizer.model, if separate from model file") + parser.add_argument("--outfile", type=Path, help="path to write to; default: based on input") + parser.add_argument("model", type=Path, help="directory containing model file, or model file itself (*.pth, *.pt, *.bin)") + args = parser.parse_args(args_in) + + vocab: Vocab + if args.dump_single: + model_plus = lazy_load_file(args.model) + do_dump_model(model_plus) + elif args.vocab_only: + vocab = load_vocab(args.vocab_dir or args.model) + assert args.outfile, "need --outfile if using --vocab-only" + outfile = args.outfile + OutputFile.write_vocab_only(outfile, vocab) + print(f"Wrote {outfile}") + else: + model_plus = load_some_model(args.model) + if args.dump: + do_dump_model(model_plus) + return + if model_plus.vocab is not None and args.vocab_dir is None: + vocab = model_plus.vocab + else: + vocab_dir = args.vocab_dir if args.vocab_dir else model_plus.paths[0].parent + vocab = load_vocab(vocab_dir) + model = model_plus.model + model = do_necessary_conversions(model) + output_type = pick_output_type(model, args.outtype) + model = convert_to_output_type(model, output_type) + params = Params.guessed(model, output_type) + outfile = args.outfile or default_outfile(model_plus.paths, params) + OutputFile.write_all(outfile, params, model, vocab) + print(f"Wrote {outfile}") + + +if __name__ == '__main__': + main() diff --git a/migrate-ggml-2023-03-30-pr613.py b/migrate-ggml-2023-03-30-pr613.py deleted file mode 100644 index b6ef247..0000000 --- a/migrate-ggml-2023-03-30-pr613.py +++ /dev/null @@ -1,311 +0,0 @@ -# Migrate ggml file(s) with ggmf magic to ggml file with ggjt magic -# -# We caused a breaking change to the file format on 2023-03-30 in: -# https://github.com/ggerganov/llama.cpp/pull/613 -# -# (1) If you still have the Meta LLaMA .pth files, then close this -# file now; you can just run `convert-pth-to-ggml.py` again to -# migrate to the new format. The tool is easier to use too. It -# isn't necessary anymore to manage split output files because -# the new format always combines things into a single file. -# -# (2) If you deleted the Meta LLaMA .pth files due to save on disk -# space, then this tool is intended to help you. Please check -# out the instructions below. -# -# USAGE -# -# python migrate-ggml-2023-03-30-pr613.py INPUT OUTPUT -# -# PREREQUISITES -# -# pip install numpy -# cd llama.cpp -# make -j4 -# -# EXAMPLE (7B MODEL) -# -# # you can replace all the 'f16' with 'q4_0' if you're using quantized weights -# python migrate-ggml-2023-03-30-pr613.py models/7B/ggml-model-f16.bin models/7B/ggml-model-f16-ggjt.bin -# -# # check that it works -# ./main -m models/7B/ggml-model-f16-ggjt.bin -p 'Question: Do you love me?' -# -# # you can delete the old files -# rm -f models/7B/ggml-model-f16.bin -# mv models/7B/ggml-model-f16-ggjt.bin models/7B/ggml-model-f16.bin -# -# EXAMPLE (13B MODEL) -# -# # you can replace all the 'f16' with 'q4_0' if you're using quantized weights -# python migrate-ggml-2023-03-30-pr613.py models/13B/ggml-model-f16.bin models/13B/ggml-model-f16-ggjt.bin -# -# # check that it works -# ./main -m models/13B/ggml-model-f16-ggjt.bin -p 'Question: Do you love me?' -# -# # you can delete the old files -# rm -f models/13B/ggml-model-f16.bin* -# mv models/13B/ggml-model-f16-ggjt.bin models/13B/ggml-model-f16.bin -# - -import argparse -import os -import sys -import json -import struct -import numpy as np - -QK = 32 - -GGML_TYPE_Q4_0 = 0 -GGML_TYPE_Q4_1 = 1 -GGML_TYPE_I8 = 2 -GGML_TYPE_I16 = 3 -GGML_TYPE_I32 = 4 -GGML_TYPE_F16 = 5 -GGML_TYPE_F32 = 6 - -WTYPE_NAMES = { - 0: "F32", - 1: "F16", - 2: "Q4_0", - 3: "Q4_1", -} - -WTYPES = { - 0: GGML_TYPE_F32, - 1: GGML_TYPE_F16, - 2: GGML_TYPE_Q4_0, - 3: GGML_TYPE_Q4_1, -} - -GGML_BLCK_SIZE = { - GGML_TYPE_Q4_0: QK, - GGML_TYPE_Q4_1: QK, - GGML_TYPE_I8: 1, - GGML_TYPE_I16: 1, - GGML_TYPE_I32: 1, - GGML_TYPE_F16: 1, - GGML_TYPE_F32: 1, -} - -GGML_TYPE_SIZE = { - GGML_TYPE_Q4_0: 4 + QK//2, - GGML_TYPE_Q4_1: 4*2 + QK//2, - GGML_TYPE_I8: 1, - GGML_TYPE_I16: 2, - GGML_TYPE_I32: 4, - GGML_TYPE_F16: 2, - GGML_TYPE_F32: 4, -} - -HPARAMS = [ - 'magic', # int32 - 'version', # int32 - 'n_vocab', # int32 - 'n_embd', # int32 - 'n_mult', # int32 - 'n_head', # int32 - 'n_layer', # int32 - 'n_rot', # int32 - 'f16', # int32 -] - -def read_hparams(fin): - struct_fmt = "i" * len(HPARAMS) - struct_size = struct.calcsize(struct_fmt) - buf = fin.read(struct_size) - ints = struct.unpack(struct_fmt, buf) - hparams = dict(zip(HPARAMS, ints)) - return hparams - -def write_hparams(fout, hparams): - struct_fmt = "i" * len(HPARAMS) - struct_size = struct.calcsize(struct_fmt) - ints = [hparams[h] for h in HPARAMS] - fout.write(struct.pack(struct_fmt, *ints)) - -def read_tokens(fin, hparams): - tokens = [] - for i in range(hparams['n_vocab']): - len_b = fin.read(4) - (length,) = struct.unpack("i", len_b) - word = fin.read(length) - score_b = fin.read(4) - (score,) = struct.unpack("f", score_b) - tokens.append((word, score)) - return tokens - -def write_tokens(fout, tokens): - for word, score in tokens: - fout.write(struct.pack("i", len(word))) - fout.write(word) - fout.write(struct.pack("f", score)) - -def ggml_nelements(shape): - r = 1 - for i in shape: - r *= i - return r - -def ggml_nbytes(shape, ftype): - x = ggml_nelements(shape) - t = WTYPES[ftype] - x *= GGML_TYPE_SIZE[t] - x //= GGML_BLCK_SIZE[t] - return x - -def copy_tensors(fin, fout, part_id, n_parts): - while True: - - b = fin.read(4) - if not b: break - (n_dims,) = struct.unpack("i", b) - b = fin.read(4) - (length,) = struct.unpack("i", b) - b = fin.read(4) - (ftype,) = struct.unpack("i", b) - - assert n_dims in (1, 2) - - partshape = list(range(n_dims)) - for i in range(n_dims): - b = fin.read(4) - partshape[i] = struct.unpack("i", b)[0] - partshape = list(reversed(partshape)) - - name = fin.read(length) - data = fin.read(ggml_nbytes(partshape, ftype)) - - blck_size = GGML_BLCK_SIZE[WTYPES[ftype]] - type_size = GGML_TYPE_SIZE[WTYPES[ftype]] - - print(f"Processing tensor {name} with shape: {partshape} and type: {WTYPE_NAMES[ftype]}") - - # determine dimension along which multipart tensor is sharded - # - # split_dim 0 regex: - # - output.* - # - layers.*.attention.wq.weight - # - layers.*.attention.wk.weight - # - layers.*.attention.wv.weight - # - layers.*.feed_forward.w1.weight - # - layers.*.feed_forward.w3.weight - # - # split_dim 1 regex: - # - tok_embeddings.* - # - layers.*.attention.wo.weight - # - layers.*.feed_forward.w2.weight - # - if n_dims > 1: - split_dim = 1 - if b"tok_embeddings" in name: - split_dim = 1 - elif b"layers" in name: - if b"attention.wo.weight" in name: - split_dim = 1 - elif b"feed_forward.w2.weight" in name: - split_dim = 1 - else: - split_dim = 0 - elif b"output" in name: - split_dim = 0 - - # output tensor header - fullshape = list(partshape) - if n_dims > 1: - fullshape[split_dim] *= n_parts - fout.write(struct.pack("iii", n_dims, len(name), ftype)) - for dim in reversed(fullshape): - fout.write(struct.pack("i", dim)) - fout.write(name) - - # ensure tensor data is aligned - tensor_data_offset = fout.tell() - while tensor_data_offset % QK != 0: - fout.write(struct.pack("B", 0)) - tensor_data_offset += 1 - - # output unified mappable tensor data - if n_dims == 1 or n_parts == 1: - # copy tensor which we thankfully received in one piece - if part_id == 0: - fout.write(data) - elif split_dim == 0: - # reassemble multifile tensor containing some of the rows - rows_per_chunk = partshape[0] - current_row = part_id * rows_per_chunk - bytes_per_row = fullshape[1] // blck_size * type_size - offset = current_row * bytes_per_row - fout.seek(tensor_data_offset + offset) - fout.write(data) - elif split_dim == 1: - # reassemble multifile tensor containing some of the cols - cols_per_chunk = partshape[1] - current_col = part_id * cols_per_chunk - bpr = partshape[1] // blck_size * type_size - bytes_per_row = fullshape[1] // blck_size * type_size - offset_current_col = current_col // blck_size * type_size - for row in range(partshape[0]): - offset_row = row * bytes_per_row - offset = offset_row + offset_current_col - fout.seek(tensor_data_offset + offset) - fout.write(data[row * bpr:row * bpr + bpr]) - - # advance file position to next tensor - fout.seek(tensor_data_offset + ggml_nbytes(fullshape, ftype)) - -def parse_args(): - parser = argparse.ArgumentParser(description='Migrate from GGML to new GGJT file format') - parser.add_argument('fin_path', help='your old ggml file (leave out the .1 .2 etc.)') - parser.add_argument('fout_path', help='your new ggjt file name') - return parser.parse_args() - -def main(): - args = parse_args() - assert args.fin_path - assert args.fout_path - assert args.fin_path != args.fout_path - - with open(args.fin_path, "rb") as fin: - hparams = read_hparams(fin) - tokens = read_tokens(fin, hparams) - - if hparams['magic'] == 0x67676a74: # ggjt - print(f"{args.fin_path}: input ggml has already been converted to 'ggjt' magic\n") - sys.exit(1) - - if hparams['magic'] != 0x67676d66: # ggmf - print(f"{args.fin_path}: input ggml file doesn't have expected 'ggmf' magic: {hparams['magic']:#x}\n") - sys.exit(1) - - hparams['magic'] = 0x67676a74 # ggjt - - # count number of multipart files by convention - n_parts = 1 - while True: - if os.path.exists(f"{args.fin_path}.{n_parts}"): - n_parts += 1 - else: - break - - # we output a single file for ggml - with open(args.fout_path, "wb") as fout: - write_hparams(fout, hparams) - write_tokens(fout, tokens) - offset_of_tensors = fout.tell() - # the tensors we load could be split across multiple files - for part_id in range(n_parts): - fout.seek(offset_of_tensors) - print(f"Processing part {part_id+1} of {n_parts}\n") - fin_path = args.fin_path - if part_id > 0: - fin_path += f".{part_id}" - with open(fin_path, "rb") as fin: - read_tokens(fin, read_hparams(fin)) - copy_tensors(fin, fout, part_id, n_parts) - - print(f"Done. Output file: {args.fout_path}\n") - -if __name__ == "__main__": - main() diff --git a/requirements.txt b/requirements.txt new file mode 100644 index 0000000..f394495 --- /dev/null +++ b/requirements.txt @@ -0,0 +1,2 @@ +numpy==1.24 +sentencepiece==0.1.97 |