aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--ggml-metal.m41
-rw-r--r--ggml-metal.metal547
-rw-r--r--llama.cpp10
3 files changed, 463 insertions, 135 deletions
diff --git a/ggml-metal.m b/ggml-metal.m
index b73f51f..658c392 100644
--- a/ggml-metal.m
+++ b/ggml-metal.m
@@ -52,14 +52,18 @@ struct ggml_metal_context {
GGML_METAL_DECL_KERNEL(get_rows_q4_0);
GGML_METAL_DECL_KERNEL(get_rows_q4_1);
GGML_METAL_DECL_KERNEL(get_rows_q2_k);
+ GGML_METAL_DECL_KERNEL(get_rows_q3_k);
GGML_METAL_DECL_KERNEL(get_rows_q4_k);
+ GGML_METAL_DECL_KERNEL(get_rows_q5_k);
GGML_METAL_DECL_KERNEL(get_rows_q6_k);
GGML_METAL_DECL_KERNEL(rms_norm);
GGML_METAL_DECL_KERNEL(mul_mat_f16_f32);
GGML_METAL_DECL_KERNEL(mul_mat_q4_0_f32);
GGML_METAL_DECL_KERNEL(mul_mat_q4_1_f32);
GGML_METAL_DECL_KERNEL(mul_mat_q2_k_f32);
+ GGML_METAL_DECL_KERNEL(mul_mat_q3_k_f32);
GGML_METAL_DECL_KERNEL(mul_mat_q4_k_f32);
+ GGML_METAL_DECL_KERNEL(mul_mat_q5_k_f32);
GGML_METAL_DECL_KERNEL(mul_mat_q6_k_f32);
GGML_METAL_DECL_KERNEL(rope);
GGML_METAL_DECL_KERNEL(cpy_f32_f16);
@@ -153,14 +157,18 @@ struct ggml_metal_context * ggml_metal_init(void) {
GGML_METAL_ADD_KERNEL(get_rows_q4_0);
GGML_METAL_ADD_KERNEL(get_rows_q4_1);
GGML_METAL_ADD_KERNEL(get_rows_q2_k);
+ GGML_METAL_ADD_KERNEL(get_rows_q3_k);
GGML_METAL_ADD_KERNEL(get_rows_q4_k);
+ GGML_METAL_ADD_KERNEL(get_rows_q5_k);
GGML_METAL_ADD_KERNEL(get_rows_q6_k);
GGML_METAL_ADD_KERNEL(rms_norm);
GGML_METAL_ADD_KERNEL(mul_mat_f16_f32);
GGML_METAL_ADD_KERNEL(mul_mat_q4_0_f32);
GGML_METAL_ADD_KERNEL(mul_mat_q4_1_f32);
GGML_METAL_ADD_KERNEL(mul_mat_q2_k_f32);
+ GGML_METAL_ADD_KERNEL(mul_mat_q3_k_f32);
GGML_METAL_ADD_KERNEL(mul_mat_q4_k_f32);
+ GGML_METAL_ADD_KERNEL(mul_mat_q5_k_f32);
GGML_METAL_ADD_KERNEL(mul_mat_q6_k_f32);
GGML_METAL_ADD_KERNEL(rope);
GGML_METAL_ADD_KERNEL(cpy_f32_f16);
@@ -575,6 +583,15 @@ void ggml_metal_graph_compute(
nth1 = 16;
[encoder setComputePipelineState:ctx->pipeline_mul_mat_q2_k_f32];
} break;
+ case GGML_TYPE_Q3_K:
+ {
+ GGML_ASSERT(ne02 == 1);
+ GGML_ASSERT(ne12 == 1);
+
+ nth0 = 4;
+ nth1 = 16;
+ [encoder setComputePipelineState:ctx->pipeline_mul_mat_q3_k_f32];
+ } break;
case GGML_TYPE_Q4_K:
{
GGML_ASSERT(ne02 == 1);
@@ -584,6 +601,15 @@ void ggml_metal_graph_compute(
nth1 = 16;
[encoder setComputePipelineState:ctx->pipeline_mul_mat_q4_k_f32];
} break;
+ case GGML_TYPE_Q5_K:
+ {
+ GGML_ASSERT(ne02 == 1);
+ GGML_ASSERT(ne12 == 1);
+
+ nth0 = 4;
+ nth1 = 16;
+ [encoder setComputePipelineState:ctx->pipeline_mul_mat_q5_k_f32];
+ } break;
case GGML_TYPE_Q6_K:
{
GGML_ASSERT(ne02 == 1);
@@ -620,15 +646,14 @@ void ggml_metal_graph_compute(
if (src0t == GGML_TYPE_Q4_0 || src0t == GGML_TYPE_Q4_1) {
[encoder setThreadgroupMemoryLength:nth0*nth1*sizeof(float) atIndex:0];
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ne11, 1) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
- } else if (src0t == GGML_TYPE_Q2_K) {
+ }
+ else if (src0t == GGML_TYPE_Q2_K ||
+ src0t == GGML_TYPE_Q3_K ||
+ src0t == GGML_TYPE_Q4_K ||
+ src0t == GGML_TYPE_Q5_K ||
+ src0t == GGML_TYPE_Q6_K) {
[encoder setThreadgroupMemoryLength:nth0*nth1*sizeof(float) atIndex:0];
[encoder dispatchThreadgroups:MTLSizeMake(ne01, 1, 1) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
- } else if (src0t == GGML_TYPE_Q4_K) {
- [encoder setThreadgroupMemoryLength:nth0*nth1*sizeof(float) atIndex:0];
- [encoder dispatchThreadgroups:MTLSizeMake(ne01, ne11, 1) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
- } else if (src0t == GGML_TYPE_Q6_K) {
- [encoder setThreadgroupMemoryLength:nth0*nth1*sizeof(float) atIndex:0];
- [encoder dispatchThreadgroups:MTLSizeMake(ne01, ne11, 1) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
} else {
[encoder setThreadgroupMemoryLength:nth0*sizeof(float) atIndex:0];
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ne11, ne12) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
@@ -646,7 +671,9 @@ void ggml_metal_graph_compute(
case GGML_TYPE_Q4_0: [encoder setComputePipelineState:ctx->pipeline_get_rows_q4_0]; break;
case GGML_TYPE_Q4_1: [encoder setComputePipelineState:ctx->pipeline_get_rows_q4_1]; break;
case GGML_TYPE_Q2_K: [encoder setComputePipelineState:ctx->pipeline_get_rows_q2_k]; break;
+ case GGML_TYPE_Q3_K: [encoder setComputePipelineState:ctx->pipeline_get_rows_q3_k]; break;
case GGML_TYPE_Q4_K: [encoder setComputePipelineState:ctx->pipeline_get_rows_q4_k]; break;
+ case GGML_TYPE_Q5_K: [encoder setComputePipelineState:ctx->pipeline_get_rows_q5_k]; break;
case GGML_TYPE_Q6_K: [encoder setComputePipelineState:ctx->pipeline_get_rows_q6_k]; break;
default: GGML_ASSERT(false && "not implemented");
}
diff --git a/ggml-metal.metal b/ggml-metal.metal
index ccd3638..09e12a8 100644
--- a/ggml-metal.metal
+++ b/ggml-metal.metal
@@ -304,34 +304,22 @@ kernel void kernel_mul_mat_q4_0_f32(
device const float * src1,
device float * dst,
constant int64_t & ne00,
- constant int64_t & ne01,
- constant uint64_t & nb00,
- constant uint64_t & nb01,
- constant uint64_t & nb02,
constant int64_t & ne10,
- constant int64_t & ne11,
- constant uint64_t & nb10,
- constant uint64_t & nb11,
- constant uint64_t & nb12,
constant int64_t & ne0,
- constant int64_t & ne1,
threadgroup float * sum [[threadgroup(0)]],
uint2 tgpig[[threadgroup_position_in_grid]],
- uint2 tpig[[thread_position_in_grid]],
uint2 tpitg[[thread_position_in_threadgroup]],
uint2 tptg[[threads_per_threadgroup]]) {
const int nb = ne00/QK4_0;
- const int8_t m8 = 8;
-
const int64_t r0 = tgpig.x;
const int64_t r1 = tgpig.y;
device const block_q4_0 * x = (device const block_q4_0 *) src0 + r0*nb;
device const float * y = (device const float *) src1 + r1*ne10;
- const uint nth = tptg.x*tptg.y;
- const uint ith = tptg.y*tpitg.x + tpitg.y;
+ const int nth = tptg.x*tptg.y;
+ const int ith = tptg.y*tpitg.x + tpitg.y;
const int ix = tpitg.y/4; // 0 or 1
const int iy = tpitg.y - 4*ix; // 0...3
@@ -351,47 +339,32 @@ kernel void kernel_mul_mat_q4_0_f32(
for (int j = 0; j < 4; ++j) {
- acc[0] += yl[j+ 0] * ((int8_t)(xl[j] & 0xF) - m8);
- acc[1] += yl[j+16] * ((int8_t)(xl[j] >> 4) - m8);
+ acc[0] += yl[j] * (xl[j] & 0xF) + yl[j+16] * (xl[j] >> 4);
+ acc[1] += yl[j] + yl[j+16];
}
- sumf += d * (acc[0] + acc[1]);
+ sumf += d * (acc[0] - 8.f*acc[1]);
}
sum[ith] = sumf;
//
// Accumulate the sum from all threads in the threadgroup
- // This version is slightly faster than the commented out one below,
- // which I copy-pasted from ggerganov's q4_0 dot product for metal.
//
threadgroup_barrier(mem_flags::mem_threadgroup);
if (ith%4 == 0) {
- for (int i = 1; i < 4; ++i) sum[ith] += sum[ith + i];
+ sum[ith] += sum[ith+1] + sum[ith+2] + sum[ith+3];
}
threadgroup_barrier(mem_flags::mem_threadgroup);
if (ith%16 == 0) {
- for (int i = 4; i < 16; i += 4) sum[ith] += sum[ith + i];
+ sum[ith] += sum[ith+4] + sum[ith+8] + sum[ith+12];
}
threadgroup_barrier(mem_flags::mem_threadgroup);
if (ith == 0) {
- for (int i = 16; i < nth; i += 16) sum[0] += sum[i];
+ for (uint i = 16; i < nth; i += 16) sum[0] += sum[i];
dst[r1*ne0 + r0] = sum[0];
}
-
- //// accumulate the sum from all threads in the threadgroup
- //threadgroup_barrier(mem_flags::mem_threadgroup);
- //for (uint i = nth/2; i > 0; i /= 2) {
- // if (ith < i) {
- // sum[ith] += sum[ith + i];
- // }
- // threadgroup_barrier(mem_flags::mem_threadgroup);
- //}
-
- //if (ith == 0) {
- // dst[r1*ne0 + r0] = sum[0];
- //}
}
kernel void kernel_mul_mat_q4_1_f32(
@@ -399,20 +372,10 @@ kernel void kernel_mul_mat_q4_1_f32(
device const float * src1,
device float * dst,
constant int64_t & ne00,
- constant int64_t & ne01,
- constant uint64_t & nb00,
- constant uint64_t & nb01,
- constant uint64_t & nb02,
constant int64_t & ne10,
- constant int64_t & ne11,
- constant uint64_t & nb10,
- constant uint64_t & nb11,
- constant uint64_t & nb12,
constant int64_t & ne0,
- constant int64_t & ne1,
threadgroup float * sum [[threadgroup(0)]],
uint2 tgpig[[threadgroup_position_in_grid]],
- uint2 tpig[[thread_position_in_grid]],
uint2 tpitg[[thread_position_in_threadgroup]],
uint2 tptg[[threads_per_threadgroup]]) {
const int nb = ne00/QK4_1;
@@ -460,11 +423,11 @@ kernel void kernel_mul_mat_q4_1_f32(
//
threadgroup_barrier(mem_flags::mem_threadgroup);
if (ith%4 == 0) {
- for (int i = 1; i < 4; ++i) sum[ith] += sum[ith + i];
+ sum[ith] += sum[ith+1] + sum[ith+2] + sum[ith+3];
}
threadgroup_barrier(mem_flags::mem_threadgroup);
if (ith%16 == 0) {
- for (int i = 4; i < 16; i += 4) sum[ith] += sum[ith + i];
+ sum[ith] += sum[ith+4] + sum[ith+8] + sum[ith+12];
}
threadgroup_barrier(mem_flags::mem_threadgroup);
if (ith == 0) {
@@ -671,6 +634,15 @@ typedef struct {
half d; // super-block scale for quantized scales
half dmin; // super-block scale for quantized mins
} block_q2_k;
+// 84 bytes / block
+
+typedef struct {
+ uint8_t hmask[QK_K/8]; // quants - high bit
+ uint8_t qs[QK_K/4]; // quants - low 2 bits
+ uint8_t scales[3*QK_K/64]; // scales, quantized with 6 bits
+ half d; // super-block scale
+} block_q3_k;
+// 110 bytes / block
typedef struct {
half d; // super-block scale for quantized scales
@@ -678,6 +650,16 @@ typedef struct {
uint8_t scales[3*QK_K/64]; // scales and mins, quantized with 6 bits
uint8_t qs[QK_K/2]; // 4--bit quants
} block_q4_k;
+// 144 bytes / block
+
+typedef struct {
+ half d; // super-block scale for quantized scales
+ half dmin; // super-block scale for quantized mins
+ uint8_t scales[3*QK_K/64]; // scales and mins, quantized with 6 bits
+ uint8_t qh[QK_K/8]; // quants, high bit
+ uint8_t qs[QK_K/2]; // quants, low 4 bits
+} block_q5_k;
+// 176 bytes / block
typedef struct {
uint8_t ql[QK_K/2]; // quants, lower 4 bits
@@ -685,16 +667,19 @@ typedef struct {
int8_t scales[QK_K/16]; // scales, quantized with 8 bits
half d; // super-block scale
} block_q6_k;
+// 210 bytes / block
static inline uchar4 get_scale_min_k4(int j, device const uint8_t * q) {
uchar4 r;
if (j < 4) {
- r[0] = q[j+0] & 63; r[1] = q[j+4] & 63;
- r[2] = q[j+1] & 63; r[3] = q[j+5] & 63;
+ r[0] = q[j+0] & 63;
+ r[2] = q[j+1] & 63;
+ r[1] = q[j+4] & 63;
+ r[3] = q[j+5] & 63;
} else {
r[0] = (q[j+4] & 0xF) | ((q[j-4] >> 6) << 4);
- r[1] = (q[j+4] >> 4) | ((q[j-0] >> 6) << 4);
r[2] = (q[j+5] & 0xF) | ((q[j-3] >> 6) << 4);
+ r[1] = (q[j+4] >> 4) | ((q[j-0] >> 6) << 4);
r[3] = (q[j+5] >> 4) | ((q[j+1] >> 6) << 4);
}
return r;
@@ -735,10 +720,65 @@ static void dequantize_row_q2_k(device const block_q2_k * x, device float * y, i
}
}
+static void dequantize_row_q3_k(device const block_q3_k * x, device float * y, int k) {
+ assert(k % QK_K == 0);
+ const int nb = k / QK_K;
+
+ const uint16_t kmask1 = 0x0303;
+ const uint16_t kmask2 = 0x0f0f;
+
+ uint16_t aux[8];
+ thread const int8_t * scales = (thread const int8_t*)aux;
+
+ for (int i = 0; i < nb; i++) {
+
+ const float d_all = (float)(x[i].d);
+
+ device const uint8_t * q = x[i].qs;
+ device const uint8_t * h = x[i].hmask;
+ uint8_t m = 1;
+
+ device const uint16_t * a = (device const uint16_t *)x[i].scales;
+ aux[0] = (a[0] & kmask2) | (((a[4] >> 0) & kmask1) << 4);
+ aux[1] = (a[1] & kmask2) | (((a[5] >> 0) & kmask1) << 4);
+ aux[2] = (a[2] & kmask2) | (((a[4] >> 2) & kmask1) << 4);
+ aux[3] = (a[3] & kmask2) | (((a[5] >> 2) & kmask1) << 4);
+ aux[4] = ((a[0] >> 4) & kmask2) | (((a[4] >> 4) & kmask1) << 4);
+ aux[5] = ((a[1] >> 4) & kmask2) | (((a[5] >> 4) & kmask1) << 4);
+ aux[6] = ((a[2] >> 4) & kmask2) | (((a[4] >> 6) & kmask1) << 4);
+ aux[7] = ((a[3] >> 4) & kmask2) | (((a[5] >> 6) & kmask1) << 4);
+
+ int is = 0;
+ float dl;
+ for (int n = 0; n < QK_K; n += 128) {
+ int shift = 0;
+ for (int j = 0; j < 4; ++j) {
+
+ dl = d_all * (scales[is++] - 32);
+ for (int l = 0; l < 16; ++l) {
+ *y++ = dl * ((int8_t)((q[l+ 0] >> shift) & 3) - ((h[l+ 0] & m) ? 0 : 4));
+ }
+
+ dl = d_all * (scales[is++] - 32);
+ for (int l = 0; l < 16; ++l) {
+ *y++ = dl * ((int8_t)((q[l+16] >> shift) & 3) - ((h[l+16] & m) ? 0 : 4));
+ }
+
+ shift += 2;
+ m <<= 1;
+ }
+ q += 32;
+ }
+
+ }
+
+}
+
static void dequantize_row_q4_k(device const block_q4_k * x, device float * y, int k) {
assert(k % QK_K == 0);
const int nb = k / QK_K;
+
for (int i = 0; i < nb; i++) {
const float d = x[i].d;
@@ -760,6 +800,33 @@ static void dequantize_row_q4_k(device const block_q4_k * x, device float * y, i
}
}
+static void dequantize_row_q5_k(device const block_q5_k * x, device float * y, int k) {
+ assert(k % QK_K == 0);
+ const int nb = k / QK_K;
+
+ for (int i = 0; i < nb; i++) {
+
+ const float d = (float)(x[i].d);
+ const float min = (float)(x[i].dmin);
+
+ device const uint8_t * ql = x[i].qs;
+ device const uint8_t * qh = x[i].qh;
+
+ int is = 0;
+ uint8_t u1 = 1, u2 = 2;
+ for (int j = 0; j < QK_K; j += 64) {
+ const uchar4 sc = get_scale_min_k4(is, x[i].scales);
+ const float d1 = d * sc[0]; const float m1 = min * sc[1];
+ const float d2 = d * sc[2]; const float m2 = min * sc[3];
+ for (int l = 0; l < 32; ++l) *y++ = d1 * ((ql[l] & 0xF) + (qh[l] & u1 ? 16 : 0)) - m1;
+ for (int l = 0; l < 32; ++l) *y++ = d2 * ((ql[l] >> 4) + (qh[l] & u2 ? 16 : 0)) - m2;
+ ql += 32; is += 2;
+ u1 <<= 2; u2 <<= 2;
+ }
+ }
+
+}
+
static void dequantize_row_q6_k(device const block_q6_k * x, device float * y, int k) {
assert(k % QK_K == 0);
const int nb = k / QK_K;
@@ -808,6 +875,22 @@ kernel void kernel_get_rows_q2_k(
(device float *) ((device char *) dst + i*nb1), ne00);
}
+kernel void kernel_get_rows_q3_k(
+ device const void * src0,
+ device const int * src1,
+ device float * dst,
+ constant int64_t & ne00,
+ constant uint64_t & nb01,
+ constant uint64_t & nb1,
+ uint tpig[[thread_position_in_grid]]) {
+ const int i = tpig;
+ const int r = ((device int32_t *) src1)[i];
+
+ dequantize_row_q3_k(
+ (device const block_q3_k *) ((device char *) src0 + r*nb01),
+ (device float *) ((device char *) dst + i*nb1), ne00);
+}
+
kernel void kernel_get_rows_q4_k(
device const void * src0,
device const int * src1,
@@ -824,6 +907,22 @@ kernel void kernel_get_rows_q4_k(
(device float *) ((device char *) dst + i*nb1), ne00);
}
+kernel void kernel_get_rows_q5_k(
+ device const void * src0,
+ device const int * src1,
+ device float * dst,
+ constant int64_t & ne00,
+ constant uint64_t & nb01,
+ constant uint64_t & nb1,
+ uint tpig[[thread_position_in_grid]]) {
+ const int i = tpig;
+ const int r = ((device int32_t *) src1)[i];
+
+ dequantize_row_q5_k(
+ (device const block_q5_k *) ((device char *) src0 + r*nb01),
+ (device float *) ((device char *) dst + i*nb1), ne00);
+}
+
kernel void kernel_get_rows_q6_k(
device const void * src0,
device const int * src1,
@@ -847,20 +946,10 @@ kernel void kernel_mul_mat_q2_k_f32(
device const float * src1,
device float * dst,
constant int64_t & ne00,
- constant int64_t & ne01,
- constant uint64_t & nb00,
- constant uint64_t & nb01,
- constant uint64_t & nb02,
constant int64_t & ne10,
- constant int64_t & ne11,
- constant uint64_t & nb10,
- constant uint64_t & nb11,
- constant uint64_t & nb12,
constant int64_t & ne0,
- constant int64_t & ne1,
threadgroup float * sum [[threadgroup(0)]],
uint2 tgpig[[threadgroup_position_in_grid]],
- uint2 tpig[[thread_position_in_grid]], // we don't use this for now
uint2 tpitg[[thread_position_in_threadgroup]],
uint2 tptg[[threads_per_threadgroup]]) {
@@ -875,7 +964,6 @@ kernel void kernel_mul_mat_q2_k_f32(
const int nth = tptg.x*tptg.y;
const int ith = tptg.y*tpitg.x + tpitg.y;
-
const int tid = tpitg.y; // 0...16
const int il = tid/4; // 0...3
const int ir = tid%4; // 0...3
@@ -885,35 +973,54 @@ kernel void kernel_mul_mat_q2_k_f32(
const int n = 8;
const int is = 4*il + (n*ir)/16;
+ const int y_offset = 64*il + n*ir;
+ const int q_offset = 32*ip + n*ir;
+
sum[ith] = 0.0f;
float sumf = 0;
for (int i = tpitg.x; i < nb; i += tptg.x) {
- device const uint8_t * q = x[i].qs + 32*ip + n*ir;
+ device const uint8_t * q = x[i].qs + q_offset;
device const uint8_t * scales = x[i].scales + is;
uint8_t d1 = scales[0] & 0xF;
- uint8_t m1 = scales[0] >> 4;
uint8_t d2 = scales[2] & 0xF;
+ uint8_t m1 = scales[0] >> 4;
uint8_t m2 = scales[2] >> 4;
- device const float * y = yy + i*QK_K + 64*il + n*ir;
-
- const float dall = (float)x[i].d;
- const float dmin = (float)x[i].dmin;
+ device const float * y = yy + i*QK_K + y_offset;
- float4 s = {0.f, 0.f, 0.f, 0.f};
+ //float4 s = {0.f, 0.f, 0.f, 0.f};
+ float2 s = {0.f, 0.f};
+ float smin = 0;
for (int l = 0; l < n; ++l) {
- s[0] += y[l+ 0] * ((q[l] >> shift1) & 3); s[1] += y[l+ 0];
- s[2] += y[l+32] * ((q[l] >> shift2) & 3); s[3] += y[l+32];
+ s[0] += y[l+ 0] * ((q[l] >> shift1) & 3);
+ s[1] += y[l+32] * ((q[l] >> shift2) & 3);
+ smin += y[l+ 0] * m1 + y[l+32] * m2;
}
- sumf += dall * (s[0] * d1 + s[2] * d2) - dmin * (s[1] * m1 + s[3] * m2);
+ const float dall = (float)x[i].d;
+ const float dmin = (float)x[i].dmin;
+
+ sumf += dall * (s[0] * d1 + s[1] * d2) - dmin * smin;
}
sum[ith] = sumf;
+ //int mask1 = (ith%4 == 0);
+ //int mask2 = (ith%16 == 0);
+
+ //threadgroup_barrier(mem_flags::mem_threadgroup);
+ //for (int i = 1; i < 4; ++i) sum[ith] += mask1 * sum[ith + i];
+ //threadgroup_barrier(mem_flags::mem_threadgroup);
+ //for (int i = 4; i < 16; i += 4) sum[ith] += mask2 * sum[ith + i];
+ //threadgroup_barrier(mem_flags::mem_threadgroup);
+ //if (ith == 0) {
+ // for (int i = 16; i < nth; i += 16) sum[0] += sum[i];
+ // dst[r1*ne0 + r0] = sum[0];
+ //}
+
//
// Accumulate the sum from all threads in the threadgroup
// This version is slightly faster than the commented out one below,
@@ -932,19 +1039,109 @@ kernel void kernel_mul_mat_q2_k_f32(
for (int i = 16; i < nth; i += 16) sum[0] += sum[i];
dst[r1*ne0 + r0] = sum[0];
}
+}
- //// accumulate the sum from all threads in the threadgroup
- //threadgroup_barrier(mem_flags::mem_threadgroup);
- //for (uint i = nth/2; i > 0; i /= 2) {
- // if (ith < i) {
- // sum[ith] += sum[ith + i];
- // }
- // threadgroup_barrier(mem_flags::mem_threadgroup);
- //}
+kernel void kernel_mul_mat_q3_k_f32(
+ device const void * src0,
+ device const float * src1,
+ device float * dst,
+ constant int64_t & ne00,
+ constant int64_t & ne10,
+ constant int64_t & ne0,
+ constant int64_t & ne1,
+ threadgroup float * sum [[threadgroup(0)]],
+ uint2 tgpig[[threadgroup_position_in_grid]],
+ uint2 tpitg[[thread_position_in_threadgroup]],
+ uint2 tptg[[threads_per_threadgroup]]) {
+
+ const uint16_t kmask1 = 0x0303;
+ const uint16_t kmask2 = 0x0f0f;
+
+ const uint8_t m3 = 3;
+ const int8_t m4 = 4;
+
+ const int nb = ne00/QK_K;
+
+ const int64_t r0 = tgpig.x;
+ const int64_t r1 = tgpig.y;
+
+ device const block_q3_k * x = (device const block_q3_k *) src0 + r0*nb;
+ device const float * yy = (device const float *) src1 + r1*ne10;
+
+ const int nth = tptg.x*tptg.y;
+ const int ith = tptg.y*tpitg.x + tpitg.y;
+
+ const int tid = tpitg.y; // expecting 16
+ const int ip = tid/8; // 0 or 1
+ const int il = tid/2 - 4*ip; // 0...3
+ const int ir = tid%2;
+ const int n = 8;
+ const int l0 = n*ir;
+
+ const uint8_t m = 1 << (4*ip + il);
+
+ const int shift = 2*il;
+
+ const uint16_t s_shift1 = 4*ip;
+ const uint16_t s_shift2 = s_shift1 + 2*(il/2);
+ const int ik = 4 + (il%2);
+
+ const int q_offset = 32*ip + l0;
+ const int y_offset = 128*ip + 32*il + l0;
+
+ //float sumf = 0;
+ float sumf1 = 0, sumf2 = 0;
+ for (int i = tpitg.x; i < nb; i += tptg.x) {
+
+ const float d_all = (float)(x[i].d);
+
+ device const uint8_t * q = x[i].qs + q_offset;
+ device const uint8_t * h = x[i].hmask + l0;
+ device const float * y = yy + i * QK_K + y_offset;
+
+ device const uint16_t * a = (device const uint16_t *)x[i].scales;
+ const char2 scales = as_type<char2>((uint16_t)(((a[il] >> s_shift1) & kmask2) | (((a[ik] >> s_shift2) & kmask1) << 4)));
+
+ float s = 0;
+ for (int l = 0; l < n; ++l) {
+ s += y[l+ 0] * ((int8_t)((q[l+ 0] >> shift) & m3) - ((h[l+ 0] & m) ? 0 : m4));
+ }
+ float d = d_all * s;
+ sumf1 += d * scales[0];
+ sumf2 += d;
+ //sumf += d_all * s * (scales[0] - 32);
+
+ s = 0;
+ for (int l = 0; l < n; ++l) {
+ s += y[l+16] * ((int8_t)((q[l+16] >> shift) & m3) - ((h[l+16] & m) ? 0 : m4));
+ }
+ d = d_all * s;
+ sumf1 += d * scales[1];
+ sumf2 += d;
+ //sumf += d_all * s * (scales[1] - 32);
+
+ }
+
+ //sum[ith] = sumf;
+ sum[ith] = sumf1 - 32.f*sumf2;
+
+ //
+ // Accumulate the sum from all threads in the threadgroup
+ //
+ threadgroup_barrier(mem_flags::mem_threadgroup);
+ if (ith%4 == 0) {
+ for (int i = 1; i < 4; ++i) sum[ith] += sum[ith + i];
+ }
+ threadgroup_barrier(mem_flags::mem_threadgroup);
+ if (ith%16 == 0) {
+ for (int i = 4; i < 16; i += 4) sum[ith] += sum[ith + i];
+ }
+ threadgroup_barrier(mem_flags::mem_threadgroup);
+ if (ith == 0) {
+ for (int i = 16; i < nth; i += 16) sum[0] += sum[i];
+ dst[r1*ne0 + r0] = sum[0];
+ }
- //if (ith == 0) {
- // dst[r1*ne0 + r0] = sum[0];
- //}
}
kernel void kernel_mul_mat_q4_k_f32(
@@ -952,23 +1149,17 @@ kernel void kernel_mul_mat_q4_k_f32(
device const float * src1,
device float * dst,
constant int64_t & ne00,
- constant int64_t & ne01,
- constant uint64_t & nb00,
- constant uint64_t & nb01,
- constant uint64_t & nb02,
constant int64_t & ne10,
- constant int64_t & ne11,
- constant uint64_t & nb10,
- constant uint64_t & nb11,
- constant uint64_t & nb12,
constant int64_t & ne0,
- constant int64_t & ne1,
threadgroup float * sum [[threadgroup(0)]],
uint2 tgpig[[threadgroup_position_in_grid]],
- uint2 tpig[[thread_position_in_grid]], // we don't use this for now
uint2 tpitg[[thread_position_in_threadgroup]],
uint2 tptg[[threads_per_threadgroup]]) {
+ const uint16_t kmask1 = 0x3f3f;
+ const uint16_t kmask2 = 0x0f0f;
+ const uint16_t kmask3 = 0xc0c0;
+
const int nb = ne00/QK_K;
const int64_t r0 = tgpig.x;
@@ -977,37 +1168,55 @@ kernel void kernel_mul_mat_q4_k_f32(
device const block_q4_k * x = (device const block_q4_k *) src0 + r0*nb;
device const float * yy = (device const float *) src1 + r1*ne10;
- const uint nth = tptg.x*tptg.y;
- const uint ith = tptg.y*tpitg.x + tpitg.y;
+ const int nth = tptg.x*tptg.y;
+ const int ith = tptg.y*tpitg.x + tpitg.y;
const int tid = tpitg.y; // 0...16
const int il = tid/4; // 0...3
- const int ir = tid%4; // 0...3
- const int n = 8;
- const int is = 2*il;
+ const int ir = tid - 4*il;// 0...3
+ const int n = 4;
+
+ const int im = il/2; // 0 or 1. 0 computes 0,32 + 128,160, 1 computes 64,96 + 192,224
+ const int in = il%2;
+
+ const int l0 = n*(2*ir + in);
+ const int q_offset = 32*im + l0;
+ const int y_offset = 64*im + l0;
sum[ith] = 0.0f;
+ uchar2 sc1, sc2, sc3, sc4;
+
float sumf = 0;
for (int i = tpitg.x; i < nb; i += tptg.x) {
- device const uint8_t * q = (x + i)->qs + 32*il + n*ir;
- device const float * y = yy + i*QK_K + 64*il + n*ir;
- device const uint8_t * scales = (x + i)->scales;
+ device const uint8_t * q1 = (x + i)->qs + q_offset;
+ device const uint8_t * q2 = q1 + 64;
+ device const float * y1 = yy + i*QK_K + y_offset;
+ device const float * y2 = y1 + 128;
const float dall = (float)((x + i)->d);
const float dmin = (float)((x + i)->dmin);
- const uchar4 sc = get_scale_min_k4(is, scales);
+ device const uint16_t * a = (device const uint16_t *)(x + i)->scales;
+ sc1 = as_type<uchar2>((uint16_t)(a[im+0] & kmask1));
+ sc2 = as_type<uchar2>((uint16_t)(a[im+2] & kmask1));
+ sc3 = as_type<uchar2>((uint16_t)(((a[im+4] >> 0) & kmask2) | ((a[im+0] & kmask3) >> 2)));
+ sc4 = as_type<uchar2>((uint16_t)(((a[im+4] >> 4) & kmask2) | ((a[im+2] & kmask3) >> 2)));
float4 s = {0.f, 0.f, 0.f, 0.f};
+ float smin = 0;
for (int l = 0; l < n; ++l) {
- s[0] += y[l+ 0] * (q[l] & 0xF); s[1] += y[l+ 0];
- s[2] += y[l+32] * (q[l] >> 4); s[3] += y[l+32];
+
+ s[0] += y1[l] * (q1[l] & 0xF); s[1] += y1[l+32] * (q1[l] >> 4);
+ s[2] += y2[l] * (q2[l] & 0xF); s[3] += y2[l+32] * (q2[l] >> 4);
+ smin += y1[l] * sc2[0] + y1[l+32] * sc2[1] + y2[l] * sc4[0] + y2[l+32] * sc4[1];
+
}
- sumf += dall * (s[0] * sc[0] + s[2] * sc[2]) - dmin * (s[1] * sc[1] + s[3] * sc[3]);
+ sumf += dall * (s[0] * sc1[0] + s[1] * sc1[1] + s[2] * sc3[0] + s[3] * sc3[1]) - dmin * smin;
}
+
sum[ith] = sumf;
//
@@ -1043,25 +1252,114 @@ kernel void kernel_mul_mat_q4_k_f32(
//}
}
+kernel void kernel_mul_mat_q5_k_f32(
+ device const void * src0,
+ device const float * src1,
+ device float * dst,
+ constant int64_t & ne00,
+ constant int64_t & ne10,
+ constant int64_t & ne0,
+ threadgroup float * sum [[threadgroup(0)]],
+ uint2 tgpig[[threadgroup_position_in_grid]],
+ uint2 tpitg[[thread_position_in_threadgroup]],
+ uint2 tptg[[threads_per_threadgroup]]) {
+
+ const uint16_t kmask1 = 0x3f3f;
+ const uint16_t kmask2 = 0x0f0f;
+ const uint16_t kmask3 = 0xc0c0;
+
+ const int nb = ne00/QK_K;
+
+ const int64_t r0 = tgpig.x;
+ const int64_t r1 = tgpig.y;
+
+ device const block_q5_k * x = (device const block_q5_k *) src0 + r0*nb;
+ device const float * yy = (device const float *) src1 + r1*ne10;
+
+ const int nth = tptg.x*tptg.y;
+ const int ith = tptg.y*tpitg.x + tpitg.y;
+
+ const int tid = tpitg.y; // 0...16
+ const int il = tid/4; // 0...3
+ const int ir = tid - 4*il;// 0...3
+ const int n = 4;
+
+ const int im = il/2; // 0 or 1. 0 computes 0,32 + 128,160, 1 computes 64,96 + 192,224
+ const int in = il%2;
+
+ const int l0 = n*(2*ir + in);
+ const int q_offset = 32*im + l0;
+ const int y_offset = 64*im + l0;
+
+ const uint8_t hm1 = 1u << (2*im);
+ const uint8_t hm2 = hm1 << 1;
+ const uint8_t hm3 = hm1 << 4;
+ const uint8_t hm4 = hm2 << 4;
+
+ uchar2 sc1, sc2, sc3, sc4;
+
+ float sumf = 0;
+ for (int i = tpitg.x; i < nb; i += tptg.x) {
+
+ device const uint8_t * q1 = (x + i)->qs + q_offset;
+ device const uint8_t * q2 = q1 + 64;
+ device const uint8_t * qh = (x + i)->qh + l0;
+ device const float * y1 = yy + i*QK_K + y_offset;
+ device const float * y2 = y1 + 128;
+
+ const float dall = (float)((x + i)->d);
+ const float dmin = (float)((x + i)->dmin);
+
+ device const uint16_t * a = (device const uint16_t *)(x + i)->scales;
+ sc1 = as_type<uchar2>((uint16_t)(a[im+0] & kmask1));
+ sc2 = as_type<uchar2>((uint16_t)(a[im+2] & kmask1));
+ sc3 = as_type<uchar2>((uint16_t)(((a[im+4] >> 0) & kmask2) | ((a[im+0] & kmask3) >> 2)));
+ sc4 = as_type<uchar2>((uint16_t)(((a[im+4] >> 4) & kmask2) | ((a[im+2] & kmask3) >> 2)));
+
+ float4 s = {0.f, 0.f, 0.f, 0.f};
+ float smin = 0;
+ for (int l = 0; l < n; ++l) {
+
+ s[0] += y1[l+ 0] * ((q1[l] & 0xF) + (qh[l] & hm1 ? 16 : 0));
+ s[1] += y1[l+32] * ((q1[l] >> 4) + (qh[l] & hm2 ? 16 : 0));
+ s[2] += y2[l+ 0] * ((q2[l] & 0xF) + (qh[l] & hm3 ? 16 : 0));
+ s[3] += y2[l+32] * ((q2[l] >> 4) + (qh[l] & hm4 ? 16 : 0));
+ smin += y1[l] * sc2[0] + y1[l+32] * sc2[1] + y2[l] * sc4[0] + y2[l+32] * sc4[1];
+
+ }
+ sumf += dall * (s[0] * sc1[0] + s[1] * sc1[1] + s[2] * sc3[0] + s[3] * sc3[1]) - dmin * smin;
+
+ }
+ sum[ith] = sumf;
+
+ //
+ // Accumulate the sum from all threads in the threadgroup
+ //
+ threadgroup_barrier(mem_flags::mem_threadgroup);
+ if (ith%4 == 0) {
+ sum[ith] += sum[ith+1] + sum[ith+2] + sum[ith+3];
+ }
+ threadgroup_barrier(mem_flags::mem_threadgroup);
+ if (ith%16 == 0) {
+ sum[ith] += sum[ith+4] + sum[ith+8] + sum[ith+12];
+ }
+ threadgroup_barrier(mem_flags::mem_threadgroup);
+ if (ith == 0) {
+ for (int i = 16; i < nth; i += 16) sum[0] += sum[i];
+ dst[r1*ne0 + r0] = sum[0];
+ }
+
+}
+
kernel void kernel_mul_mat_q6_k_f32(
device const void * src0,
device const float * src1,
device float * dst,
constant int64_t & ne00,
- constant int64_t & ne01,
- constant uint64_t & nb00,
- constant uint64_t & nb01,
- constant uint64_t & nb02,
constant int64_t & ne10,
- constant int64_t & ne11,
- constant uint64_t & nb10,
- constant uint64_t & nb11,
- constant uint64_t & nb12,
constant int64_t & ne0,
- constant int64_t & ne1,
threadgroup float * sum [[threadgroup(0)]],
uint2 tgpig[[threadgroup_position_in_grid]],
- uint2 tpig[[thread_position_in_grid]], // we don't use this for now
uint2 tpitg[[thread_position_in_threadgroup]],
uint2 tptg[[threads_per_threadgroup]]) {
@@ -1078,24 +1376,29 @@ kernel void kernel_mul_mat_q6_k_f32(
device const block_q6_k * x = (device const block_q6_k *) src0 + r0*nb;
device const float * yy = (device const float *) src1 + r1*ne10;
- const uint nth = tptg.x*tptg.y;
- const uint ith = tptg.y*tpitg.x + tpitg.y;
+ const int nth = tptg.x*tptg.y;
+ const int ith = tptg.y*tpitg.x + tpitg.y;
- const int step = QK_K / tptg.y; // we expect this to be 16
- const int iqs = step * tpitg.y; // 0...240 in steps of 16
+ // Note: we absolutely assume that tptg.y = 16 and QK_K = 256!
+ const int iqs = 16 * tpitg.y;
const int ip = iqs / 128; // 0 or 1
const int il = (iqs - 128*ip)/16; // 0...7
const int n = 4;
- const int is = 8*ip + (n*il)/16;
+ const int l0 = n*il;
+ const int is = 8*ip + l0/16;
+
+ const int y_offset = 128*ip + l0;
+ const int q_offset_l = 64*ip + l0;
+ const int q_offset_h = 32*ip + l0;
float sumf = 0;
for (int i = tpitg.x; i < nb; i += tptg.x) {
- device const uint8_t * ql = x[i].ql + 64*ip + n*il;
- device const uint8_t * qh = x[i].qh + 32*ip + n*il;
+ device const uint8_t * ql = x[i].ql + q_offset_l;
+ device const uint8_t * qh = x[i].qh + q_offset_h;
device const int8_t * sc = x[i].scales + is;
- device const float * y = yy + i * QK_K + 128*ip + n*il;
+ device const float * y = yy + i * QK_K + y_offset;
const float dall = x[i].d;
diff --git a/llama.cpp b/llama.cpp
index a9a7794..f0f9124 100644
--- a/llama.cpp
+++ b/llama.cpp
@@ -2377,12 +2377,10 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
printf("size = %8.3f MB\n", tensor.size/1024.0/1024.0);
} else {
new_type = quantized_type;
- // TODO: temporary disabled until Metal / OpenCL support is available
- // ref: https://github.com/ggerganov/llama.cpp/issues/1711
- //if (tensor.name == "output.weight") {
- // new_type = GGML_TYPE_Q6_K;
- //}
- if (tensor.name.find("attention.wv.weight") != std::string::npos) {
+ if (tensor.name == "output.weight") {
+ new_type = GGML_TYPE_Q6_K;
+ }
+ else if (tensor.name.find("attention.wv.weight") != std::string::npos) {
if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q4_K;
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K;
else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) &&