aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--ggml.c379
-rw-r--r--ggml.h145
2 files changed, 413 insertions, 111 deletions
diff --git a/ggml.c b/ggml.c
index fa0f98a..b4a3652 100644
--- a/ggml.c
+++ b/ggml.c
@@ -195,8 +195,8 @@ typedef void * thread_ret_t;
#define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
#define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
#else
-inline static void* ggml_aligned_malloc(size_t size) {
- void* aligned_memory = NULL;
+inline static void * ggml_aligned_malloc(size_t size) {
+ void * aligned_memory = NULL;
#ifdef GGML_USE_METAL
int result = posix_memalign(&aligned_memory, getpagesize(), size);
#else
@@ -3811,7 +3811,7 @@ static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
"CROSS_ENTROPY_LOSS_BACK",
};
-static_assert(GGML_OP_COUNT == 59, "GGML_OP_COUNT != 59");
+static_assert(GGML_OP_COUNT == 62, "GGML_OP_COUNT != 62");
static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
"none",
@@ -3883,7 +3883,7 @@ static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
"cross_entropy_loss_back(x,y)",
};
-static_assert(GGML_OP_COUNT == 59, "GGML_OP_COUNT != 59");
+static_assert(GGML_OP_COUNT == 62, "GGML_OP_COUNT != 62");
static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
@@ -4253,7 +4253,7 @@ static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
}
-static inline bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
+bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
return
@@ -6890,7 +6890,7 @@ GGML_API struct ggml_tensor * ggml_conv_1d(
ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0),
a->ne[2], 1, 1,
};
- struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
+ struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
int32_t params[] = { s0, p0, d0 };
ggml_set_op_params(result, &params, sizeof(params));
@@ -6905,10 +6905,10 @@ GGML_API struct ggml_tensor * ggml_conv_1d(
// ggml_conv_2d
-struct ggml_tensor* ggml_conv_2d(
- struct ggml_context* ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
+struct ggml_tensor * ggml_conv_2d(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b,
int s0,
int s1,
int p0,
@@ -6929,7 +6929,7 @@ struct ggml_tensor* ggml_conv_2d(
ggml_calc_conv_output_size(b->ne[1], a->ne[1], s1, p1, d1),
a->ne[3], b->ne[3],
};
- struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
+ struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
int32_t params[] = { s0, s1, p0, p1, d0, d1 };
ggml_set_op_params(result, &params, sizeof(params));
@@ -6945,7 +6945,7 @@ struct ggml_tensor* ggml_conv_2d(
// ggml_conv_1d_ph
-struct ggml_tensor* ggml_conv_1d_ph(
+struct ggml_tensor * ggml_conv_1d_ph(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
@@ -6963,7 +6963,7 @@ static int64_t ggml_calc_pool_output_size(int64_t ins, int ks, int s, int p) {
// ggml_pool_1d
-struct ggml_tensor* ggml_pool_1d(
+struct ggml_tensor * ggml_pool_1d(
struct ggml_context * ctx,
struct ggml_tensor * a,
enum ggml_op_pool op,
@@ -6982,7 +6982,7 @@ struct ggml_tensor* ggml_pool_1d(
ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
a->ne[1],
};
- struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
+ struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
int32_t params[] = { op, k0, s0, p0 };
ggml_set_op_params(result, &params, sizeof(params));
@@ -6996,7 +6996,7 @@ struct ggml_tensor* ggml_pool_1d(
// ggml_pool_2d
-struct ggml_tensor* ggml_pool_2d(
+struct ggml_tensor * ggml_pool_2d(
struct ggml_context * ctx,
struct ggml_tensor * a,
enum ggml_op_pool op,
@@ -7019,7 +7019,7 @@ struct ggml_tensor* ggml_pool_2d(
ggml_calc_pool_output_size(a->ne[1], k1, s1, p1),
a->ne[2],
};
- struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
+ struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
int32_t params[] = { op, k0, k1, s0, s1, p0, p1 };
ggml_set_op_params(result, &params, sizeof(params));
@@ -7349,7 +7349,7 @@ struct ggml_tensor * ggml_map_binary_inplace_f32(
return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
}
-// ggml_map_custom1
+// ggml_map_custom1_f32
static struct ggml_tensor * ggml_map_custom1_impl_f32(
struct ggml_context * ctx,
@@ -7366,7 +7366,7 @@ static struct ggml_tensor * ggml_map_custom1_impl_f32(
ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
- result->op = GGML_OP_MAP_CUSTOM1;
+ result->op = GGML_OP_MAP_CUSTOM1_F32;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
@@ -7387,7 +7387,7 @@ struct ggml_tensor * ggml_map_custom1_inplace_f32(
return ggml_map_custom1_impl_f32(ctx, a, fun, true);
}
-// ggml_map_custom2
+// ggml_map_custom2_f32
static struct ggml_tensor * ggml_map_custom2_impl_f32(
struct ggml_context * ctx,
@@ -7405,7 +7405,7 @@ static struct ggml_tensor * ggml_map_custom2_impl_f32(
ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
- result->op = GGML_OP_MAP_CUSTOM2;
+ result->op = GGML_OP_MAP_CUSTOM2_F32;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
result->src[1] = b;
@@ -7429,7 +7429,7 @@ struct ggml_tensor * ggml_map_custom2_inplace_f32(
return ggml_map_custom2_impl_f32(ctx, a, b, fun, true);
}
-// ggml_map_custom3
+// ggml_map_custom3_f32
static struct ggml_tensor * ggml_map_custom3_impl_f32(
struct ggml_context * ctx,
@@ -7448,7 +7448,7 @@ static struct ggml_tensor * ggml_map_custom3_impl_f32(
ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
- result->op = GGML_OP_MAP_CUSTOM3;
+ result->op = GGML_OP_MAP_CUSTOM3_F32;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
result->src[1] = b;
@@ -7475,6 +7475,190 @@ struct ggml_tensor * ggml_map_custom3_inplace_f32(
return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, true);
}
+// ggml_map_custom1
+struct ggml_map_custom1_op_params {
+ ggml_custom1_op_t fun;
+ int n_tasks;
+ void * userdata;
+};
+
+static struct ggml_tensor * ggml_map_custom1_impl(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ const ggml_custom1_op_t fun,
+ int n_tasks,
+ void * userdata,
+ bool inplace) {
+ GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
+
+ bool is_node = false;
+
+ if (!inplace && a->grad) {
+ is_node = true;
+ }
+
+ struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
+
+ struct ggml_map_custom1_op_params params = {
+ /*.fun =*/ fun,
+ /*.n_tasks =*/ n_tasks,
+ /*.userdata =*/ userdata
+ };
+ ggml_set_op_params(result, (const void *) &params, sizeof(params));
+
+ result->op = GGML_OP_MAP_CUSTOM1;
+ result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
+ result->src[0] = a;
+
+ return result;
+}
+
+struct ggml_tensor * ggml_map_custom1(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ const ggml_custom1_op_t fun,
+ int n_tasks,
+ void * userdata) {
+ return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, false);
+}
+
+struct ggml_tensor * ggml_map_custom1_inplace(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ const ggml_custom1_op_t fun,
+ int n_tasks,
+ void * userdata) {
+ return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, true);
+}
+
+// ggml_map_custom2
+
+struct ggml_map_custom2_op_params {
+ ggml_custom2_op_t fun;
+ int n_tasks;
+ void * userdata;
+};
+
+static struct ggml_tensor * ggml_map_custom2_impl(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b,
+ const ggml_custom2_op_t fun,
+ int n_tasks,
+ void * userdata,
+ bool inplace) {
+ GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
+
+ bool is_node = false;
+
+ if (!inplace && (a->grad || b->grad)) {
+ is_node = true;
+ }
+
+ struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
+
+ struct ggml_map_custom2_op_params params = {
+ /*.fun =*/ fun,
+ /*.n_tasks =*/ n_tasks,
+ /*.userdata =*/ userdata
+ };
+ ggml_set_op_params(result, (const void *) &params, sizeof(params));
+
+ result->op = GGML_OP_MAP_CUSTOM2;
+ result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
+ result->src[0] = a;
+ result->src[1] = b;
+
+ return result;
+}
+
+struct ggml_tensor * ggml_map_custom2(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b,
+ const ggml_custom2_op_t fun,
+ int n_tasks,
+ void * userdata) {
+ return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, false);
+}
+
+struct ggml_tensor * ggml_map_custom2_inplace(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b,
+ const ggml_custom2_op_t fun,
+ int n_tasks,
+ void * userdata) {
+ return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, true);
+}
+
+// ggml_map_custom3
+
+struct ggml_map_custom3_op_params {
+ ggml_custom3_op_t fun;
+ int n_tasks;
+ void * userdata;
+};
+
+static struct ggml_tensor * ggml_map_custom3_impl(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b,
+ struct ggml_tensor * c,
+ const ggml_custom3_op_t fun,
+ int n_tasks,
+ void * userdata,
+ bool inplace) {
+ GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
+
+ bool is_node = false;
+
+ if (!inplace && (a->grad || b->grad || c->grad)) {
+ is_node = true;
+ }
+
+ struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
+
+ struct ggml_map_custom3_op_params params = {
+ /*.fun =*/ fun,
+ /*.n_tasks =*/ n_tasks,
+ /*.userdata =*/ userdata
+ };
+ ggml_set_op_params(result, (const void *) &params, sizeof(params));
+
+ result->op = GGML_OP_MAP_CUSTOM3;
+ result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
+ result->src[0] = a;
+ result->src[1] = b;
+ result->src[2] = c;
+
+ return result;
+}
+
+struct ggml_tensor * ggml_map_custom3(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b,
+ struct ggml_tensor * c,
+ const ggml_custom3_op_t fun,
+ int n_tasks,
+ void * userdata) {
+ return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, false);
+}
+
+struct ggml_tensor * ggml_map_custom3_inplace(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b,
+ struct ggml_tensor * c,
+ const ggml_custom3_op_t fun,
+ int n_tasks,
+ void * userdata) {
+ return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, true);
+}
+
+
+
// ggml_cross_entropy_loss
struct ggml_tensor * ggml_cross_entropy_loss(
@@ -9283,8 +9467,8 @@ static void ggml_compute_forward_sum_rows_f32(
for (int64_t i3 = 0; i3 < ne03; i3++) {
for (int64_t i2 = 0; i2 < ne02; i2++) {
for (int64_t i1 = 0; i1 < ne01; i1++) {
- float* src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
- float* dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
+ float * src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
+ float * dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
float row_sum = 0;
ggml_vec_sum_f32(ne00, &row_sum, src_row);
dst_row[0] = row_sum;
@@ -12894,7 +13078,7 @@ static void ggml_compute_forward_pool_1d(
const struct ggml_tensor * src0,
struct ggml_tensor * dst) {
- const int32_t* opts = (const int32_t*)dst->op_params;
+ const int32_t * opts = (const int32_t *)dst->op_params;
enum ggml_op_pool op = opts[0];
const int k0 = opts[1];
const int s0 = opts[2];
@@ -14227,24 +14411,6 @@ static void ggml_compute_forward_map_custom1_f32(
fun(dst, a);
}
-
-static void ggml_compute_forward_map_custom1(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * a,
- struct ggml_tensor * dst,
- const ggml_custom1_op_f32_t fun) {
- switch (a->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_map_custom1_f32(params, a, dst, fun);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
-}
-
// ggml_compute_forward_map_custom2
static void ggml_compute_forward_map_custom2_f32(
@@ -14263,24 +14429,6 @@ static void ggml_compute_forward_map_custom2_f32(
}
-static void ggml_compute_forward_map_custom2(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * a,
- const struct ggml_tensor * b,
- struct ggml_tensor * dst,
- const ggml_custom2_op_f32_t fun) {
- switch (a->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_map_custom2_f32(params, a, b, dst, fun);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
-}
-
// ggml_compute_forward_map_custom3
static void ggml_compute_forward_map_custom3_f32(
@@ -14299,24 +14447,52 @@ static void ggml_compute_forward_map_custom3_f32(
fun(dst, a, b, c);
}
+// ggml_compute_forward_map_custom1
+
+static void ggml_compute_forward_map_custom1(
+ const struct ggml_compute_params * params,
+ const struct ggml_tensor * a,
+ struct ggml_tensor * dst) {
+ if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
+ return;
+ }
+
+ struct ggml_map_custom1_op_params * p = (struct ggml_map_custom1_op_params *) dst->op_params;
+
+ p->fun(dst, a, params->ith, params->nth, p->userdata);
+}
+
+// ggml_compute_forward_map_custom2
+
+static void ggml_compute_forward_map_custom2(
+ const struct ggml_compute_params * params,
+ const struct ggml_tensor * a,
+ const struct ggml_tensor * b,
+ struct ggml_tensor * dst) {
+ if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
+ return;
+ }
+
+ struct ggml_map_custom2_op_params * p = (struct ggml_map_custom2_op_params *) dst->op_params;
+
+ p->fun(dst, a, b, params->ith, params->nth, p->userdata);
+}
+
+// ggml_compute_forward_map_custom3
static void ggml_compute_forward_map_custom3(
const struct ggml_compute_params * params,
const struct ggml_tensor * a,
const struct ggml_tensor * b,
const struct ggml_tensor * c,
- struct ggml_tensor * dst,
- const ggml_custom3_op_f32_t fun) {
- switch (a->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_map_custom3_f32(params, a, b, c, dst, fun);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
+ struct ggml_tensor * dst) {
+ if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
+ return;
}
+
+ struct ggml_map_custom3_op_params * p = (struct ggml_map_custom3_op_params *) dst->op_params;
+
+ p->fun(dst, a, b, c, params->ith, params->nth, p->userdata);
}
// ggml_compute_forward_cross_entropy_loss
@@ -14838,25 +15014,40 @@ static void ggml_compute_forward(struct ggml_compute_params * params, struct ggm
ggml_compute_forward_map_binary(params, tensor->src[0], tensor->src[1], tensor, fun);
}
break;
- case GGML_OP_MAP_CUSTOM1:
+ case GGML_OP_MAP_CUSTOM1_F32:
{
ggml_custom1_op_f32_t fun;
memcpy(&fun, tensor->op_params, sizeof(fun));
- ggml_compute_forward_map_custom1(params, tensor->src[0], tensor, fun);
+ ggml_compute_forward_map_custom1_f32(params, tensor->src[0], tensor, fun);
}
break;
- case GGML_OP_MAP_CUSTOM2:
+ case GGML_OP_MAP_CUSTOM2_F32:
{
ggml_custom2_op_f32_t fun;
memcpy(&fun, tensor->op_params, sizeof(fun));
- ggml_compute_forward_map_custom2(params, tensor->src[0], tensor->src[1], tensor, fun);
+ ggml_compute_forward_map_custom2_f32(params, tensor->src[0], tensor->src[1], tensor, fun);
}
break;
- case GGML_OP_MAP_CUSTOM3:
+ case GGML_OP_MAP_CUSTOM3_F32:
{
ggml_custom3_op_f32_t fun;
memcpy(&fun, tensor->op_params, sizeof(fun));
- ggml_compute_forward_map_custom3(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor, fun);
+ ggml_compute_forward_map_custom3_f32(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor, fun);
+ }
+ break;
+ case GGML_OP_MAP_CUSTOM1:
+ {
+ ggml_compute_forward_map_custom1(params, tensor->src[0], tensor);
+ }
+ break;
+ case GGML_OP_MAP_CUSTOM2:
+ {
+ ggml_compute_forward_map_custom2(params, tensor->src[0], tensor->src[1], tensor);
+ }
+ break;
+ case GGML_OP_MAP_CUSTOM3:
+ {
+ ggml_compute_forward_map_custom3(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
}
break;
case GGML_OP_CROSS_ENTROPY_LOSS:
@@ -15664,6 +15855,9 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor
} break;
case GGML_OP_MAP_UNARY:
case GGML_OP_MAP_BINARY:
+ case GGML_OP_MAP_CUSTOM1_F32:
+ case GGML_OP_MAP_CUSTOM2_F32:
+ case GGML_OP_MAP_CUSTOM3_F32:
case GGML_OP_MAP_CUSTOM1:
case GGML_OP_MAP_CUSTOM2:
case GGML_OP_MAP_CUSTOM3:
@@ -16449,11 +16643,38 @@ struct ggml_cplan ggml_graph_plan(struct ggml_cgraph * cgraph, int n_threads) {
case GGML_OP_WIN_UNPART:
case GGML_OP_MAP_UNARY:
case GGML_OP_MAP_BINARY:
+ case GGML_OP_MAP_CUSTOM1_F32:
+ case GGML_OP_MAP_CUSTOM2_F32:
+ case GGML_OP_MAP_CUSTOM3_F32:
+ {
+ n_tasks = 1;
+ } break;
case GGML_OP_MAP_CUSTOM1:
+ {
+ struct ggml_map_custom1_op_params * p = (struct ggml_map_custom1_op_params *) node->op_params;
+ if (p->n_tasks == GGML_N_TASKS_MAX) {
+ n_tasks = n_threads;
+ } else {
+ n_tasks = MIN(p->n_tasks, n_threads);
+ }
+ } break;
case GGML_OP_MAP_CUSTOM2:
+ {
+ struct ggml_map_custom2_op_params * p = (struct ggml_map_custom2_op_params *) node->op_params;
+ if (p->n_tasks == GGML_N_TASKS_MAX) {
+ n_tasks = n_threads;
+ } else {
+ n_tasks = MIN(p->n_tasks, n_threads);
+ }
+ } break;
case GGML_OP_MAP_CUSTOM3:
{
- n_tasks = 1;
+ struct ggml_map_custom3_op_params * p = (struct ggml_map_custom3_op_params *) node->op_params;
+ if (p->n_tasks == GGML_N_TASKS_MAX) {
+ n_tasks = n_threads;
+ } else {
+ n_tasks = MIN(p->n_tasks, n_threads);
+ }
} break;
case GGML_OP_CROSS_ENTROPY_LOSS:
{
diff --git a/ggml.h b/ggml.h
index aba9248..bdbd128 100644
--- a/ggml.h
+++ b/ggml.h
@@ -183,6 +183,15 @@
# define GGML_API
#endif
+// TODO: support for clang
+#ifdef __GNUC__
+# define GGML_DEPRECATED(func, hint) func __attribute__((deprecated(hint)))
+#elif defined(_MSC_VER)
+# define GGML_DEPRECATED(func, hint) __declspec(deprecated(hint)) func
+#else
+# define GGML_DEPRECATED(func, hint) func
+#endif
+
#include <stdint.h>
#include <stddef.h>
#include <stdbool.h>
@@ -374,6 +383,10 @@ extern "C" {
GGML_OP_MAP_UNARY,
GGML_OP_MAP_BINARY,
+ GGML_OP_MAP_CUSTOM1_F32,
+ GGML_OP_MAP_CUSTOM2_F32,
+ GGML_OP_MAP_CUSTOM3_F32,
+
GGML_OP_MAP_CUSTOM1,
GGML_OP_MAP_CUSTOM2,
GGML_OP_MAP_CUSTOM3,
@@ -570,6 +583,8 @@ extern "C" {
GGML_API bool ggml_is_contiguous(const struct ggml_tensor * tensor);
GGML_API bool ggml_is_permuted (const struct ggml_tensor * tensor);
+ GGML_API bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1);
+
// use this to compute the memory overhead of a tensor
GGML_API size_t ggml_tensor_overhead(void);
@@ -1240,7 +1255,7 @@ extern "C" {
// conv_1d with padding = half
// alias for ggml_conv_1d(a, b, s, a->ne[0]/2, d)
- GGML_API struct ggml_tensor* ggml_conv_1d_ph(
+ GGML_API struct ggml_tensor * ggml_conv_1d_ph(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
@@ -1253,7 +1268,7 @@ extern "C" {
GGML_OP_POOL_COUNT,
};
- GGML_API struct ggml_tensor* ggml_pool_1d(
+ GGML_API struct ggml_tensor * ggml_pool_1d(
struct ggml_context * ctx,
struct ggml_tensor * a,
enum ggml_op_pool op,
@@ -1261,7 +1276,7 @@ extern "C" {
int s0, // stride
int p0); // padding
- GGML_API struct ggml_tensor* ggml_pool_2d(
+ GGML_API struct ggml_tensor * ggml_pool_2d(
struct ggml_context * ctx,
struct ggml_tensor * a,
enum ggml_op_pool op,
@@ -1315,15 +1330,6 @@ extern "C" {
int h0,
int w);
- // custom operators
-
- typedef void (*ggml_unary_op_f32_t) (const int, float *, const float *);
- typedef void (*ggml_binary_op_f32_t)(const int, float *, const float *, const float *);
-
- typedef void (*ggml_custom1_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *);
- typedef void (*ggml_custom2_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *);
- typedef void (*ggml_custom3_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *);
-
GGML_API struct ggml_tensor * ggml_unary(
struct ggml_context * ctx,
struct ggml_tensor * a,
@@ -1334,63 +1340,138 @@ extern "C" {
struct ggml_tensor * a,
enum ggml_unary_op op);
- GGML_API struct ggml_tensor * ggml_map_unary_f32(
+ // custom operators
+
+ typedef void (*ggml_unary_op_f32_t) (const int, float *, const float *);
+ typedef void (*ggml_binary_op_f32_t)(const int, float *, const float *, const float *);
+
+ typedef void (*ggml_custom1_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *);
+ typedef void (*ggml_custom2_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *);
+ typedef void (*ggml_custom3_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *);
+
+ GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_unary_f32(
struct ggml_context * ctx,
struct ggml_tensor * a,
- ggml_unary_op_f32_t fun);
+ ggml_unary_op_f32_t fun),
+ "use ggml_map_custom1 instead");
- GGML_API struct ggml_tensor * ggml_map_unary_inplace_f32(
+ GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_unary_inplace_f32(
struct ggml_context * ctx,
struct ggml_tensor * a,
- ggml_unary_op_f32_t fun);
+ ggml_unary_op_f32_t fun),
+ "use ggml_map_custom1_inplace instead");
- GGML_API struct ggml_tensor * ggml_map_binary_f32(
+ GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_binary_f32(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
- ggml_binary_op_f32_t fun);
+ ggml_binary_op_f32_t fun),
+ "use ggml_map_custom2 instead");
- GGML_API struct ggml_tensor * ggml_map_binary_inplace_f32(
+ GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_binary_inplace_f32(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
- ggml_binary_op_f32_t fun);
+ ggml_binary_op_f32_t fun),
+ "use ggml_map_custom2_inplace instead");
- GGML_API struct ggml_tensor * ggml_map_custom1_f32(
+ GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom1_f32(
struct ggml_context * ctx,
struct ggml_tensor * a,
- ggml_custom1_op_f32_t fun);
+ ggml_custom1_op_f32_t fun),
+ "use ggml_map_custom1 instead");
- GGML_API struct ggml_tensor * ggml_map_custom1_inplace_f32(
+ GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom1_inplace_f32(
struct ggml_context * ctx,
struct ggml_tensor * a,
- ggml_custom1_op_f32_t fun);
+ ggml_custom1_op_f32_t fun),
+ "use ggml_map_custom1_inplace instead");
- GGML_API struct ggml_tensor * ggml_map_custom2_f32(
+ GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom2_f32(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
- ggml_custom2_op_f32_t fun);
+ ggml_custom2_op_f32_t fun),
+ "use ggml_map_custom2 instead");
- GGML_API struct ggml_tensor * ggml_map_custom2_inplace_f32(
+ GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom2_inplace_f32(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
- ggml_custom2_op_f32_t fun);
+ ggml_custom2_op_f32_t fun),
+ "use ggml_map_custom2_inplace instead");
- GGML_API struct ggml_tensor * ggml_map_custom3_f32(
+ GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom3_f32(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
struct ggml_tensor * c,
- ggml_custom3_op_f32_t fun);
+ ggml_custom3_op_f32_t fun),
+ "use ggml_map_custom3 instead");
- GGML_API struct ggml_tensor * ggml_map_custom3_inplace_f32(
+ GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom3_inplace_f32(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
struct ggml_tensor * c,
- ggml_custom3_op_f32_t fun);
+ ggml_custom3_op_f32_t fun),
+ "use ggml_map_custom3_inplace instead");
+
+ // custom operators v2
+
+ typedef void (*ggml_custom1_op_t)(struct ggml_tensor * dst , const struct ggml_tensor * a, int ith, int nth, void * userdata);
+ typedef void (*ggml_custom2_op_t)(struct ggml_tensor * dst , const struct ggml_tensor * a, const struct ggml_tensor * b, int ith, int nth, void * userdata);
+ typedef void (*ggml_custom3_op_t)(struct ggml_tensor * dst , const struct ggml_tensor * a, const struct ggml_tensor * b, const struct ggml_tensor * c, int ith, int nth, void * userdata);
+
+ #define GGML_N_TASKS_MAX -1
+
+ GGML_API struct ggml_tensor * ggml_map_custom1(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ ggml_custom1_op_t fun,
+ int n_tasks,
+ void * userdata);
+
+ GGML_API struct ggml_tensor * ggml_map_custom1_inplace(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ ggml_custom1_op_t fun,
+ int n_tasks,
+ void * userdata);
+
+ GGML_API struct ggml_tensor * ggml_map_custom2(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b,
+ ggml_custom2_op_t fun,
+ int n_tasks,
+ void * userdata);
+
+ GGML_API struct ggml_tensor * ggml_map_custom2_inplace(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b,
+ ggml_custom2_op_t fun,
+ int n_tasks,
+ void * userdata);
+
+ GGML_API struct ggml_tensor * ggml_map_custom3(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b,
+ struct ggml_tensor * c,
+ ggml_custom3_op_t fun,
+ int n_tasks,
+ void * userdata);
+
+ GGML_API struct ggml_tensor * ggml_map_custom3_inplace(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b,
+ struct ggml_tensor * c,
+ ggml_custom3_op_t fun,
+ int n_tasks,
+ void * userdata);
// loss function