diff options
-rw-r--r-- | CMakeLists.txt | 2 | ||||
-rw-r--r-- | Makefile | 7 | ||||
-rw-r--r-- | ggml-alloc.c | 541 | ||||
-rw-r--r-- | ggml-alloc.h | 22 | ||||
-rw-r--r-- | ggml.c | 75 | ||||
-rw-r--r-- | ggml.h | 13 | ||||
-rw-r--r-- | llama.cpp | 240 |
7 files changed, 812 insertions, 88 deletions
diff --git a/CMakeLists.txt b/CMakeLists.txt index 6e1abea..57678a3 100644 --- a/CMakeLists.txt +++ b/CMakeLists.txt @@ -503,6 +503,8 @@ endif() add_library(ggml OBJECT ggml.c ggml.h + ggml-alloc.c + ggml-alloc.h ${GGML_SOURCES_CUDA} ${GGML_SOURCES_OPENCL} ${GGML_SOURCES_METAL} @@ -329,7 +329,12 @@ $(info ) ggml.o: ggml.c ggml.h ggml-cuda.h $(CC) $(CFLAGS) -c $< -o $@ -llama.o: llama.cpp ggml.h ggml-cuda.h ggml-metal.h llama.h llama-util.h +ggml-alloc.o: ggml-alloc.c ggml.h ggml-alloc.h + $(CC) $(CFLAGS) -c $< -o $@ + +OBJS += ggml-alloc.o + +llama.o: llama.cpp ggml.h ggml-alloc.h ggml-cuda.h ggml-metal.h llama.h llama-util.h $(CXX) $(CXXFLAGS) -c $< -o $@ common.o: examples/common.cpp examples/common.h diff --git a/ggml-alloc.c b/ggml-alloc.c new file mode 100644 index 0000000..5e1be61 --- /dev/null +++ b/ggml-alloc.c @@ -0,0 +1,541 @@ +#include "ggml-alloc.h" +#include "ggml.h" +#include <assert.h> +#include <stdarg.h> +#include <stdio.h> +#include <stdlib.h> +#include <string.h> + +#define UNUSED(x) (void)(x) +#define MAX(a, b) ((a) > (b) ? (a) : (b)) + +//#define GGML_ALLOCATOR_DEBUG + +//#define AT_PRINTF printf +#define AT_PRINTF(...) ((void)0) + +struct hash_node { + struct ggml_tensor * t; + int n_children; + int n_views; +}; + +static size_t hash(void * p) { + return (size_t)p % GGML_GRAPH_HASHTABLE_SIZE; +} + +static struct hash_node * hash_get(struct hash_node hash_table[], struct ggml_tensor * t) { + size_t h = hash(t); + + // linear probing + size_t i = h; + while (hash_table[i].t != NULL) { + if (hash_table[i].t == t) { + return &hash_table[i]; + } + i = (i + 1) % GGML_GRAPH_HASHTABLE_SIZE; + if (i == h) { + // hash table is full + GGML_ASSERT(false); + } + } + + hash_table[i].t = t; + return &hash_table[i]; +} + +// TODO: GGML_PAD ? +static size_t aligned_offset(const void * buffer, size_t offset, size_t alignment) { + assert(alignment && !(alignment & (alignment - 1))); // power of 2 + size_t align = (alignment - (((uintptr_t)buffer + offset) % alignment)) % alignment; + return offset + align; +} + +struct free_block { + void * addr; + size_t size; +}; + +#define MAX_FREE_BLOCKS 128 + +struct ggml_allocr { + void * data; + size_t size; + size_t alignment; + int n_free_blocks; + struct free_block free_blocks[MAX_FREE_BLOCKS]; + struct hash_node hash_table[GGML_GRAPH_HASHTABLE_SIZE]; + size_t max_size; + bool measure; + +#ifdef GGML_ALLOCATOR_DEBUG + struct ggml_tensor * allocated_tensors[1024]; +#endif +}; + +#ifdef GGML_ALLOCATOR_DEBUG +static void add_allocated_tensor(struct ggml_allocator * alloc, struct ggml_tensor * tensor) { + for (int i = 0; i < 1024; i++) { + if (alloc->allocated_tensors[i] == NULL) { + alloc->allocated_tensors[i] = tensor; + return; + } + } + GGML_ASSERT(!"out of allocated_tensors"); +} +static void remove_allocated_tensor(struct ggml_allocator * alloc, struct ggml_tensor * tensor) { + for (int i = 0; i < 1024; i++) { + if (alloc->allocated_tensors[i] == tensor || + (alloc->allocated_tensors[i] != NULL && alloc->allocated_tensors[i]->data == tensor->data)) { + alloc->allocated_tensors[i] = NULL; + return; + } + } + printf("tried to free tensor %s not found\n", tensor->name); + GGML_ASSERT(!"tensor not found"); +} +#endif + + +static size_t ggml_allocator_get_alloc_size(struct ggml_allocr * alloc, struct ggml_tensor * tensor) { + return ggml_nbytes(tensor); + + UNUSED(alloc); +} + +void ggml_allocr_alloc(struct ggml_allocr * alloc, struct ggml_tensor * tensor) { + size_t size = ggml_allocator_get_alloc_size(alloc, tensor); + size = aligned_offset(NULL, size, alloc->alignment); + + AT_PRINTF("%s: allocating %s (%zu bytes) - ", __func__, tensor->name, size); + + size_t max_avail = 0; + + // find the best fitting free block + int best_fit_block = -1; + size_t best_fit_size = SIZE_MAX; + for (int i = 0; i < alloc->n_free_blocks; i++) { + struct free_block * block = &alloc->free_blocks[i]; + max_avail = MAX(max_avail, block->size); + if (block->size >= size && block->size <= best_fit_size) { + best_fit_block = i; + best_fit_size = block->size; + } + } + + AT_PRINTF("block %d\n", best_fit_block); + + if (best_fit_block == -1) { + fprintf(stderr, "%s: not enough space in the buffer (needed %zu, largest block available %zu)\n", + __func__, size, max_avail); + GGML_ASSERT(!"not enough space in the buffer"); + return; + } + struct free_block * block = &alloc->free_blocks[best_fit_block]; + void * addr = block->addr; + block->addr = (char*)block->addr + size; + block->size -= size; + if (block->size == 0) { + // remove block if empty + alloc->n_free_blocks--; + for (int j = best_fit_block; j < alloc->n_free_blocks; j++) { + alloc->free_blocks[j] = alloc->free_blocks[j+1]; + } + } + + tensor->data = addr; + +#ifdef GGML_ALLOCATOR_DEBUG + add_allocated_tensor(alloc, tensor); + size_t cur_max = (char*)addr - (char*)alloc->data + size; + if (cur_max > alloc->max_size) { + printf("max_size = %.2f MB: tensors: ", cur_max / 1024.0 / 1024.0); + for (int i = 0; i < 1024; i++) { + if (alloc->allocated_tensors[i]) { + printf("%s (%.2f MB) ", alloc->allocated_tensors[i]->name, ggml_nbytes(alloc->allocated_tensors[i]) / 1024.0 / 1024.0); + } + } + printf("\n"); + } +#endif + + alloc->max_size = MAX(alloc->max_size, (char*)addr - (char*)alloc->data + size); +} + +// this is a very naive implementation, but for our case the number of free blocks should be very small +static void ggml_allocator_free_tensor(struct ggml_allocr * alloc, struct ggml_tensor * tensor) { + void * ptr = tensor->data; + + if (ptr < alloc->data || (char*)ptr >= (char*)alloc->data + alloc->max_size) { + // the tensor was not allocated in this buffer + // this can happen because the graph allocator will try to free weights and other tensors from different buffers + // the easiest way to deal with this is just to ignore it + return; + } + + size_t size = ggml_allocator_get_alloc_size(alloc, tensor); + size = aligned_offset(NULL, size, alloc->alignment); + AT_PRINTF("%s: freeing %s (%zu bytes) - n_free_blocks = %d\n", __func__, tensor->name, size, alloc->n_free_blocks); + +#ifdef GGML_ALLOCATOR_DEBUG + remove_allocated_tensor(alloc, tensor); +#endif + + // see if we can merge with an existing block + for (int i = 0; i < alloc->n_free_blocks; i++) { + struct free_block * block = &alloc->free_blocks[i]; + // check if ptr is at the end of the block + if ((char*)block->addr + block->size == ptr) { + block->size += size; + // check if we can merge with the next block + if (i < alloc->n_free_blocks - 1 && (char*)block->addr + block->size == alloc->free_blocks[i+1].addr) { + block->size += alloc->free_blocks[i+1].size; + alloc->n_free_blocks--; + for (int j = i+1; j < alloc->n_free_blocks; j++) { + alloc->free_blocks[j] = alloc->free_blocks[j+1]; + } + } + return; + } + // check if ptr is at the beginning of the block + if ((char*)ptr + size == block->addr) { + block->addr = ptr; + block->size += size; + // check if we can merge with the previous block + if (i > 0 && (char*)alloc->free_blocks[i-1].addr + alloc->free_blocks[i-1].size == block->addr) { + alloc->free_blocks[i-1].size += block->size; + alloc->n_free_blocks--; + for (int j = i; j < alloc->n_free_blocks; j++) { + alloc->free_blocks[j] = alloc->free_blocks[j+1]; + } + } + return; + } + } + // otherwise, add a new block + GGML_ASSERT(alloc->n_free_blocks < MAX_FREE_BLOCKS && "out of free blocks"); + // insert the new block in the correct position to keep the array sorted by address (to make merging blocks faster) + int insert_pos = 0; + while (insert_pos < alloc->n_free_blocks && alloc->free_blocks[insert_pos].addr < ptr) { + insert_pos++; + } + // shift all blocks from insert_pos onward to make room for the new block + for (int i = alloc->n_free_blocks; i > insert_pos; i--) { + alloc->free_blocks[i] = alloc->free_blocks[i-1]; + } + // insert the new block + alloc->free_blocks[insert_pos].addr = ptr; + alloc->free_blocks[insert_pos].size = size; + alloc->n_free_blocks++; +} + +void ggml_allocr_reset(struct ggml_allocr * alloc) { + alloc->n_free_blocks = 1; + size_t align_offset = aligned_offset(alloc->data, 0, alloc->alignment); + alloc->free_blocks[0].addr = (char *)alloc->data + align_offset; + alloc->free_blocks[0].size = alloc->size - align_offset; +} + +struct ggml_allocr * ggml_allocr_new(void * data, size_t size, size_t alignment) { + struct ggml_allocr * alloc = (struct ggml_allocr *)malloc(sizeof(struct ggml_allocr) /* + n_free_blocks * sizeof(struct free_block) */); + + *alloc = (struct ggml_allocr){ + /*.data = */ data, + /*.size = */ size, + /*.alignment = */ alignment, + /*.n_free_blocks = */ 0, + /*.free_blocks = */ {{0}}, + /*.hash_table = */ {{0}}, + /*.max_size = */ 0, + /*.measure = */ false, +#ifdef GGML_ALLOCATOR_DEBUG + /*.allocated_tensors = */ = {0}, +#endif + }; + + ggml_allocr_reset(alloc); + + return alloc; +} + +// address and size of the buffer when measuring +// it needs to be large enough to fit all the tensors, but it cannot overlap with other existing buffers +static void * const MEASURE_BASE_ADDR = (void *) 0x1000; +static const size_t MEASURE_MAX_SIZE = 1ULL<<40; // 1 TB + +struct ggml_allocr * ggml_allocr_new_measure(size_t alignment) { + struct ggml_allocr * alloc = (struct ggml_allocr *)malloc(sizeof(struct ggml_allocr) /* + n_free_blocks * sizeof(struct free_block) */); + + *alloc = (struct ggml_allocr){ + /*.data = */ MEASURE_BASE_ADDR, + /*.size = */ MEASURE_MAX_SIZE, + /*.alignment = */ alignment, + /*.n_free_blocks = */ 0, + /*.free_blocks = */ {{0}}, + /*.hash_table = */ {{0}}, + /*.max_size = */ 0, + /*.measure = */ true, +#ifdef GGML_ALLOCATOR_DEBUG + /*.allocated_tensors = */ = {0}, +#endif + }; + + ggml_allocr_reset(alloc); + + return alloc; +} + +void ggml_allocr_free(struct ggml_allocr * alloc) { + free(alloc); +} + +bool ggml_allocr_is_measure(struct ggml_allocr * alloc) { + return alloc->measure; +} + +//////////// compute graph allocator + +static bool ggml_is_view(struct ggml_tensor * t) { + return t->op == GGML_OP_RESHAPE || t->op == GGML_OP_VIEW || t->op == GGML_OP_TRANSPOSE || + t->op == GGML_OP_PERMUTE || t->op == GGML_OP_CPY; +} + +static bool ggml_are_same_layout(const struct ggml_tensor * a, const struct ggml_tensor * b) { + if (a->type != b->type) { + return false; + } + for (int i = 0; i < GGML_MAX_DIMS; i++) { + if (a->ne[i] != b->ne[i]) { + return false; + } + if (a->nb[i] != b->nb[i]) { + return false; + } + } + return true; +} + +static struct ggml_tensor * get_view_parent(struct ggml_tensor * t) { + switch (t->op) { + case GGML_OP_PERMUTE: + case GGML_OP_RESHAPE: + case GGML_OP_TRANSPOSE: + case GGML_OP_VIEW: + return t->src[0]; + case GGML_OP_CPY: + return t->src[1]; + default: + return NULL; + } +} + +static struct ggml_tensor * get_view_source(struct ggml_tensor * t) { + struct ggml_tensor * parent = t; + do { + parent = get_view_parent(parent); + } while (ggml_is_view(parent)); + return parent; +} + +static bool ggml_op_can_inplace(enum ggml_op op) { + switch (op) { + case GGML_OP_SCALE: + case GGML_OP_DIAG_MASK_ZERO: + case GGML_OP_DIAG_MASK_INF: + case GGML_OP_ADD: + case GGML_OP_ADD1: + case GGML_OP_ACC: + case GGML_OP_SUB: + case GGML_OP_MUL: + case GGML_OP_DIV: + case GGML_OP_SQR: + case GGML_OP_SQRT: + case GGML_OP_LOG: + case GGML_OP_UNARY: + case GGML_OP_ROPE: + case GGML_OP_RMS_NORM: + case GGML_OP_SET: + case GGML_OP_SOFT_MAX: + case GGML_OP_CONT: + return true; + + default: + return false; + } +} + +static void allocate_node(struct ggml_allocr * alloc, struct ggml_tensor * node) { + struct hash_node * ht = alloc->hash_table; + if (node->data == NULL) { + if (ggml_is_view(node)) { + size_t offset; + switch(node->op) { + case GGML_OP_VIEW: + memcpy(&offset, node->op_params, sizeof(size_t)); + node->data = (char *) node->src[0]->data + offset; + break; + case GGML_OP_PERMUTE: + case GGML_OP_RESHAPE: + case GGML_OP_TRANSPOSE: + node->data = node->src[0]->data; + break; + case GGML_OP_CPY: + node->data = node->src[1]->data; + break; + default: + GGML_ASSERT(!"unknown view op"); + break; + } + } else { + // see if we can reuse a parent's buffer (inplace) + if (ggml_op_can_inplace(node->op)) { + for (int i = 0; i < GGML_MAX_SRC; i++) { + struct ggml_tensor * parent = node->src[i]; + if (parent == NULL) { + break; + } + struct hash_node * p_hn = hash_get(ht, parent); + if (parent->data != NULL && p_hn->n_children == 1 && p_hn->n_views == 0 && ggml_are_same_layout(node, parent)) { + if (ggml_is_view(parent)) { + struct ggml_tensor * view_src = get_view_source(parent); + struct hash_node * view_src_hn = hash_get(ht, view_src); + if (view_src_hn->n_views == 1 && view_src_hn->n_children == 0 && view_src->data == parent->data) { + // TODO: the offset of the view parent must be kept to ensure that the op doesn't overwrite + // the parent's data that it will need later (same layout requirement). the problem is that then + // we cannot free the tensor because the original address of the allocation is lost. + // adding a view_src pointer to the tensor would solve this and simplify the code dealing with views + // for now, we only reuse the parent's data if the offset is zero (view_src->data == parent->data) + AT_PRINTF("reusing view parent %s (%s) for %s\n", parent->name, view_src->name, node->name); + node->data = parent->data; + return; + } + } + else { + AT_PRINTF("reusing parent %s for %s\n", parent->name, node->name); + node->data = parent->data; + } + return; + } + } + } + ggml_allocr_alloc(alloc, node); + } + } +} + +static size_t ggml_allocator_alloc_graph_tensors_n( + struct ggml_allocr * alloc, + struct ggml_cgraph ** graphs, int n_graphs, + struct ggml_tensor *** inputs, struct ggml_tensor *** outputs) { + + // reset hash table + struct hash_node * ht = alloc->hash_table; + memset(ht, 0, sizeof(struct hash_node) * GGML_GRAPH_HASHTABLE_SIZE); + + // count number of children and views + for (int g = 0; g < n_graphs; g++) { + struct ggml_cgraph * gf = graphs[g]; + for (int i = 0; i < gf->n_nodes; i++) { + struct ggml_tensor * node = gf->nodes[i]; + + if (ggml_is_view(node)) { + struct ggml_tensor * view_src = get_view_source(node); + hash_get(ht, view_src)->n_views += 1; + } + + for (int j = 0; j < GGML_MAX_SRC; j++) { + struct ggml_tensor * parent = node->src[j]; + if (parent == NULL) { + break; + } + hash_get(ht, parent)->n_children += 1; + } + } + } + + // allocate tensors + for (int g = 0; g < n_graphs; g++) { + struct ggml_cgraph * gf = graphs[g]; + AT_PRINTF("####### graph %d/%d\n", g, n_graphs); + // graph inputs are allocated first to ensure that they are not overwritten by each other + if (inputs != NULL && inputs[g] != NULL) { + for (int i = 0; inputs[g][i] != NULL; i++) { + struct ggml_tensor * input = inputs[g][i]; + AT_PRINTF("input: %s\n", input->name); + allocate_node(alloc, input); + } + } + for (int i = 0; i < gf->n_nodes; i++) { + struct ggml_tensor * node = gf->nodes[i]; + + // allocate parents (leafs) + for (int j = 0; j < GGML_MAX_SRC; j++) { + struct ggml_tensor * parent = node->src[j]; + if (parent == NULL) { + break; + } + allocate_node(alloc, parent); + } + + // allocate node + allocate_node(alloc, node); + + AT_PRINTF("exec: %s (%s) <= ", ggml_op_name(node->op), node->name); + for (int j = 0; j < GGML_MAX_SRC; j++) { + struct ggml_tensor * parent = node->src[j]; + if (parent == NULL) { + break; + } + AT_PRINTF("%s", parent->name); + if (j < GGML_MAX_SRC - 1 && node->src[j + 1] != NULL) { + AT_PRINTF(", "); + } + } + AT_PRINTF("\n"); + + // update parents + for (int j = 0; j < GGML_MAX_SRC; j++) { + struct ggml_tensor * parent = node->src[j]; + if (parent == NULL) { + break; + } + struct hash_node * p_hn = hash_get(ht, parent); + p_hn->n_children -= 1; + + //AT_PRINTF("parent %s: %d children, %d views\n", parent->name, parent->n_children, parent->n_views); + + if (p_hn->n_children == 0 && p_hn->n_views == 0) { + if (ggml_is_view(parent)) { + struct ggml_tensor * view_src = get_view_source(parent); + struct hash_node * view_src_hn = hash_get(ht, view_src); + view_src_hn->n_views -= 1; + AT_PRINTF("view_src %s: %d children, %d views\n", view_src->name, view_src->n_children, view_src->n_views); + if (view_src_hn->n_views == 0 && view_src_hn->n_children == 0 && view_src->data != node->data) { + ggml_allocator_free_tensor(alloc, view_src); + } + } + else { + if (parent->data != node->data) { + ggml_allocator_free_tensor(alloc, parent); + } + } + } + } + AT_PRINTF("\n"); + } + // free graph outputs here that wouldn't be freed otherwise because they have no children + if (outputs != NULL && outputs[g] != NULL) { + for (int i = 0; outputs[g][i] != NULL; i++) { + struct ggml_tensor * output = outputs[g][i]; + AT_PRINTF("output: %s\n", output->name); + ggml_allocator_free_tensor(alloc, output); + } + } + } + + return alloc->max_size; +} + +size_t ggml_allocr_alloc_graph(struct ggml_allocr * alloc, struct ggml_cgraph * graph) { + return ggml_allocator_alloc_graph_tensors_n(alloc, &graph, 1, NULL, NULL); +} diff --git a/ggml-alloc.h b/ggml-alloc.h new file mode 100644 index 0000000..a5ec8f8 --- /dev/null +++ b/ggml-alloc.h @@ -0,0 +1,22 @@ +#pragma once + +#include "ggml.h" + +#ifdef __cplusplus +extern "C" { +#endif + + +GGML_API struct ggml_allocr * ggml_allocr_new(void * data, size_t size, size_t alignment); +GGML_API struct ggml_allocr * ggml_allocr_new_measure(size_t alignment); + +GGML_API void ggml_allocr_free(struct ggml_allocr * alloc); +GGML_API bool ggml_allocr_is_measure(struct ggml_allocr * alloc); +GGML_API void ggml_allocr_reset(struct ggml_allocr * alloc); +GGML_API void ggml_allocr_alloc(struct ggml_allocr * alloc, struct ggml_tensor * tensor); +GGML_API size_t ggml_allocr_alloc_graph(struct ggml_allocr * alloc, struct ggml_cgraph * graph); + + +#ifdef __cplusplus +} +#endif @@ -4557,10 +4557,12 @@ static struct ggml_object * ggml_new_object(struct ggml_context * ctx, enum ggml static struct ggml_tensor * ggml_new_tensor_impl( struct ggml_context * ctx, - enum ggml_type type, - int n_dims, - const int64_t* ne, - void* data) { + enum ggml_type type, + int n_dims, + const int64_t * ne, + void * data) { + + assert(n_dims >= 1 && n_dims <= GGML_MAX_DIMS); size_t data_size = 0; @@ -4648,22 +4650,22 @@ static void ggml_set_op_params_i32(struct ggml_tensor * tensor, uint32_t i, int3 struct ggml_tensor * ggml_new_tensor( struct ggml_context * ctx, - enum ggml_type type, - int n_dims, - const int64_t * ne) { + enum ggml_type type, + int n_dims, + const int64_t * ne) { return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL); } struct ggml_tensor * ggml_new_tensor_1d( struct ggml_context * ctx, - enum ggml_type type, + enum ggml_type type, int64_t ne0) { return ggml_new_tensor(ctx, type, 1, &ne0); } struct ggml_tensor * ggml_new_tensor_2d( struct ggml_context * ctx, - enum ggml_type type, + enum ggml_type type, int64_t ne0, int64_t ne1) { const int64_t ne[2] = { ne0, ne1 }; @@ -4672,7 +4674,7 @@ struct ggml_tensor * ggml_new_tensor_2d( struct ggml_tensor * ggml_new_tensor_3d( struct ggml_context * ctx, - enum ggml_type type, + enum ggml_type type, int64_t ne0, int64_t ne1, int64_t ne2) { @@ -6238,6 +6240,27 @@ struct ggml_tensor * ggml_reshape_4d( // ggml_view_1d +static struct ggml_tensor * ggml_view_tensor_offset( + struct ggml_context * ctx, + struct ggml_tensor * a, + int n_dims, + const int64_t * ne, + size_t offset) { + // don't calculate an offset from an unallocated tensor + void * data = NULL; + if (a->data != NULL) { + data = (char *) a->data + offset; + } + + struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, n_dims, ne, data); + + ggml_format_name(result, "%s (view)", a->name); + + ggml_set_op_params(result, &offset, sizeof(offset)); + + return result; +} + struct ggml_tensor * ggml_view_1d( struct ggml_context * ctx, struct ggml_tensor * a, @@ -6250,10 +6273,7 @@ struct ggml_tensor * ggml_view_1d( is_node = true; } - struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, &ne0, (char *) a->data + offset); - ggml_format_name(result, "%s (view)", a->name); - - ggml_set_op_params(result, &offset, sizeof(offset)); + struct ggml_tensor * result = ggml_view_tensor_offset(ctx, a, 1, &ne0, offset); result->op = GGML_OP_VIEW; result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; @@ -6280,10 +6300,7 @@ struct ggml_tensor * ggml_view_2d( const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, 1, 1 }; - struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, (char *) a->data + offset); - ggml_format_name(result, "%s (view)", a->name); - - ggml_set_op_params(result, &offset, sizeof(offset)); + struct ggml_tensor * result = ggml_view_tensor_offset(ctx, a, 2, ne, offset); result->nb[1] = nb1; result->nb[2] = result->nb[1]*ne1; @@ -6316,10 +6333,7 @@ struct ggml_tensor * ggml_view_3d( const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, 1 }; - struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, (char *) a->data + offset); - ggml_format_name(result, "%s (view)", a->name); - - ggml_set_op_params(result, &offset, sizeof(offset)); + struct ggml_tensor * result = ggml_view_tensor_offset(ctx, a, 3, ne, offset); result->nb[1] = nb1; result->nb[2] = nb2; @@ -6354,10 +6368,7 @@ struct ggml_tensor * ggml_view_4d( const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, ne3 }; - struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, (char *) a->data + offset); - ggml_format_name(result, "%s (view)", a->name); - - ggml_set_op_params(result, &offset, sizeof(offset)); + struct ggml_tensor * result = ggml_view_tensor_offset(ctx, a, 4, ne, offset); result->nb[1] = nb1; result->nb[2] = nb2; @@ -6741,6 +6752,18 @@ struct ggml_tensor * ggml_rope_inplace( return ggml_rope_impl(ctx, a, n_past, n_dims, mode, n_ctx, 10000.0f, 1.0f, true); } +struct ggml_tensor * ggml_rope_custom( + struct ggml_context * ctx, + struct ggml_tensor * a, + int n_past, + int n_dims, + int mode, + int n_ctx, + float freq_base, + float freq_scale) { + return ggml_rope_impl(ctx, a, n_past, n_dims, mode, n_ctx, freq_base, freq_scale, false); +} + struct ggml_tensor * ggml_rope_custom_inplace( struct ggml_context * ctx, struct ggml_tensor * a, @@ -1170,7 +1170,18 @@ extern "C" { int mode, int n_ctx); - // custom RoPE, in-place, returns view(a) + // custom RoPE + GGML_API struct ggml_tensor * ggml_rope_custom( + struct ggml_context * ctx, + struct ggml_tensor * a, + int n_past, + int n_dims, + int mode, + int n_ctx, + float freq_base, + float freq_scale); + + // in-place, returns view(a) GGML_API struct ggml_tensor * ggml_rope_custom_inplace( struct ggml_context * ctx, struct ggml_tensor * a, @@ -56,8 +56,14 @@ #pragma warning(disable: 4244 4267) // possible loss of data #endif +#if !defined(GGML_USE_CUBLAS) && !defined(GGML_USE_METAL) +#include "ggml-alloc.h" +#define LLAMA_USE_ALLOCATOR +#else #define LLAMA_USE_SCRATCH #define LLAMA_MAX_SCRATCH_BUFFERS 16 +#endif + // available llama models enum e_model { @@ -327,13 +333,22 @@ struct llama_model { struct llama_context { llama_context(const llama_model & model) : model(model), t_load_us(model.t_load_us), t_start_us(model.t_start_us) {} -#ifdef GGML_USE_METAL ~llama_context() { + if (model_owner) { + delete &model; + } +#ifdef GGML_USE_METAL if (ctx_metal) { ggml_metal_free(ctx_metal); } - } #endif +#ifdef LLAMA_USE_ALLOCATOR + if (alloc) { + ggml_allocr_free(alloc); + } +#endif + } + std::mt19937 rng; bool has_evaluated_once = false; @@ -371,7 +386,17 @@ struct llama_context { // memory buffers used to evaluate the model // TODO: move in llama_state llama_ctx_buffer buf_compute; + +#ifdef LLAMA_USE_ALLOCATOR + llama_ctx_buffer buf_alloc; + ggml_allocr * alloc = NULL; +#endif + +#ifdef LLAMA_USE_SCRATCH llama_ctx_buffer buf_scratch[LLAMA_MAX_SCRATCH_BUFFERS]; + int buf_last = 0; + size_t buf_max_size[LLAMA_MAX_SCRATCH_BUFFERS] = { 0 }; +#endif #ifdef GGML_USE_METAL ggml_metal_context * ctx_metal = NULL; @@ -381,9 +406,6 @@ struct llama_context { ggml_mpi_context * ctx_mpi = NULL; #endif - int buf_last = 0; - size_t buf_max_size[LLAMA_MAX_SCRATCH_BUFFERS] = { 0 }; - void use_buf(struct ggml_context * ctx, int i) { #if defined(LLAMA_USE_SCRATCH) size_t last_size = 0; @@ -1230,12 +1252,16 @@ static void llama_model_load_internal( const size_t scale = memory_type == GGML_TYPE_F32 ? 2 : 1; // this is the total memory required to run the inference - const size_t mem_required = + size_t mem_required = ctx_size + - mmapped_size - vram_weights + // weights in VRAM not in memory + mmapped_size - vram_weights; // weights in VRAM not in memory + +#ifndef LLAMA_USE_ALLOCATOR + mem_required += MEM_REQ_SCRATCH0(hparams.n_ctx).at(model.type) + MEM_REQ_SCRATCH1().at(model.type) + MEM_REQ_EVAL().at(model.type); +#endif // this is the memory required by one llama_state const size_t mem_required_state = @@ -1360,32 +1386,15 @@ static bool llama_model_load( } } -// evaluate the transformer -// -// - lctx: llama context -// - tokens: new batch of tokens to process -// - embd embeddings input -// - n_tokens number of tokens -// - n_past: the context size so far -// - n_threads: number of threads to use -// -static bool llama_eval_internal( +static struct ggml_cgraph * llama_build_graph( llama_context & lctx, const llama_token * tokens, const float * embd, int n_tokens, - int n_past, - int n_threads, - const char * cgraph_fname) { + int n_past) { LLAMA_ASSERT((!tokens && embd) || (tokens && !embd)); -#ifdef GGML_USE_MPI - ggml_mpi_eval_init(lctx.ctx_mpi, &n_tokens, &n_past, &n_threads); -#endif - - const int64_t t_start_us = ggml_time_us(); - const int N = n_tokens; const auto & model = lctx.model; @@ -1401,10 +1410,8 @@ static bool llama_eval_internal( const int64_t n_head = hparams.n_head; const int64_t n_head_kv = hparams.n_head_kv; const int64_t n_embd_head = hparams.n_embd_head(); - const int64_t n_vocab = hparams.n_vocab; const int64_t n_embd_gqa = hparams.n_embd_gqa(); - LLAMA_ASSERT(n_embd_head == hparams.n_rot); const float freq_base = hparams.rope_freq_base; @@ -1416,26 +1423,35 @@ static bool llama_eval_internal( auto & mem_per_token = lctx.mem_per_token; auto & buf_compute = lctx.buf_compute; + struct ggml_init_params params = { /*.mem_size =*/ buf_compute.size, /*.mem_buffer =*/ buf_compute.addr, /*.no_alloc =*/ false, }; +#ifdef LLAMA_USE_ALLOCATOR + params.no_alloc = true; +#endif + struct ggml_context * ctx0 = ggml_init(params); ggml_cgraph * gf = ggml_new_graph(ctx0); - // for big prompts, if BLAS is enabled, it is better to use only one thread - // otherwise, the threads are spin-lock waiting for the BLAS calls and are degrading the performance - n_threads = N >= 32 && ggml_cpu_has_blas() && !ggml_cpu_has_gpublas() ? 1 : n_threads; - struct ggml_tensor * cur; struct ggml_tensor * inpL; if (tokens) { struct ggml_tensor * inp_tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N); + +#ifdef LLAMA_USE_ALLOCATOR + ggml_allocr_alloc(lctx.alloc, inp_tokens); + if (!ggml_allocr_is_measure(lctx.alloc)) { + memcpy(inp_tokens->data, tokens, N*ggml_element_size(inp_tokens)); + } +#else memcpy(inp_tokens->data, tokens, N*ggml_element_size(inp_tokens)); +#endif ggml_set_name(inp_tokens, "inp_tokens"); inpL = ggml_get_rows(ctx0, model.tok_embeddings, inp_tokens); @@ -1445,7 +1461,15 @@ static bool llama_eval_internal( #endif inpL = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N); + +#ifdef LLAMA_USE_ALLOCATOR + ggml_allocr_alloc(lctx.alloc, inpL); + if (!ggml_allocr_is_measure(lctx.alloc)) { + memcpy(inpL->data, embd, N * n_embd * ggml_element_size(inpL)); + } +#else memcpy(inpL->data, embd, N * n_embd * ggml_element_size(inpL)); +#endif } const int i_gpu_start = n_layer - n_gpu_layers; @@ -1472,6 +1496,17 @@ static bool llama_eval_internal( } #endif // GGML_USE_CUBLAS + struct ggml_tensor * KQ_scale = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1); +#ifdef LLAMA_USE_ALLOCATOR + ggml_allocr_alloc(lctx.alloc, KQ_scale); + if (!ggml_allocr_is_measure(lctx.alloc)) { + ggml_set_f32(KQ_scale, 1.0f/sqrtf(float(n_embd)/n_head)); + } +#else + ggml_set_f32(KQ_scale, 1.0f/sqrtf(float(n_embd)/n_head)); +#endif + ggml_set_name(KQ_scale, "1/sqrt(n_embd_head)"); + for (int il = 0; il < n_layer; ++il) { ggml_format_name(inpL, "layer_inp_%d", il); @@ -1567,9 +1602,6 @@ static bool llama_eval_internal( ggml_set_name(KQ, "KQ"); // KQ_scaled = KQ / sqrt(n_embd_head) - struct ggml_tensor * KQ_scale = ggml_new_f32(ctx0, 1.0f/sqrtf(float(n_embd)/n_head)); - ggml_set_name(KQ_scale, "1/sqrt(n_embd_head)"); - // KQ_scaled shape [n_past + N, N, n_head, 1] struct ggml_tensor * KQ_scaled = ggml_scale_inplace(ctx0, KQ, KQ_scale); offload_func_kq(KQ_scaled); @@ -1685,9 +1717,6 @@ static bool llama_eval_internal( lctx.use_buf(ctx0, 0); - // used at the end to optionally extract the embeddings - struct ggml_tensor * embeddings = NULL; - // norm { cur = ggml_rms_norm(ctx0, inpL, rms_norm_eps); @@ -1698,8 +1727,6 @@ static bool llama_eval_internal( cur = ggml_mul(ctx0, cur, model.norm); // offload_func_nr(cur); // TODO CPU + GPU mirrored backend ggml_set_name(cur, "result_norm"); - - embeddings = cur; } // lm_head @@ -1711,12 +1738,82 @@ static bool llama_eval_internal( // logits -> probs //cur = ggml_soft_max_inplace(ctx0, cur); - // run the computation ggml_build_forward_expand(gf, cur); - // fprintf(stderr, "graph build time: %.3f ms (%d nodes, %d leafs)\n", (ggml_time_us() - t_start_us)/1000.0, gf.n_nodes, gf.n_leafs); + if (mem_per_token == 0) { + mem_per_token = ggml_used_mem(ctx0)/N; + } + +#if 0 + printf("\n%s: used_mem: eval ctx %.3f MB, scratch %.3f MB %.3f MB, work buf %.3f MB, n_past = %d, N = %d\n", __func__, + ggml_used_mem(ctx0)/1024.0/1024.0, + lctx.get_buf_max_mem(0)/1024.0/1024.0, + lctx.get_buf_max_mem(1)/1024.0/1024.0, + lctx.work_buffer.size()/1024.0/1024.0, + n_past, N); +#endif + + ggml_free(ctx0); + + return gf; +} + +// evaluate the transformer +// +// - lctx: llama context +// - tokens: new batch of tokens to process +// - embd embeddings input +// - n_tokens number of tokens +// - n_past: the context size so far +// - n_threads: number of threads to use +// +static bool llama_eval_internal( + llama_context & lctx, + const llama_token * tokens, + const float * embd, + int n_tokens, + int n_past, + int n_threads, + const char * cgraph_fname) { + + LLAMA_ASSERT((!tokens && embd) || (tokens && !embd)); + + const int64_t t_start_us = ggml_time_us(); + +#ifdef GGML_USE_MPI + ggml_mpi_eval_init(lctx.ctx_mpi, &n_tokens, &n_past, &n_threads); +#endif + + const int N = n_tokens; + + const auto & model = lctx.model; + const auto & hparams = model.hparams; + + const auto & kv_self = lctx.kv_self; + + LLAMA_ASSERT(!!kv_self.ctx); + + const int64_t n_embd = hparams.n_embd; + const int64_t n_vocab = hparams.n_vocab; + +#ifdef LLAMA_USE_ALLOCATOR + ggml_allocr_reset(lctx.alloc); +#endif + + ggml_cgraph * gf = llama_build_graph(lctx, tokens, embd, n_tokens, n_past); + +#ifdef LLAMA_USE_ALLOCATOR + ggml_allocr_alloc_graph(lctx.alloc, gf); +#endif + + // fprintf(stderr, "graph build time: %.3f ms (%d nodes, %d leafs)\n", (ggml_time_us() - t_start_us)/1000.0, gf->n_nodes, gf->n_leafs); + + // for big prompts, if BLAS is enabled, it is better to use only one thread + // otherwise, the threads are spin-lock waiting for the BLAS calls and are degrading the performance + n_threads = N >= 32 && ggml_cpu_has_blas() && !ggml_cpu_has_gpublas() ? 1 : n_threads; #if GGML_USE_MPI + const int64_t n_layer = hparams.n_layer; ggml_mpi_graph_compute_pre(lctx.ctx_mpi, gf, n_layer); #endif @@ -1760,6 +1857,10 @@ static bool llama_eval_internal( lctx.kv_self.n = n_past + N; struct ggml_tensor * res = gf->nodes[gf->n_nodes - 1]; + struct ggml_tensor * embeddings = gf->nodes[gf->n_nodes - 2]; + + LLAMA_ASSERT(strcmp(res->name, "result_output") == 0); + LLAMA_ASSERT(strcmp(embeddings->name, "result_norm") == 0); if (cgraph_fname) { ggml_graph_export(gf, cgraph_fname); @@ -1798,21 +1899,6 @@ static bool llama_eval_internal( memcpy(embedding_out.data(), (float *) ggml_get_data(embeddings) + (n_embd*(N - 1)), sizeof(float)*n_embd); } - if (mem_per_token == 0) { - mem_per_token = ggml_used_mem(ctx0)/N; - } - -#if 0 - printf("\n%s: used_mem: eval ctx %.3f MB, scratch %.3f MB %.3f MB, work buf %.3f MB, n_past = %d, N = %d\n", __func__, - ggml_used_mem(ctx0)/1024.0/1024.0, - lctx.get_buf_max_mem(0)/1024.0/1024.0, - lctx.get_buf_max_mem(1)/1024.0/1024.0, - lctx.work_buffer.size()/1024.0/1024.0, - n_past, N); -#endif - - ggml_free(ctx0); - // measure the performance only for the single-token evals if (N == 1) { lctx.t_eval_us += ggml_time_us() - t_start_us; @@ -3180,10 +3266,47 @@ struct llama_context * llama_new_context_with_model( ctx->embedding.resize(hparams.n_embd); } +#ifdef LLAMA_USE_ALLOCATOR + { + static const size_t tensor_alignment = 32; + // the compute buffer is used to store the tensor and graph structs, while the allocator buffer is used for the tensor data + ctx->buf_compute.resize(ggml_tensor_overhead()*GGML_MAX_NODES + ggml_graph_overhead()); + + // create measure allocator + ctx->alloc = ggml_allocr_new_measure(tensor_alignment); + + // build worst-case graph + int n_tokens = std::min((int)hparams.n_ctx, params.n_batch); + int n_past = hparams.n_ctx - n_tokens; + llama_token token = llama_token_bos(); // not actually used by llama_build_graph, but required to choose between token and embedding inputs graph + ggml_cgraph * gf = llama_build_graph(*ctx, &token, NULL, n_tokens, n_past); + + // measure memory requirements for the graph + size_t alloc_size = ggml_allocr_alloc_graph(ctx->alloc, gf) + tensor_alignment; + + fprintf(stderr, "%s: compute buffer total size = %7.2f MB\n", __func__, (ctx->buf_compute.size + alloc_size) / 1024.0 / 1024.0); + + // debug - for comparison with scratch buffer + //size_t prev_req = + // MEM_REQ_SCRATCH0(hparams.n_ctx).at(ctx->model.type) + + // MEM_REQ_SCRATCH1().at(ctx->model.type) + + // MEM_REQ_EVAL().at(ctx->model.type); + //fprintf(stderr, "%s: (debug) equivalent with scratch buffer = %7.2f MB\n", __func__, prev_req / 1024.0 / 1024.0); + + // recreate allocator with exact memory requirements + ggml_allocr_free(ctx->alloc); + + ctx->buf_alloc.resize(alloc_size); + ctx->alloc = ggml_allocr_new(ctx->buf_alloc.addr, ctx->buf_alloc.size, tensor_alignment); + } +#else ctx->buf_compute.resize(MEM_REQ_EVAL().at(ctx->model.type) + ggml_graph_overhead()); +#endif +#ifdef LLAMA_USE_SCRATCH ctx->buf_scratch[0].resize(MEM_REQ_SCRATCH0(hparams.n_ctx).at(ctx->model.type)); ctx->buf_scratch[1].resize(MEM_REQ_SCRATCH1().at(ctx->model.type)); +#endif } #ifdef GGML_USE_METAL @@ -3253,9 +3376,6 @@ struct llama_context * llama_init_from_file( } void llama_free(struct llama_context * ctx) { - if (ctx->model_owner) { - delete &ctx->model; - } delete ctx; } |