aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--CMakeLists.txt2
-rw-r--r--Makefile7
-rw-r--r--ggml-alloc.c541
-rw-r--r--ggml-alloc.h22
-rw-r--r--ggml.c75
-rw-r--r--ggml.h13
-rw-r--r--llama.cpp240
7 files changed, 812 insertions, 88 deletions
diff --git a/CMakeLists.txt b/CMakeLists.txt
index 6e1abea..57678a3 100644
--- a/CMakeLists.txt
+++ b/CMakeLists.txt
@@ -503,6 +503,8 @@ endif()
add_library(ggml OBJECT
ggml.c
ggml.h
+ ggml-alloc.c
+ ggml-alloc.h
${GGML_SOURCES_CUDA}
${GGML_SOURCES_OPENCL}
${GGML_SOURCES_METAL}
diff --git a/Makefile b/Makefile
index 3d1fff8..616c2d9 100644
--- a/Makefile
+++ b/Makefile
@@ -329,7 +329,12 @@ $(info )
ggml.o: ggml.c ggml.h ggml-cuda.h
$(CC) $(CFLAGS) -c $< -o $@
-llama.o: llama.cpp ggml.h ggml-cuda.h ggml-metal.h llama.h llama-util.h
+ggml-alloc.o: ggml-alloc.c ggml.h ggml-alloc.h
+ $(CC) $(CFLAGS) -c $< -o $@
+
+OBJS += ggml-alloc.o
+
+llama.o: llama.cpp ggml.h ggml-alloc.h ggml-cuda.h ggml-metal.h llama.h llama-util.h
$(CXX) $(CXXFLAGS) -c $< -o $@
common.o: examples/common.cpp examples/common.h
diff --git a/ggml-alloc.c b/ggml-alloc.c
new file mode 100644
index 0000000..5e1be61
--- /dev/null
+++ b/ggml-alloc.c
@@ -0,0 +1,541 @@
+#include "ggml-alloc.h"
+#include "ggml.h"
+#include <assert.h>
+#include <stdarg.h>
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+
+#define UNUSED(x) (void)(x)
+#define MAX(a, b) ((a) > (b) ? (a) : (b))
+
+//#define GGML_ALLOCATOR_DEBUG
+
+//#define AT_PRINTF printf
+#define AT_PRINTF(...) ((void)0)
+
+struct hash_node {
+ struct ggml_tensor * t;
+ int n_children;
+ int n_views;
+};
+
+static size_t hash(void * p) {
+ return (size_t)p % GGML_GRAPH_HASHTABLE_SIZE;
+}
+
+static struct hash_node * hash_get(struct hash_node hash_table[], struct ggml_tensor * t) {
+ size_t h = hash(t);
+
+ // linear probing
+ size_t i = h;
+ while (hash_table[i].t != NULL) {
+ if (hash_table[i].t == t) {
+ return &hash_table[i];
+ }
+ i = (i + 1) % GGML_GRAPH_HASHTABLE_SIZE;
+ if (i == h) {
+ // hash table is full
+ GGML_ASSERT(false);
+ }
+ }
+
+ hash_table[i].t = t;
+ return &hash_table[i];
+}
+
+// TODO: GGML_PAD ?
+static size_t aligned_offset(const void * buffer, size_t offset, size_t alignment) {
+ assert(alignment && !(alignment & (alignment - 1))); // power of 2
+ size_t align = (alignment - (((uintptr_t)buffer + offset) % alignment)) % alignment;
+ return offset + align;
+}
+
+struct free_block {
+ void * addr;
+ size_t size;
+};
+
+#define MAX_FREE_BLOCKS 128
+
+struct ggml_allocr {
+ void * data;
+ size_t size;
+ size_t alignment;
+ int n_free_blocks;
+ struct free_block free_blocks[MAX_FREE_BLOCKS];
+ struct hash_node hash_table[GGML_GRAPH_HASHTABLE_SIZE];
+ size_t max_size;
+ bool measure;
+
+#ifdef GGML_ALLOCATOR_DEBUG
+ struct ggml_tensor * allocated_tensors[1024];
+#endif
+};
+
+#ifdef GGML_ALLOCATOR_DEBUG
+static void add_allocated_tensor(struct ggml_allocator * alloc, struct ggml_tensor * tensor) {
+ for (int i = 0; i < 1024; i++) {
+ if (alloc->allocated_tensors[i] == NULL) {
+ alloc->allocated_tensors[i] = tensor;
+ return;
+ }
+ }
+ GGML_ASSERT(!"out of allocated_tensors");
+}
+static void remove_allocated_tensor(struct ggml_allocator * alloc, struct ggml_tensor * tensor) {
+ for (int i = 0; i < 1024; i++) {
+ if (alloc->allocated_tensors[i] == tensor ||
+ (alloc->allocated_tensors[i] != NULL && alloc->allocated_tensors[i]->data == tensor->data)) {
+ alloc->allocated_tensors[i] = NULL;
+ return;
+ }
+ }
+ printf("tried to free tensor %s not found\n", tensor->name);
+ GGML_ASSERT(!"tensor not found");
+}
+#endif
+
+
+static size_t ggml_allocator_get_alloc_size(struct ggml_allocr * alloc, struct ggml_tensor * tensor) {
+ return ggml_nbytes(tensor);
+
+ UNUSED(alloc);
+}
+
+void ggml_allocr_alloc(struct ggml_allocr * alloc, struct ggml_tensor * tensor) {
+ size_t size = ggml_allocator_get_alloc_size(alloc, tensor);
+ size = aligned_offset(NULL, size, alloc->alignment);
+
+ AT_PRINTF("%s: allocating %s (%zu bytes) - ", __func__, tensor->name, size);
+
+ size_t max_avail = 0;
+
+ // find the best fitting free block
+ int best_fit_block = -1;
+ size_t best_fit_size = SIZE_MAX;
+ for (int i = 0; i < alloc->n_free_blocks; i++) {
+ struct free_block * block = &alloc->free_blocks[i];
+ max_avail = MAX(max_avail, block->size);
+ if (block->size >= size && block->size <= best_fit_size) {
+ best_fit_block = i;
+ best_fit_size = block->size;
+ }
+ }
+
+ AT_PRINTF("block %d\n", best_fit_block);
+
+ if (best_fit_block == -1) {
+ fprintf(stderr, "%s: not enough space in the buffer (needed %zu, largest block available %zu)\n",
+ __func__, size, max_avail);
+ GGML_ASSERT(!"not enough space in the buffer");
+ return;
+ }
+ struct free_block * block = &alloc->free_blocks[best_fit_block];
+ void * addr = block->addr;
+ block->addr = (char*)block->addr + size;
+ block->size -= size;
+ if (block->size == 0) {
+ // remove block if empty
+ alloc->n_free_blocks--;
+ for (int j = best_fit_block; j < alloc->n_free_blocks; j++) {
+ alloc->free_blocks[j] = alloc->free_blocks[j+1];
+ }
+ }
+
+ tensor->data = addr;
+
+#ifdef GGML_ALLOCATOR_DEBUG
+ add_allocated_tensor(alloc, tensor);
+ size_t cur_max = (char*)addr - (char*)alloc->data + size;
+ if (cur_max > alloc->max_size) {
+ printf("max_size = %.2f MB: tensors: ", cur_max / 1024.0 / 1024.0);
+ for (int i = 0; i < 1024; i++) {
+ if (alloc->allocated_tensors[i]) {
+ printf("%s (%.2f MB) ", alloc->allocated_tensors[i]->name, ggml_nbytes(alloc->allocated_tensors[i]) / 1024.0 / 1024.0);
+ }
+ }
+ printf("\n");
+ }
+#endif
+
+ alloc->max_size = MAX(alloc->max_size, (char*)addr - (char*)alloc->data + size);
+}
+
+// this is a very naive implementation, but for our case the number of free blocks should be very small
+static void ggml_allocator_free_tensor(struct ggml_allocr * alloc, struct ggml_tensor * tensor) {
+ void * ptr = tensor->data;
+
+ if (ptr < alloc->data || (char*)ptr >= (char*)alloc->data + alloc->max_size) {
+ // the tensor was not allocated in this buffer
+ // this can happen because the graph allocator will try to free weights and other tensors from different buffers
+ // the easiest way to deal with this is just to ignore it
+ return;
+ }
+
+ size_t size = ggml_allocator_get_alloc_size(alloc, tensor);
+ size = aligned_offset(NULL, size, alloc->alignment);
+ AT_PRINTF("%s: freeing %s (%zu bytes) - n_free_blocks = %d\n", __func__, tensor->name, size, alloc->n_free_blocks);
+
+#ifdef GGML_ALLOCATOR_DEBUG
+ remove_allocated_tensor(alloc, tensor);
+#endif
+
+ // see if we can merge with an existing block
+ for (int i = 0; i < alloc->n_free_blocks; i++) {
+ struct free_block * block = &alloc->free_blocks[i];
+ // check if ptr is at the end of the block
+ if ((char*)block->addr + block->size == ptr) {
+ block->size += size;
+ // check if we can merge with the next block
+ if (i < alloc->n_free_blocks - 1 && (char*)block->addr + block->size == alloc->free_blocks[i+1].addr) {
+ block->size += alloc->free_blocks[i+1].size;
+ alloc->n_free_blocks--;
+ for (int j = i+1; j < alloc->n_free_blocks; j++) {
+ alloc->free_blocks[j] = alloc->free_blocks[j+1];
+ }
+ }
+ return;
+ }
+ // check if ptr is at the beginning of the block
+ if ((char*)ptr + size == block->addr) {
+ block->addr = ptr;
+ block->size += size;
+ // check if we can merge with the previous block
+ if (i > 0 && (char*)alloc->free_blocks[i-1].addr + alloc->free_blocks[i-1].size == block->addr) {
+ alloc->free_blocks[i-1].size += block->size;
+ alloc->n_free_blocks--;
+ for (int j = i; j < alloc->n_free_blocks; j++) {
+ alloc->free_blocks[j] = alloc->free_blocks[j+1];
+ }
+ }
+ return;
+ }
+ }
+ // otherwise, add a new block
+ GGML_ASSERT(alloc->n_free_blocks < MAX_FREE_BLOCKS && "out of free blocks");
+ // insert the new block in the correct position to keep the array sorted by address (to make merging blocks faster)
+ int insert_pos = 0;
+ while (insert_pos < alloc->n_free_blocks && alloc->free_blocks[insert_pos].addr < ptr) {
+ insert_pos++;
+ }
+ // shift all blocks from insert_pos onward to make room for the new block
+ for (int i = alloc->n_free_blocks; i > insert_pos; i--) {
+ alloc->free_blocks[i] = alloc->free_blocks[i-1];
+ }
+ // insert the new block
+ alloc->free_blocks[insert_pos].addr = ptr;
+ alloc->free_blocks[insert_pos].size = size;
+ alloc->n_free_blocks++;
+}
+
+void ggml_allocr_reset(struct ggml_allocr * alloc) {
+ alloc->n_free_blocks = 1;
+ size_t align_offset = aligned_offset(alloc->data, 0, alloc->alignment);
+ alloc->free_blocks[0].addr = (char *)alloc->data + align_offset;
+ alloc->free_blocks[0].size = alloc->size - align_offset;
+}
+
+struct ggml_allocr * ggml_allocr_new(void * data, size_t size, size_t alignment) {
+ struct ggml_allocr * alloc = (struct ggml_allocr *)malloc(sizeof(struct ggml_allocr) /* + n_free_blocks * sizeof(struct free_block) */);
+
+ *alloc = (struct ggml_allocr){
+ /*.data = */ data,
+ /*.size = */ size,
+ /*.alignment = */ alignment,
+ /*.n_free_blocks = */ 0,
+ /*.free_blocks = */ {{0}},
+ /*.hash_table = */ {{0}},
+ /*.max_size = */ 0,
+ /*.measure = */ false,
+#ifdef GGML_ALLOCATOR_DEBUG
+ /*.allocated_tensors = */ = {0},
+#endif
+ };
+
+ ggml_allocr_reset(alloc);
+
+ return alloc;
+}
+
+// address and size of the buffer when measuring
+// it needs to be large enough to fit all the tensors, but it cannot overlap with other existing buffers
+static void * const MEASURE_BASE_ADDR = (void *) 0x1000;
+static const size_t MEASURE_MAX_SIZE = 1ULL<<40; // 1 TB
+
+struct ggml_allocr * ggml_allocr_new_measure(size_t alignment) {
+ struct ggml_allocr * alloc = (struct ggml_allocr *)malloc(sizeof(struct ggml_allocr) /* + n_free_blocks * sizeof(struct free_block) */);
+
+ *alloc = (struct ggml_allocr){
+ /*.data = */ MEASURE_BASE_ADDR,
+ /*.size = */ MEASURE_MAX_SIZE,
+ /*.alignment = */ alignment,
+ /*.n_free_blocks = */ 0,
+ /*.free_blocks = */ {{0}},
+ /*.hash_table = */ {{0}},
+ /*.max_size = */ 0,
+ /*.measure = */ true,
+#ifdef GGML_ALLOCATOR_DEBUG
+ /*.allocated_tensors = */ = {0},
+#endif
+ };
+
+ ggml_allocr_reset(alloc);
+
+ return alloc;
+}
+
+void ggml_allocr_free(struct ggml_allocr * alloc) {
+ free(alloc);
+}
+
+bool ggml_allocr_is_measure(struct ggml_allocr * alloc) {
+ return alloc->measure;
+}
+
+//////////// compute graph allocator
+
+static bool ggml_is_view(struct ggml_tensor * t) {
+ return t->op == GGML_OP_RESHAPE || t->op == GGML_OP_VIEW || t->op == GGML_OP_TRANSPOSE ||
+ t->op == GGML_OP_PERMUTE || t->op == GGML_OP_CPY;
+}
+
+static bool ggml_are_same_layout(const struct ggml_tensor * a, const struct ggml_tensor * b) {
+ if (a->type != b->type) {
+ return false;
+ }
+ for (int i = 0; i < GGML_MAX_DIMS; i++) {
+ if (a->ne[i] != b->ne[i]) {
+ return false;
+ }
+ if (a->nb[i] != b->nb[i]) {
+ return false;
+ }
+ }
+ return true;
+}
+
+static struct ggml_tensor * get_view_parent(struct ggml_tensor * t) {
+ switch (t->op) {
+ case GGML_OP_PERMUTE:
+ case GGML_OP_RESHAPE:
+ case GGML_OP_TRANSPOSE:
+ case GGML_OP_VIEW:
+ return t->src[0];
+ case GGML_OP_CPY:
+ return t->src[1];
+ default:
+ return NULL;
+ }
+}
+
+static struct ggml_tensor * get_view_source(struct ggml_tensor * t) {
+ struct ggml_tensor * parent = t;
+ do {
+ parent = get_view_parent(parent);
+ } while (ggml_is_view(parent));
+ return parent;
+}
+
+static bool ggml_op_can_inplace(enum ggml_op op) {
+ switch (op) {
+ case GGML_OP_SCALE:
+ case GGML_OP_DIAG_MASK_ZERO:
+ case GGML_OP_DIAG_MASK_INF:
+ case GGML_OP_ADD:
+ case GGML_OP_ADD1:
+ case GGML_OP_ACC:
+ case GGML_OP_SUB:
+ case GGML_OP_MUL:
+ case GGML_OP_DIV:
+ case GGML_OP_SQR:
+ case GGML_OP_SQRT:
+ case GGML_OP_LOG:
+ case GGML_OP_UNARY:
+ case GGML_OP_ROPE:
+ case GGML_OP_RMS_NORM:
+ case GGML_OP_SET:
+ case GGML_OP_SOFT_MAX:
+ case GGML_OP_CONT:
+ return true;
+
+ default:
+ return false;
+ }
+}
+
+static void allocate_node(struct ggml_allocr * alloc, struct ggml_tensor * node) {
+ struct hash_node * ht = alloc->hash_table;
+ if (node->data == NULL) {
+ if (ggml_is_view(node)) {
+ size_t offset;
+ switch(node->op) {
+ case GGML_OP_VIEW:
+ memcpy(&offset, node->op_params, sizeof(size_t));
+ node->data = (char *) node->src[0]->data + offset;
+ break;
+ case GGML_OP_PERMUTE:
+ case GGML_OP_RESHAPE:
+ case GGML_OP_TRANSPOSE:
+ node->data = node->src[0]->data;
+ break;
+ case GGML_OP_CPY:
+ node->data = node->src[1]->data;
+ break;
+ default:
+ GGML_ASSERT(!"unknown view op");
+ break;
+ }
+ } else {
+ // see if we can reuse a parent's buffer (inplace)
+ if (ggml_op_can_inplace(node->op)) {
+ for (int i = 0; i < GGML_MAX_SRC; i++) {
+ struct ggml_tensor * parent = node->src[i];
+ if (parent == NULL) {
+ break;
+ }
+ struct hash_node * p_hn = hash_get(ht, parent);
+ if (parent->data != NULL && p_hn->n_children == 1 && p_hn->n_views == 0 && ggml_are_same_layout(node, parent)) {
+ if (ggml_is_view(parent)) {
+ struct ggml_tensor * view_src = get_view_source(parent);
+ struct hash_node * view_src_hn = hash_get(ht, view_src);
+ if (view_src_hn->n_views == 1 && view_src_hn->n_children == 0 && view_src->data == parent->data) {
+ // TODO: the offset of the view parent must be kept to ensure that the op doesn't overwrite
+ // the parent's data that it will need later (same layout requirement). the problem is that then
+ // we cannot free the tensor because the original address of the allocation is lost.
+ // adding a view_src pointer to the tensor would solve this and simplify the code dealing with views
+ // for now, we only reuse the parent's data if the offset is zero (view_src->data == parent->data)
+ AT_PRINTF("reusing view parent %s (%s) for %s\n", parent->name, view_src->name, node->name);
+ node->data = parent->data;
+ return;
+ }
+ }
+ else {
+ AT_PRINTF("reusing parent %s for %s\n", parent->name, node->name);
+ node->data = parent->data;
+ }
+ return;
+ }
+ }
+ }
+ ggml_allocr_alloc(alloc, node);
+ }
+ }
+}
+
+static size_t ggml_allocator_alloc_graph_tensors_n(
+ struct ggml_allocr * alloc,
+ struct ggml_cgraph ** graphs, int n_graphs,
+ struct ggml_tensor *** inputs, struct ggml_tensor *** outputs) {
+
+ // reset hash table
+ struct hash_node * ht = alloc->hash_table;
+ memset(ht, 0, sizeof(struct hash_node) * GGML_GRAPH_HASHTABLE_SIZE);
+
+ // count number of children and views
+ for (int g = 0; g < n_graphs; g++) {
+ struct ggml_cgraph * gf = graphs[g];
+ for (int i = 0; i < gf->n_nodes; i++) {
+ struct ggml_tensor * node = gf->nodes[i];
+
+ if (ggml_is_view(node)) {
+ struct ggml_tensor * view_src = get_view_source(node);
+ hash_get(ht, view_src)->n_views += 1;
+ }
+
+ for (int j = 0; j < GGML_MAX_SRC; j++) {
+ struct ggml_tensor * parent = node->src[j];
+ if (parent == NULL) {
+ break;
+ }
+ hash_get(ht, parent)->n_children += 1;
+ }
+ }
+ }
+
+ // allocate tensors
+ for (int g = 0; g < n_graphs; g++) {
+ struct ggml_cgraph * gf = graphs[g];
+ AT_PRINTF("####### graph %d/%d\n", g, n_graphs);
+ // graph inputs are allocated first to ensure that they are not overwritten by each other
+ if (inputs != NULL && inputs[g] != NULL) {
+ for (int i = 0; inputs[g][i] != NULL; i++) {
+ struct ggml_tensor * input = inputs[g][i];
+ AT_PRINTF("input: %s\n", input->name);
+ allocate_node(alloc, input);
+ }
+ }
+ for (int i = 0; i < gf->n_nodes; i++) {
+ struct ggml_tensor * node = gf->nodes[i];
+
+ // allocate parents (leafs)
+ for (int j = 0; j < GGML_MAX_SRC; j++) {
+ struct ggml_tensor * parent = node->src[j];
+ if (parent == NULL) {
+ break;
+ }
+ allocate_node(alloc, parent);
+ }
+
+ // allocate node
+ allocate_node(alloc, node);
+
+ AT_PRINTF("exec: %s (%s) <= ", ggml_op_name(node->op), node->name);
+ for (int j = 0; j < GGML_MAX_SRC; j++) {
+ struct ggml_tensor * parent = node->src[j];
+ if (parent == NULL) {
+ break;
+ }
+ AT_PRINTF("%s", parent->name);
+ if (j < GGML_MAX_SRC - 1 && node->src[j + 1] != NULL) {
+ AT_PRINTF(", ");
+ }
+ }
+ AT_PRINTF("\n");
+
+ // update parents
+ for (int j = 0; j < GGML_MAX_SRC; j++) {
+ struct ggml_tensor * parent = node->src[j];
+ if (parent == NULL) {
+ break;
+ }
+ struct hash_node * p_hn = hash_get(ht, parent);
+ p_hn->n_children -= 1;
+
+ //AT_PRINTF("parent %s: %d children, %d views\n", parent->name, parent->n_children, parent->n_views);
+
+ if (p_hn->n_children == 0 && p_hn->n_views == 0) {
+ if (ggml_is_view(parent)) {
+ struct ggml_tensor * view_src = get_view_source(parent);
+ struct hash_node * view_src_hn = hash_get(ht, view_src);
+ view_src_hn->n_views -= 1;
+ AT_PRINTF("view_src %s: %d children, %d views\n", view_src->name, view_src->n_children, view_src->n_views);
+ if (view_src_hn->n_views == 0 && view_src_hn->n_children == 0 && view_src->data != node->data) {
+ ggml_allocator_free_tensor(alloc, view_src);
+ }
+ }
+ else {
+ if (parent->data != node->data) {
+ ggml_allocator_free_tensor(alloc, parent);
+ }
+ }
+ }
+ }
+ AT_PRINTF("\n");
+ }
+ // free graph outputs here that wouldn't be freed otherwise because they have no children
+ if (outputs != NULL && outputs[g] != NULL) {
+ for (int i = 0; outputs[g][i] != NULL; i++) {
+ struct ggml_tensor * output = outputs[g][i];
+ AT_PRINTF("output: %s\n", output->name);
+ ggml_allocator_free_tensor(alloc, output);
+ }
+ }
+ }
+
+ return alloc->max_size;
+}
+
+size_t ggml_allocr_alloc_graph(struct ggml_allocr * alloc, struct ggml_cgraph * graph) {
+ return ggml_allocator_alloc_graph_tensors_n(alloc, &graph, 1, NULL, NULL);
+}
diff --git a/ggml-alloc.h b/ggml-alloc.h
new file mode 100644
index 0000000..a5ec8f8
--- /dev/null
+++ b/ggml-alloc.h
@@ -0,0 +1,22 @@
+#pragma once
+
+#include "ggml.h"
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+
+GGML_API struct ggml_allocr * ggml_allocr_new(void * data, size_t size, size_t alignment);
+GGML_API struct ggml_allocr * ggml_allocr_new_measure(size_t alignment);
+
+GGML_API void ggml_allocr_free(struct ggml_allocr * alloc);
+GGML_API bool ggml_allocr_is_measure(struct ggml_allocr * alloc);
+GGML_API void ggml_allocr_reset(struct ggml_allocr * alloc);
+GGML_API void ggml_allocr_alloc(struct ggml_allocr * alloc, struct ggml_tensor * tensor);
+GGML_API size_t ggml_allocr_alloc_graph(struct ggml_allocr * alloc, struct ggml_cgraph * graph);
+
+
+#ifdef __cplusplus
+}
+#endif
diff --git a/ggml.c b/ggml.c
index b77f992..fa0f98a 100644
--- a/ggml.c
+++ b/ggml.c
@@ -4557,10 +4557,12 @@ static struct ggml_object * ggml_new_object(struct ggml_context * ctx, enum ggml
static struct ggml_tensor * ggml_new_tensor_impl(
struct ggml_context * ctx,
- enum ggml_type type,
- int n_dims,
- const int64_t* ne,
- void* data) {
+ enum ggml_type type,
+ int n_dims,
+ const int64_t * ne,
+ void * data) {
+
+ assert(n_dims >= 1 && n_dims <= GGML_MAX_DIMS);
size_t data_size = 0;
@@ -4648,22 +4650,22 @@ static void ggml_set_op_params_i32(struct ggml_tensor * tensor, uint32_t i, int3
struct ggml_tensor * ggml_new_tensor(
struct ggml_context * ctx,
- enum ggml_type type,
- int n_dims,
- const int64_t * ne) {
+ enum ggml_type type,
+ int n_dims,
+ const int64_t * ne) {
return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL);
}
struct ggml_tensor * ggml_new_tensor_1d(
struct ggml_context * ctx,
- enum ggml_type type,
+ enum ggml_type type,
int64_t ne0) {
return ggml_new_tensor(ctx, type, 1, &ne0);
}
struct ggml_tensor * ggml_new_tensor_2d(
struct ggml_context * ctx,
- enum ggml_type type,
+ enum ggml_type type,
int64_t ne0,
int64_t ne1) {
const int64_t ne[2] = { ne0, ne1 };
@@ -4672,7 +4674,7 @@ struct ggml_tensor * ggml_new_tensor_2d(
struct ggml_tensor * ggml_new_tensor_3d(
struct ggml_context * ctx,
- enum ggml_type type,
+ enum ggml_type type,
int64_t ne0,
int64_t ne1,
int64_t ne2) {
@@ -6238,6 +6240,27 @@ struct ggml_tensor * ggml_reshape_4d(
// ggml_view_1d
+static struct ggml_tensor * ggml_view_tensor_offset(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ int n_dims,
+ const int64_t * ne,
+ size_t offset) {
+ // don't calculate an offset from an unallocated tensor
+ void * data = NULL;
+ if (a->data != NULL) {
+ data = (char *) a->data + offset;
+ }
+
+ struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, n_dims, ne, data);
+
+ ggml_format_name(result, "%s (view)", a->name);
+
+ ggml_set_op_params(result, &offset, sizeof(offset));
+
+ return result;
+}
+
struct ggml_tensor * ggml_view_1d(
struct ggml_context * ctx,
struct ggml_tensor * a,
@@ -6250,10 +6273,7 @@ struct ggml_tensor * ggml_view_1d(
is_node = true;
}
- struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, &ne0, (char *) a->data + offset);
- ggml_format_name(result, "%s (view)", a->name);
-
- ggml_set_op_params(result, &offset, sizeof(offset));
+ struct ggml_tensor * result = ggml_view_tensor_offset(ctx, a, 1, &ne0, offset);
result->op = GGML_OP_VIEW;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
@@ -6280,10 +6300,7 @@ struct ggml_tensor * ggml_view_2d(
const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, 1, 1 };
- struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, (char *) a->data + offset);
- ggml_format_name(result, "%s (view)", a->name);
-
- ggml_set_op_params(result, &offset, sizeof(offset));
+ struct ggml_tensor * result = ggml_view_tensor_offset(ctx, a, 2, ne, offset);
result->nb[1] = nb1;
result->nb[2] = result->nb[1]*ne1;
@@ -6316,10 +6333,7 @@ struct ggml_tensor * ggml_view_3d(
const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, 1 };
- struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, (char *) a->data + offset);
- ggml_format_name(result, "%s (view)", a->name);
-
- ggml_set_op_params(result, &offset, sizeof(offset));
+ struct ggml_tensor * result = ggml_view_tensor_offset(ctx, a, 3, ne, offset);
result->nb[1] = nb1;
result->nb[2] = nb2;
@@ -6354,10 +6368,7 @@ struct ggml_tensor * ggml_view_4d(
const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, ne3 };
- struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, (char *) a->data + offset);
- ggml_format_name(result, "%s (view)", a->name);
-
- ggml_set_op_params(result, &offset, sizeof(offset));
+ struct ggml_tensor * result = ggml_view_tensor_offset(ctx, a, 4, ne, offset);
result->nb[1] = nb1;
result->nb[2] = nb2;
@@ -6741,6 +6752,18 @@ struct ggml_tensor * ggml_rope_inplace(
return ggml_rope_impl(ctx, a, n_past, n_dims, mode, n_ctx, 10000.0f, 1.0f, true);
}
+struct ggml_tensor * ggml_rope_custom(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ int n_past,
+ int n_dims,
+ int mode,
+ int n_ctx,
+ float freq_base,
+ float freq_scale) {
+ return ggml_rope_impl(ctx, a, n_past, n_dims, mode, n_ctx, freq_base, freq_scale, false);
+}
+
struct ggml_tensor * ggml_rope_custom_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
diff --git a/ggml.h b/ggml.h
index 9919cce..aba9248 100644
--- a/ggml.h
+++ b/ggml.h
@@ -1170,7 +1170,18 @@ extern "C" {
int mode,
int n_ctx);
- // custom RoPE, in-place, returns view(a)
+ // custom RoPE
+ GGML_API struct ggml_tensor * ggml_rope_custom(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ int n_past,
+ int n_dims,
+ int mode,
+ int n_ctx,
+ float freq_base,
+ float freq_scale);
+
+ // in-place, returns view(a)
GGML_API struct ggml_tensor * ggml_rope_custom_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
diff --git a/llama.cpp b/llama.cpp
index a35c690..6f381f3 100644
--- a/llama.cpp
+++ b/llama.cpp
@@ -56,8 +56,14 @@
#pragma warning(disable: 4244 4267) // possible loss of data
#endif
+#if !defined(GGML_USE_CUBLAS) && !defined(GGML_USE_METAL)
+#include "ggml-alloc.h"
+#define LLAMA_USE_ALLOCATOR
+#else
#define LLAMA_USE_SCRATCH
#define LLAMA_MAX_SCRATCH_BUFFERS 16
+#endif
+
// available llama models
enum e_model {
@@ -327,13 +333,22 @@ struct llama_model {
struct llama_context {
llama_context(const llama_model & model) : model(model), t_load_us(model.t_load_us), t_start_us(model.t_start_us) {}
-#ifdef GGML_USE_METAL
~llama_context() {
+ if (model_owner) {
+ delete &model;
+ }
+#ifdef GGML_USE_METAL
if (ctx_metal) {
ggml_metal_free(ctx_metal);
}
- }
#endif
+#ifdef LLAMA_USE_ALLOCATOR
+ if (alloc) {
+ ggml_allocr_free(alloc);
+ }
+#endif
+ }
+
std::mt19937 rng;
bool has_evaluated_once = false;
@@ -371,7 +386,17 @@ struct llama_context {
// memory buffers used to evaluate the model
// TODO: move in llama_state
llama_ctx_buffer buf_compute;
+
+#ifdef LLAMA_USE_ALLOCATOR
+ llama_ctx_buffer buf_alloc;
+ ggml_allocr * alloc = NULL;
+#endif
+
+#ifdef LLAMA_USE_SCRATCH
llama_ctx_buffer buf_scratch[LLAMA_MAX_SCRATCH_BUFFERS];
+ int buf_last = 0;
+ size_t buf_max_size[LLAMA_MAX_SCRATCH_BUFFERS] = { 0 };
+#endif
#ifdef GGML_USE_METAL
ggml_metal_context * ctx_metal = NULL;
@@ -381,9 +406,6 @@ struct llama_context {
ggml_mpi_context * ctx_mpi = NULL;
#endif
- int buf_last = 0;
- size_t buf_max_size[LLAMA_MAX_SCRATCH_BUFFERS] = { 0 };
-
void use_buf(struct ggml_context * ctx, int i) {
#if defined(LLAMA_USE_SCRATCH)
size_t last_size = 0;
@@ -1230,12 +1252,16 @@ static void llama_model_load_internal(
const size_t scale = memory_type == GGML_TYPE_F32 ? 2 : 1;
// this is the total memory required to run the inference
- const size_t mem_required =
+ size_t mem_required =
ctx_size +
- mmapped_size - vram_weights + // weights in VRAM not in memory
+ mmapped_size - vram_weights; // weights in VRAM not in memory
+
+#ifndef LLAMA_USE_ALLOCATOR
+ mem_required +=
MEM_REQ_SCRATCH0(hparams.n_ctx).at(model.type) +
MEM_REQ_SCRATCH1().at(model.type) +
MEM_REQ_EVAL().at(model.type);
+#endif
// this is the memory required by one llama_state
const size_t mem_required_state =
@@ -1360,32 +1386,15 @@ static bool llama_model_load(
}
}
-// evaluate the transformer
-//
-// - lctx: llama context
-// - tokens: new batch of tokens to process
-// - embd embeddings input
-// - n_tokens number of tokens
-// - n_past: the context size so far
-// - n_threads: number of threads to use
-//
-static bool llama_eval_internal(
+static struct ggml_cgraph * llama_build_graph(
llama_context & lctx,
const llama_token * tokens,
const float * embd,
int n_tokens,
- int n_past,
- int n_threads,
- const char * cgraph_fname) {
+ int n_past) {
LLAMA_ASSERT((!tokens && embd) || (tokens && !embd));
-#ifdef GGML_USE_MPI
- ggml_mpi_eval_init(lctx.ctx_mpi, &n_tokens, &n_past, &n_threads);
-#endif
-
- const int64_t t_start_us = ggml_time_us();
-
const int N = n_tokens;
const auto & model = lctx.model;
@@ -1401,10 +1410,8 @@ static bool llama_eval_internal(
const int64_t n_head = hparams.n_head;
const int64_t n_head_kv = hparams.n_head_kv;
const int64_t n_embd_head = hparams.n_embd_head();
- const int64_t n_vocab = hparams.n_vocab;
const int64_t n_embd_gqa = hparams.n_embd_gqa();
-
LLAMA_ASSERT(n_embd_head == hparams.n_rot);
const float freq_base = hparams.rope_freq_base;
@@ -1416,26 +1423,35 @@ static bool llama_eval_internal(
auto & mem_per_token = lctx.mem_per_token;
auto & buf_compute = lctx.buf_compute;
+
struct ggml_init_params params = {
/*.mem_size =*/ buf_compute.size,
/*.mem_buffer =*/ buf_compute.addr,
/*.no_alloc =*/ false,
};
+#ifdef LLAMA_USE_ALLOCATOR
+ params.no_alloc = true;
+#endif
+
struct ggml_context * ctx0 = ggml_init(params);
ggml_cgraph * gf = ggml_new_graph(ctx0);
- // for big prompts, if BLAS is enabled, it is better to use only one thread
- // otherwise, the threads are spin-lock waiting for the BLAS calls and are degrading the performance
- n_threads = N >= 32 && ggml_cpu_has_blas() && !ggml_cpu_has_gpublas() ? 1 : n_threads;
-
struct ggml_tensor * cur;
struct ggml_tensor * inpL;
if (tokens) {
struct ggml_tensor * inp_tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
+
+#ifdef LLAMA_USE_ALLOCATOR
+ ggml_allocr_alloc(lctx.alloc, inp_tokens);
+ if (!ggml_allocr_is_measure(lctx.alloc)) {
+ memcpy(inp_tokens->data, tokens, N*ggml_element_size(inp_tokens));
+ }
+#else
memcpy(inp_tokens->data, tokens, N*ggml_element_size(inp_tokens));
+#endif
ggml_set_name(inp_tokens, "inp_tokens");
inpL = ggml_get_rows(ctx0, model.tok_embeddings, inp_tokens);
@@ -1445,7 +1461,15 @@ static bool llama_eval_internal(
#endif
inpL = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N);
+
+#ifdef LLAMA_USE_ALLOCATOR
+ ggml_allocr_alloc(lctx.alloc, inpL);
+ if (!ggml_allocr_is_measure(lctx.alloc)) {
+ memcpy(inpL->data, embd, N * n_embd * ggml_element_size(inpL));
+ }
+#else
memcpy(inpL->data, embd, N * n_embd * ggml_element_size(inpL));
+#endif
}
const int i_gpu_start = n_layer - n_gpu_layers;
@@ -1472,6 +1496,17 @@ static bool llama_eval_internal(
}
#endif // GGML_USE_CUBLAS
+ struct ggml_tensor * KQ_scale = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1);
+#ifdef LLAMA_USE_ALLOCATOR
+ ggml_allocr_alloc(lctx.alloc, KQ_scale);
+ if (!ggml_allocr_is_measure(lctx.alloc)) {
+ ggml_set_f32(KQ_scale, 1.0f/sqrtf(float(n_embd)/n_head));
+ }
+#else
+ ggml_set_f32(KQ_scale, 1.0f/sqrtf(float(n_embd)/n_head));
+#endif
+ ggml_set_name(KQ_scale, "1/sqrt(n_embd_head)");
+
for (int il = 0; il < n_layer; ++il) {
ggml_format_name(inpL, "layer_inp_%d", il);
@@ -1567,9 +1602,6 @@ static bool llama_eval_internal(
ggml_set_name(KQ, "KQ");
// KQ_scaled = KQ / sqrt(n_embd_head)
- struct ggml_tensor * KQ_scale = ggml_new_f32(ctx0, 1.0f/sqrtf(float(n_embd)/n_head));
- ggml_set_name(KQ_scale, "1/sqrt(n_embd_head)");
-
// KQ_scaled shape [n_past + N, N, n_head, 1]
struct ggml_tensor * KQ_scaled = ggml_scale_inplace(ctx0, KQ, KQ_scale);
offload_func_kq(KQ_scaled);
@@ -1685,9 +1717,6 @@ static bool llama_eval_internal(
lctx.use_buf(ctx0, 0);
- // used at the end to optionally extract the embeddings
- struct ggml_tensor * embeddings = NULL;
-
// norm
{
cur = ggml_rms_norm(ctx0, inpL, rms_norm_eps);
@@ -1698,8 +1727,6 @@ static bool llama_eval_internal(
cur = ggml_mul(ctx0, cur, model.norm);
// offload_func_nr(cur); // TODO CPU + GPU mirrored backend
ggml_set_name(cur, "result_norm");
-
- embeddings = cur;
}
// lm_head
@@ -1711,12 +1738,82 @@ static bool llama_eval_internal(
// logits -> probs
//cur = ggml_soft_max_inplace(ctx0, cur);
- // run the computation
ggml_build_forward_expand(gf, cur);
- // fprintf(stderr, "graph build time: %.3f ms (%d nodes, %d leafs)\n", (ggml_time_us() - t_start_us)/1000.0, gf.n_nodes, gf.n_leafs);
+ if (mem_per_token == 0) {
+ mem_per_token = ggml_used_mem(ctx0)/N;
+ }
+
+#if 0
+ printf("\n%s: used_mem: eval ctx %.3f MB, scratch %.3f MB %.3f MB, work buf %.3f MB, n_past = %d, N = %d\n", __func__,
+ ggml_used_mem(ctx0)/1024.0/1024.0,
+ lctx.get_buf_max_mem(0)/1024.0/1024.0,
+ lctx.get_buf_max_mem(1)/1024.0/1024.0,
+ lctx.work_buffer.size()/1024.0/1024.0,
+ n_past, N);
+#endif
+
+ ggml_free(ctx0);
+
+ return gf;
+}
+
+// evaluate the transformer
+//
+// - lctx: llama context
+// - tokens: new batch of tokens to process
+// - embd embeddings input
+// - n_tokens number of tokens
+// - n_past: the context size so far
+// - n_threads: number of threads to use
+//
+static bool llama_eval_internal(
+ llama_context & lctx,
+ const llama_token * tokens,
+ const float * embd,
+ int n_tokens,
+ int n_past,
+ int n_threads,
+ const char * cgraph_fname) {
+
+ LLAMA_ASSERT((!tokens && embd) || (tokens && !embd));
+
+ const int64_t t_start_us = ggml_time_us();
+
+#ifdef GGML_USE_MPI
+ ggml_mpi_eval_init(lctx.ctx_mpi, &n_tokens, &n_past, &n_threads);
+#endif
+
+ const int N = n_tokens;
+
+ const auto & model = lctx.model;
+ const auto & hparams = model.hparams;
+
+ const auto & kv_self = lctx.kv_self;
+
+ LLAMA_ASSERT(!!kv_self.ctx);
+
+ const int64_t n_embd = hparams.n_embd;
+ const int64_t n_vocab = hparams.n_vocab;
+
+#ifdef LLAMA_USE_ALLOCATOR
+ ggml_allocr_reset(lctx.alloc);
+#endif
+
+ ggml_cgraph * gf = llama_build_graph(lctx, tokens, embd, n_tokens, n_past);
+
+#ifdef LLAMA_USE_ALLOCATOR
+ ggml_allocr_alloc_graph(lctx.alloc, gf);
+#endif
+
+ // fprintf(stderr, "graph build time: %.3f ms (%d nodes, %d leafs)\n", (ggml_time_us() - t_start_us)/1000.0, gf->n_nodes, gf->n_leafs);
+
+ // for big prompts, if BLAS is enabled, it is better to use only one thread
+ // otherwise, the threads are spin-lock waiting for the BLAS calls and are degrading the performance
+ n_threads = N >= 32 && ggml_cpu_has_blas() && !ggml_cpu_has_gpublas() ? 1 : n_threads;
#if GGML_USE_MPI
+ const int64_t n_layer = hparams.n_layer;
ggml_mpi_graph_compute_pre(lctx.ctx_mpi, gf, n_layer);
#endif
@@ -1760,6 +1857,10 @@ static bool llama_eval_internal(
lctx.kv_self.n = n_past + N;
struct ggml_tensor * res = gf->nodes[gf->n_nodes - 1];
+ struct ggml_tensor * embeddings = gf->nodes[gf->n_nodes - 2];
+
+ LLAMA_ASSERT(strcmp(res->name, "result_output") == 0);
+ LLAMA_ASSERT(strcmp(embeddings->name, "result_norm") == 0);
if (cgraph_fname) {
ggml_graph_export(gf, cgraph_fname);
@@ -1798,21 +1899,6 @@ static bool llama_eval_internal(
memcpy(embedding_out.data(), (float *) ggml_get_data(embeddings) + (n_embd*(N - 1)), sizeof(float)*n_embd);
}
- if (mem_per_token == 0) {
- mem_per_token = ggml_used_mem(ctx0)/N;
- }
-
-#if 0
- printf("\n%s: used_mem: eval ctx %.3f MB, scratch %.3f MB %.3f MB, work buf %.3f MB, n_past = %d, N = %d\n", __func__,
- ggml_used_mem(ctx0)/1024.0/1024.0,
- lctx.get_buf_max_mem(0)/1024.0/1024.0,
- lctx.get_buf_max_mem(1)/1024.0/1024.0,
- lctx.work_buffer.size()/1024.0/1024.0,
- n_past, N);
-#endif
-
- ggml_free(ctx0);
-
// measure the performance only for the single-token evals
if (N == 1) {
lctx.t_eval_us += ggml_time_us() - t_start_us;
@@ -3180,10 +3266,47 @@ struct llama_context * llama_new_context_with_model(
ctx->embedding.resize(hparams.n_embd);
}
+#ifdef LLAMA_USE_ALLOCATOR
+ {
+ static const size_t tensor_alignment = 32;
+ // the compute buffer is used to store the tensor and graph structs, while the allocator buffer is used for the tensor data
+ ctx->buf_compute.resize(ggml_tensor_overhead()*GGML_MAX_NODES + ggml_graph_overhead());
+
+ // create measure allocator
+ ctx->alloc = ggml_allocr_new_measure(tensor_alignment);
+
+ // build worst-case graph
+ int n_tokens = std::min((int)hparams.n_ctx, params.n_batch);
+ int n_past = hparams.n_ctx - n_tokens;
+ llama_token token = llama_token_bos(); // not actually used by llama_build_graph, but required to choose between token and embedding inputs graph
+ ggml_cgraph * gf = llama_build_graph(*ctx, &token, NULL, n_tokens, n_past);
+
+ // measure memory requirements for the graph
+ size_t alloc_size = ggml_allocr_alloc_graph(ctx->alloc, gf) + tensor_alignment;
+
+ fprintf(stderr, "%s: compute buffer total size = %7.2f MB\n", __func__, (ctx->buf_compute.size + alloc_size) / 1024.0 / 1024.0);
+
+ // debug - for comparison with scratch buffer
+ //size_t prev_req =
+ // MEM_REQ_SCRATCH0(hparams.n_ctx).at(ctx->model.type) +
+ // MEM_REQ_SCRATCH1().at(ctx->model.type) +
+ // MEM_REQ_EVAL().at(ctx->model.type);
+ //fprintf(stderr, "%s: (debug) equivalent with scratch buffer = %7.2f MB\n", __func__, prev_req / 1024.0 / 1024.0);
+
+ // recreate allocator with exact memory requirements
+ ggml_allocr_free(ctx->alloc);
+
+ ctx->buf_alloc.resize(alloc_size);
+ ctx->alloc = ggml_allocr_new(ctx->buf_alloc.addr, ctx->buf_alloc.size, tensor_alignment);
+ }
+#else
ctx->buf_compute.resize(MEM_REQ_EVAL().at(ctx->model.type) + ggml_graph_overhead());
+#endif
+#ifdef LLAMA_USE_SCRATCH
ctx->buf_scratch[0].resize(MEM_REQ_SCRATCH0(hparams.n_ctx).at(ctx->model.type));
ctx->buf_scratch[1].resize(MEM_REQ_SCRATCH1().at(ctx->model.type));
+#endif
}
#ifdef GGML_USE_METAL
@@ -3253,9 +3376,6 @@ struct llama_context * llama_init_from_file(
}
void llama_free(struct llama_context * ctx) {
- if (ctx->model_owner) {
- delete &ctx->model;
- }
delete ctx;
}