aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--examples/common.cpp5
-rw-r--r--examples/common.h1
-rw-r--r--examples/perplexity/perplexity.cpp78
3 files changed, 82 insertions, 2 deletions
diff --git a/examples/common.cpp b/examples/common.cpp
index 0990195..730b28b 100644
--- a/examples/common.cpp
+++ b/examples/common.cpp
@@ -387,6 +387,8 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
params.antiprompt.push_back(argv[i]);
} else if (arg == "--perplexity") {
params.perplexity = true;
+ } else if (arg == "--perplexity-lines") {
+ params.perplexity_lines = true;
} else if (arg == "--ignore-eos") {
params.logit_bias[llama_token_eos()] = -INFINITY;
} else if (arg == "--no-penalize-nl") {
@@ -512,7 +514,8 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
fprintf(stderr, " not recommended: doubles context memory required and no measurable increase in quality\n");
fprintf(stderr, " --temp N temperature (default: %.1f)\n", (double)params.temp);
fprintf(stderr, " -b N, --batch-size N batch size for prompt processing (default: %d)\n", params.n_batch);
- fprintf(stderr, " --perplexity compute perplexity over the prompt\n");
+ fprintf(stderr, " --perplexity compute perplexity over each ctx window of the prompt\n");
+ fprintf(stderr, " --perplexity-lines compute perplexity over each line of the prompt\n");
fprintf(stderr, " --keep number of tokens to keep from the initial prompt (default: %d, -1 = all)\n", params.n_keep);
fprintf(stderr, " --chunks N max number of chunks to process (default: %d, -1 = all)\n", params.n_chunks);
if (llama_mlock_supported()) {
diff --git a/examples/common.h b/examples/common.h
index 69170df..c936de6 100644
--- a/examples/common.h
+++ b/examples/common.h
@@ -82,6 +82,7 @@ struct gpt_params {
bool instruct = false; // instruction mode (used for Alpaca models)
bool penalize_nl = true; // consider newlines as a repeatable token
bool perplexity = false; // compute perplexity over the prompt
+ bool perplexity_lines = false; // compute perplexity over each line of the prompt
bool use_mmap = true; // use mmap for faster loads
bool use_mlock = false; // use mlock to keep model in memory
bool mem_test = false; // compute maximum memory usage
diff --git a/examples/perplexity/perplexity.cpp b/examples/perplexity/perplexity.cpp
index bfad999..d23b7e7 100644
--- a/examples/perplexity/perplexity.cpp
+++ b/examples/perplexity/perplexity.cpp
@@ -4,6 +4,7 @@
#include <cmath>
#include <ctime>
+#include <sstream>
#if defined(_MSC_VER)
#pragma warning(disable: 4244 4267) // possible loss of data
@@ -120,6 +121,77 @@ void perplexity(llama_context * ctx, const gpt_params & params) {
printf("\n");
}
+void perplexity_lines(llama_context * ctx, const gpt_params & params) {
+ // Calculates perplexity over each line of the prompt
+
+ std::vector<std::string> prompt_lines;
+ std::istringstream strstream(params.prompt);
+ std::string line;
+
+ while (std::getline(strstream,line,'\n')) {
+ prompt_lines.push_back(line);
+ }
+
+ const int n_vocab = llama_n_vocab(ctx);
+
+ int counttotal = 0;
+ size_t n_lines = prompt_lines.size();
+
+ double nll = 0.0;
+
+ fprintf(stderr, "%s: calculating perplexity over %lu lines\n", __func__, n_lines);
+
+ printf("\nLine\tPPL line\tPPL cumulative\n");
+
+ for (size_t i = 0; i < n_lines; ++i) {
+
+ // Tokenize and insert BOS at start
+ std::vector<int> batch_embd = ::llama_tokenize(ctx, prompt_lines[i], true);
+
+ size_t batch_size = batch_embd.size();
+
+ // Stop if line is too long
+ if( batch_size > (size_t)params.n_ctx ) {
+ fprintf(stderr, "%s : tokens in line %lu > n_ctxl\n", __func__, i);
+ return;
+ }
+
+ if (llama_eval(ctx, batch_embd.data(), batch_size, 0, params.n_threads)) {
+ fprintf(stderr, "%s : failed to eval\n", __func__);
+ return;
+ }
+
+ const auto batch_logits = llama_get_logits(ctx);
+ std::vector<float> logits;
+ logits.insert(logits.end(), batch_logits, batch_logits + batch_size * n_vocab);
+
+ double nllline = 0.0;
+ int countline = 0;
+
+ // Perplexity over second half of the line
+ for (size_t j = batch_size/2; j < batch_size - 1; ++j) {
+ // Calculate probability of next token, given the previous ones.
+ const std::vector<float> tok_logits(
+ logits.begin() + (j + 0) * n_vocab,
+ logits.begin() + (j + 1) * n_vocab);
+
+ const float prob = softmax(tok_logits)[batch_embd[ j + 1]];
+
+ nllline += -std::log(prob);
+ ++countline;
+ }
+
+ nll += nllline;
+ counttotal += countline;
+
+ // perplexity is e^(average negative log-likelihood)
+ printf("%lu\t%.8lf\t%.8lf\n", i + 1, std::exp(nllline/countline), std::exp(nll / counttotal) );
+ fflush(stdout);
+ }
+
+ printf("\n");
+}
+
int main(int argc, char ** argv) {
gpt_params params;
@@ -168,7 +240,11 @@ int main(int argc, char ** argv) {
params.n_threads, std::thread::hardware_concurrency(), llama_print_system_info());
}
- perplexity(ctx, params);
+ if (params.perplexity_lines) {
+ perplexity_lines(ctx, params);
+ } else {
+ perplexity(ctx, params);
+ }
llama_print_timings(ctx);
llama_free(ctx);