diff options
-rw-r--r-- | Makefile | 2 | ||||
-rw-r--r-- | ggml-metal.h | 5 | ||||
-rw-r--r-- | ggml-metal.m | 98 | ||||
-rw-r--r-- | ggml.c | 24 | ||||
-rw-r--r-- | ggml.h | 5 | ||||
-rw-r--r-- | llama.cpp | 26 |
6 files changed, 125 insertions, 35 deletions
@@ -252,7 +252,7 @@ $(info ) ggml.o: ggml.c ggml.h ggml-cuda.h $(CC) $(CFLAGS) -c $< -o $@ -llama.o: llama.cpp ggml.h ggml-cuda.h llama.h llama-util.h +llama.o: llama.cpp ggml.h ggml-cuda.h ggml-metal.h llama.h llama-util.h $(CXX) $(CXXFLAGS) -c $< -o $@ common.o: examples/common.cpp examples/common.h diff --git a/ggml-metal.h b/ggml-metal.h index 033c4d8..b9e50ac 100644 --- a/ggml-metal.h +++ b/ggml-metal.h @@ -41,12 +41,15 @@ void ggml_metal_free(struct ggml_metal_context * ctx); // - make sure to map all buffers used in the graph before calling ggml_metal_graph_compute // - the mapping is used during computation to determine the arguments of the compute kernels // - you don't need to keep the host memory buffer allocated as it is never accessed by Metal +// - max_size specifies the maximum size of a tensor and is used to create shared views such +// that it is guaranteed that the tensor will fit in at least one of the views // bool ggml_metal_add_buffer( struct ggml_metal_context * ctx, const char * name, void * data, - size_t size); + size_t size, + size_t max_size); // set data from host memory into the device void ggml_metal_set_tensor(struct ggml_metal_context * ctx, struct ggml_tensor * t); diff --git a/ggml-metal.m b/ggml-metal.m index 07da62a..a7e104d 100644 --- a/ggml-metal.m +++ b/ggml-metal.m @@ -183,6 +183,14 @@ struct ggml_metal_context * ggml_metal_init(void) { #undef GGML_METAL_ADD_KERNEL } + fprintf(stderr, "%s: recommendedMaxWorkingSetSize = %8.2f MB\n", __func__, ctx->device.recommendedMaxWorkingSetSize / 1024.0 / 1024.0); + fprintf(stderr, "%s: hasUnifiedMemory = %s\n", __func__, ctx->device.hasUnifiedMemory ? "true" : "false"); + if (ctx->device.maxTransferRate != 0) { + fprintf(stderr, "%s: maxTransferRate = %8.2f MB/s\n", __func__, ctx->device.maxTransferRate / 1024.0 / 1024.0); + } else { + fprintf(stderr, "%s: maxTransferRate = built-in GPU\n", __func__); + } + return ctx; } @@ -199,10 +207,13 @@ void ggml_metal_free(struct ggml_metal_context * ctx) { static id<MTLBuffer> ggml_metal_get_buffer(struct ggml_metal_context * ctx, struct ggml_tensor * t, size_t * offs) { //fprintf(stderr, "%s: data tensor '%16s', offs_data = %8ld, offs_eval = %8ld, offs_cach = %8ld\n", __func__, t->name, offs_data, offs_eval, offs_cach); + const int64_t tsize = ggml_nbytes(t); + + // find the view that contains the tensor fully for (int i = 0; i < ctx->n_buffers; ++i) { const int64_t ioffs = (int64_t) t->data - (int64_t) ctx->buffers[i].data; - if (ioffs >= 0 && ioffs < (int64_t) ctx->buffers[i].size) { + if (ioffs >= 0 && ioffs + tsize <= (int64_t) ctx->buffers[i].size) { *offs = (size_t) ioffs; //fprintf(stderr, "%s: '%s' tensor '%16s', offs = %8ld\n", __func__, ctx->buffers[i].name, t->name, *offs); @@ -220,7 +231,8 @@ bool ggml_metal_add_buffer( struct ggml_metal_context * ctx, const char * name, void * data, - size_t size) { + size_t size, + size_t max_size) { if (ctx->n_buffers >= GGML_METAL_MAX_BUFFERS) { fprintf(stderr, "%s: too many buffers\n", __func__); return false; @@ -237,30 +249,68 @@ bool ggml_metal_add_buffer( } } - size_t page_size = getpagesize(); - size_t aligned_size = size; - if ((aligned_size % page_size) != 0) { - aligned_size += (page_size - (aligned_size % page_size)); + const size_t size_page = getpagesize(); + + size_t size_aligned = size; + if ((size_aligned % size_page) != 0) { + size_aligned += (size_page - (size_aligned % size_page)); } - ctx->buffers[ctx->n_buffers].name = name; - ctx->buffers[ctx->n_buffers].data = data; - ctx->buffers[ctx->n_buffers].size = size; + // the buffer fits into the max buffer size allowed by the device + if (size_aligned <= ctx->device.maxBufferLength) { + ctx->buffers[ctx->n_buffers].name = name; + ctx->buffers[ctx->n_buffers].data = data; + ctx->buffers[ctx->n_buffers].size = size; - if (ctx->device.maxBufferLength < aligned_size) { - fprintf(stderr, "%s: buffer '%s' size %zu is larger than buffer maximum of %zu\n", __func__, name, aligned_size, ctx->device.maxBufferLength); - return false; - } - ctx->buffers[ctx->n_buffers].metal = [ctx->device newBufferWithBytesNoCopy:data length:aligned_size options:MTLResourceStorageModeShared deallocator:nil]; + ctx->buffers[ctx->n_buffers].metal = [ctx->device newBufferWithBytesNoCopy:data length:size_aligned options:MTLResourceStorageModeShared deallocator:nil]; + + if (ctx->buffers[ctx->n_buffers].metal == nil) { + fprintf(stderr, "%s: failed to allocate '%-16s' buffer, size = %8.2f MB\n", __func__, name, size_aligned / 1024.0 / 1024.0); + return false; + } + + fprintf(stderr, "%s: allocated '%-16s' buffer, size = %8.2f MB", __func__, name, size_aligned / 1024.0 / 1024.0); + + ++ctx->n_buffers; + } else { + // this overlap between the views will guarantee that the tensor with the maximum size will fully fit into + // one of the views + const size_t size_ovlp = ((max_size + size_page - 1) / size_page + 1) * size_page; // round-up 2 pages just in case + const size_t size_step = ctx->device.maxBufferLength - size_ovlp; + const size_t size_view = ctx->device.maxBufferLength; + + for (size_t i = 0; i < size; i += size_step) { + const size_t size_step_aligned = (i + size_view <= size) ? size_view : (size_aligned - i); - if (ctx->buffers[ctx->n_buffers].metal == nil) { - fprintf(stderr, "%s: failed to allocate '%-16s' buffer, size = %8.2f MB\n", __func__, name, aligned_size / 1024.0 / 1024.0); - return false; + ctx->buffers[ctx->n_buffers].name = name; + ctx->buffers[ctx->n_buffers].data = (void *) ((uint8_t *) data + i); + ctx->buffers[ctx->n_buffers].size = size_step_aligned; + + ctx->buffers[ctx->n_buffers].metal = [ctx->device newBufferWithBytesNoCopy:(void *) ((uint8_t *) data + i) length:size_step_aligned options:MTLResourceStorageModeShared deallocator:nil]; + + if (ctx->buffers[ctx->n_buffers].metal == nil) { + fprintf(stderr, "%s: failed to allocate '%-16s' buffer, size = %8.2f MB\n", __func__, name, size_step_aligned / 1024.0 / 1024.0); + return false; + } + + fprintf(stderr, "%s: allocated '%-16s' buffer, size = %8.2f MB, offs = %12ld", __func__, name, size_step_aligned / 1024.0 / 1024.0, i); + if (i + size_step < size) { + fprintf(stderr, "\n"); + } + + ++ctx->n_buffers; + } } - fprintf(stderr, "%s: allocated '%-16s' buffer, size = %8.2f MB\n", __func__, name, aligned_size / 1024.0 / 1024.0); + fprintf(stderr, ", (%8.2f / %8.2f)", + ctx->device.currentAllocatedSize / 1024.0 / 1024.0, + ctx->device.recommendedMaxWorkingSetSize / 1024.0 / 1024.0); - ++ctx->n_buffers; + if (ctx->device.currentAllocatedSize > ctx->device.recommendedMaxWorkingSetSize) { + fprintf(stderr, ", warning: current allocated size is greater than the recommended max working set size\n"); + } else { + fprintf(stderr, "\n"); + } } return true; @@ -909,4 +959,14 @@ void ggml_metal_graph_compute( dispatch_barrier_sync(queue, ^{}); [command_buffers[n_cb - 1] waitUntilCompleted]; + + // check status of command buffers + // needed to detect if the device ran out-of-memory for example (#1881) + for (int i = 0; i < n_cb; i++) { + MTLCommandBufferStatus status = (MTLCommandBufferStatus) [command_buffers[i] status]; + if (status != MTLCommandBufferStatusCompleted) { + fprintf(stderr, "%s: command buffer %d failed with status %lu\n", __func__, i, status); + GGML_ASSERT(false); + } + } } @@ -4154,14 +4154,34 @@ void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc) { ctx->no_alloc = no_alloc; } -void * ggml_get_mem_buffer(struct ggml_context * ctx) { +void * ggml_get_mem_buffer(const struct ggml_context * ctx) { return ctx->mem_buffer; } -size_t ggml_get_mem_size(struct ggml_context * ctx) { +size_t ggml_get_mem_size(const struct ggml_context * ctx) { return ctx->mem_size; } +size_t ggml_get_max_tensor_size(const struct ggml_context * ctx) { + size_t max_size = 0; + + struct ggml_object * obj = ctx->objects_begin; + + while (obj != NULL) { + struct ggml_tensor * tensor = (struct ggml_tensor *) ((char *) ctx->mem_buffer + obj->offs); + + const size_t size = ggml_nbytes(tensor); + + if (max_size < size) { + max_size = size; + } + + obj = obj->next; + } + + return max_size; +} + // IMPORTANT: // when creating "opt" tensors, always save and load the scratch buffer // this is an error prone process, but it is necessary to support inplace @@ -500,8 +500,9 @@ extern "C" { GGML_API size_t ggml_set_scratch (struct ggml_context * ctx, struct ggml_scratch scratch); GGML_API void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc); - GGML_API void * ggml_get_mem_buffer(struct ggml_context * ctx); - GGML_API size_t ggml_get_mem_size (struct ggml_context * ctx); + GGML_API void * ggml_get_mem_buffer (const struct ggml_context * ctx); + GGML_API size_t ggml_get_mem_size (const struct ggml_context * ctx); + GGML_API size_t ggml_get_max_tensor_size(const struct ggml_context * ctx); GGML_API struct ggml_tensor * ggml_new_tensor( struct ggml_context * ctx, @@ -2696,16 +2696,21 @@ struct llama_context * llama_init_from_file( // this allocates all Metal resources and memory buffers ctx->ctx_metal = ggml_metal_init(); - void *data_ptr = NULL; + void * data_ptr = NULL; size_t data_size = 0; + if (params.use_mmap) { - data_ptr = ctx->model.mapping->addr; - data_size= ctx->model.mapping->size; + data_ptr = ctx->model.mapping->addr; + data_size = ctx->model.mapping->size; } else { - data_ptr = ggml_get_mem_buffer(ctx->model.ctx); - data_size= ggml_get_mem_size(ctx->model.ctx); + data_ptr = ggml_get_mem_buffer(ctx->model.ctx); + data_size = ggml_get_mem_size (ctx->model.ctx); } + const size_t max_size = ggml_get_max_tensor_size(ctx->model.ctx); + + printf("%s: max tensor size = %8.2f MB\n", __func__, max_size/1024.0/1024.0); + #define LLAMA_METAL_CHECK_BUF(result) \ if (!(result)) { \ fprintf(stderr, "%s: failed to add buffer\n", __func__); \ @@ -2713,12 +2718,13 @@ struct llama_context * llama_init_from_file( return NULL; \ } - LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "data", data_ptr, data_size)); - LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "eval", ctx->buf_compute.addr, ctx->buf_compute.size)); + LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "data", data_ptr, data_size, max_size)); + + LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "eval", ctx->buf_compute.addr, ctx->buf_compute.size, 0)); + LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "kv", ctx->model.kv_self.buf.addr, ctx->model.kv_self.buf.size, 0)); - LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "kv", ctx->model.kv_self.buf.addr, ctx->model.kv_self.buf.size)); - LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "scr0", ctx->buf_scratch[0].addr, ctx->buf_scratch[0].size)); - LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "scr1", ctx->buf_scratch[1].addr, ctx->buf_scratch[1].size)); + LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "scr0", ctx->buf_scratch[0].addr, ctx->buf_scratch[0].size, 0)); + LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "scr1", ctx->buf_scratch[1].addr, ctx->buf_scratch[1].size, 0)); #undef LLAMA_METAL_CHECK_BUF } #endif |