aboutsummaryrefslogtreecommitdiff
path: root/examples
diff options
context:
space:
mode:
Diffstat (limited to 'examples')
-rw-r--r--examples/CMakeLists.txt1
-rw-r--r--examples/baby-llama/CMakeLists.txt4
-rw-r--r--examples/baby-llama/baby-llama.cpp1687
3 files changed, 1692 insertions, 0 deletions
diff --git a/examples/CMakeLists.txt b/examples/CMakeLists.txt
index 0973a3f..74d0350 100644
--- a/examples/CMakeLists.txt
+++ b/examples/CMakeLists.txt
@@ -36,4 +36,5 @@ else()
add_subdirectory(embedding)
add_subdirectory(save-load-state)
add_subdirectory(benchmark)
+ add_subdirectory(baby-llama)
endif()
diff --git a/examples/baby-llama/CMakeLists.txt b/examples/baby-llama/CMakeLists.txt
new file mode 100644
index 0000000..d2ce363
--- /dev/null
+++ b/examples/baby-llama/CMakeLists.txt
@@ -0,0 +1,4 @@
+set(TARGET baby-llama)
+add_executable(${TARGET} baby-llama.cpp)
+target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
+target_compile_features(${TARGET} PRIVATE cxx_std_11)
diff --git a/examples/baby-llama/baby-llama.cpp b/examples/baby-llama/baby-llama.cpp
new file mode 100644
index 0000000..5573c15
--- /dev/null
+++ b/examples/baby-llama/baby-llama.cpp
@@ -0,0 +1,1687 @@
+#include "ggml.h"
+#include <vector>
+#include <cassert>
+#include <random>
+#include <cstring>
+
+float frand() {
+ return (float)rand()/(float)RAND_MAX;
+}
+
+struct random_normal_distribution {
+ std::mt19937 gen;
+ std::normal_distribution<float> nd;
+ float min;
+ float max;
+};
+
+void init_random_normal_distribution(struct random_normal_distribution * rnd, int seed, float mean, float std, float min, float max) {
+ rnd->gen = std::mt19937(seed);
+ rnd->nd = std::normal_distribution<float>{mean, std};
+ rnd->min = min;
+ rnd->max = max;
+}
+
+float frand_normal(struct random_normal_distribution * rnd) {
+ const float r = rnd->nd(rnd->gen);
+ return ((r < rnd->min) ? (rnd->min) : (r > rnd->max) ? (rnd->max) : r);
+}
+
+struct ggml_tensor * randomize_tensor(
+ struct ggml_tensor * tensor,
+ int ndims,
+ const int64_t ne[],
+ float fmin,
+ float fmax) {
+
+ switch (ndims) {
+ case 1:
+ for (int i0 = 0; i0 < ne[0]; i0++) {
+ ((float *)tensor->data)[i0] = frand()*(fmax - fmin) + fmin;
+ }
+ break;
+ case 2:
+ for (int i1 = 0; i1 < ne[1]; i1++) {
+ for (int i0 = 0; i0 < ne[0]; i0++) {
+ ((float *)tensor->data)[i1*ne[0] + i0] = frand()*(fmax - fmin) + fmin;
+ }
+ }
+ break;
+ case 3:
+ for (int i2 = 0; i2 < ne[2]; i2++) {
+ for (int i1 = 0; i1 < ne[1]; i1++) {
+ for (int i0 = 0; i0 < ne[0]; i0++) {
+ ((float *)tensor->data)[i2*ne[1]*ne[0] + i1*ne[0] + i0] = frand()*(fmax - fmin) + fmin;
+ }
+ }
+ }
+ break;
+ case 4:
+ for (int i3 = 0; i3 < ne[3]; i3++) {
+ for (int i2 = 0; i2 < ne[2]; i2++) {
+ for (int i1 = 0; i1 < ne[1]; i1++) {
+ for (int i0 = 0; i0 < ne[0]; i0++) {
+ ((float *)tensor->data)[i3*ne[2]*ne[1]*ne[0] + i2*ne[1]*ne[0] + i1*ne[0] + i0] = frand()*(fmax - fmin) + fmin;
+ }
+ }
+ }
+ }
+ break;
+ default:
+ assert(false);
+ };
+
+ return tensor;
+}
+
+struct ggml_tensor * randomize_tensor_normal(
+ struct ggml_tensor * tensor,
+ int ndims,
+ const int64_t ne[],
+ struct random_normal_distribution * rnd) {
+ switch (ndims) {
+ case 1:
+ for (int i0 = 0; i0 < ne[0]; i0++) {
+ ((float *)tensor->data)[i0] = frand_normal(rnd);
+ }
+ break;
+ case 2:
+ for (int i1 = 0; i1 < ne[1]; i1++) {
+ for (int i0 = 0; i0 < ne[0]; i0++) {
+ ((float *)tensor->data)[i1*ne[0] + i0] = frand_normal(rnd);
+ }
+ }
+ break;
+ case 3:
+ for (int i2 = 0; i2 < ne[2]; i2++) {
+ for (int i1 = 0; i1 < ne[1]; i1++) {
+ for (int i0 = 0; i0 < ne[0]; i0++) {
+ ((float *)tensor->data)[i2*ne[1]*ne[0] + i1*ne[0] + i0] = frand_normal(rnd);
+ }
+ }
+ }
+ break;
+ case 4:
+ for (int i3 = 0; i3 < ne[3]; i3++) {
+ for (int i2 = 0; i2 < ne[2]; i2++) {
+ for (int i1 = 0; i1 < ne[1]; i1++) {
+ for (int i0 = 0; i0 < ne[0]; i0++) {
+ ((float *)tensor->data)[i3*ne[2]*ne[1]*ne[0] + i2*ne[1]*ne[0] + i1*ne[0] + i0] = frand_normal(rnd);
+ }
+ }
+ }
+ }
+ break;
+ default:
+ assert(false);
+ };
+
+ return tensor;
+}
+
+struct llama_hparams {
+ uint32_t n_vocab = 32000;
+ uint32_t n_ctx = 512; // this is provided as user input?
+ uint32_t n_embd = 4096;
+ uint32_t n_mult = 4;
+ uint32_t n_head = 32;
+ uint32_t n_layer = 32;
+ uint32_t n_rot = 64;
+
+ bool operator!=(const llama_hparams & other) const {
+ return memcmp(this, &other, sizeof(llama_hparams));
+ }
+};
+
+uint32_t get_n_ff(const struct llama_hparams* hparams) {
+ const uint32_t n_ff = ((2*(4*hparams->n_embd)/3 + hparams->n_mult - 1)/hparams->n_mult)*hparams->n_mult;
+ return n_ff;
+}
+
+struct llama_hparams_lora {
+ uint32_t n_vocab = 32000;
+ uint32_t n_ctx = 512; // this is provided as user input?
+ uint32_t n_embd = 4096;
+ uint32_t n_mult = 4;
+ uint32_t n_head = 32;
+ uint32_t n_layer = 32;
+ uint32_t n_rot = 64;
+ uint32_t n_lora = 64;
+
+ bool operator!=(const llama_hparams & other) const {
+ return memcmp(this, &other, sizeof(llama_hparams));
+ }
+};
+
+struct llama_layer {
+ // normalization
+ struct ggml_tensor * attention_norm;
+
+ // attention
+ struct ggml_tensor * wq;
+ struct ggml_tensor * wk;
+ struct ggml_tensor * wv;
+ struct ggml_tensor * wo;
+
+ // normalization
+ struct ggml_tensor * ffn_norm;
+
+ // ff
+ struct ggml_tensor * w1;
+ struct ggml_tensor * w2;
+ struct ggml_tensor * w3;
+};
+
+struct llama_layer_lora {
+ // normalization
+ struct ggml_tensor * attention_norm;
+
+ // attention
+ struct ggml_tensor * wqa;
+ struct ggml_tensor * wqb;
+ struct ggml_tensor * wka;
+ struct ggml_tensor * wkb;
+ struct ggml_tensor * wva;
+ struct ggml_tensor * wvb;
+ struct ggml_tensor * woa;
+ struct ggml_tensor * wob;
+
+ // normalization
+ struct ggml_tensor * ffn_norm;
+
+ // ff
+ struct ggml_tensor * w1;
+ struct ggml_tensor * w2;
+ struct ggml_tensor * w3;
+};
+
+
+struct llama_kv_cache {
+ struct ggml_context * ctx = NULL;
+
+ struct ggml_tensor * k;
+ struct ggml_tensor * v;
+
+ // llama_ctx_buffer buf;
+
+ int n; // number of tokens currently in the cache
+};
+
+struct llama_model {
+ struct ggml_context * ctx = NULL;
+
+ llama_hparams hparams;
+
+ struct ggml_tensor * tok_embeddings;
+
+ struct ggml_tensor * norm;
+ struct ggml_tensor * output;
+
+ std::vector<llama_layer> layers;
+};
+
+struct llama_model_lora {
+ struct ggml_context * ctx = NULL;
+
+ llama_hparams_lora hparams;
+
+ struct ggml_tensor * tok_embeddings;
+
+ struct ggml_tensor * norm;
+ struct ggml_tensor * outputa;
+ struct ggml_tensor * outputb;
+
+ std::vector<llama_layer_lora> layers;
+};
+
+void init_model(struct llama_model * model) {
+ const auto & hparams = model->hparams;
+
+ const uint32_t n_embd = hparams.n_embd;
+ const uint32_t n_layer = hparams.n_layer;
+ const uint32_t n_vocab = hparams.n_vocab;
+
+ const uint32_t n_ff = get_n_ff(&hparams);
+
+ struct ggml_context * ctx = model->ctx;
+
+ model->tok_embeddings = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_vocab); // ("tok_embeddings.weight", {n_embd, n_vocab});
+ model->norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); // ("norm.weight", {n_embd});
+ model->output = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_vocab); // ("output.weight", {n_embd, n_vocab});
+
+ model->layers.resize(n_layer);
+ for (uint32_t i = 0; i < n_layer; ++i) {
+ auto & layer = model->layers[i];
+
+ // std::string layers_i = "layers." + std::to_string(i);
+
+ layer.attention_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); // (layers_i + ".attention_norm.weight", {n_embd});
+
+ layer.wq = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd); // (layers_i + ".attention.wq.weight", {n_embd, n_embd});
+ layer.wk = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd); // (layers_i + ".attention.wk.weight", {n_embd, n_embd});
+ layer.wv = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd); // (layers_i + ".attention.wv.weight", {n_embd, n_embd});
+ layer.wo = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd); // (layers_i + ".attention.wo.weight", {n_embd, n_embd});
+
+ layer.ffn_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); // (layers_i + ".ffn_norm.weight", {n_embd});
+
+ layer.w1 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_ff); // (layers_i + ".feed_forward.w1.weight", {n_embd, n_ff});
+ layer.w2 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_ff, n_embd); // (layers_i + ".feed_forward.w2.weight", { n_ff, n_embd});
+ layer.w3 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_ff); // (layers_i + ".feed_forward.w3.weight", {n_embd, n_ff});
+ }
+}
+
+
+void init_model_lora(struct llama_model_lora * model) {
+ const auto & hparams = model->hparams;
+
+ const uint32_t n_embd = hparams.n_embd;
+ const uint32_t n_mult = hparams.n_mult;
+ const uint32_t n_layer = hparams.n_layer;
+ const uint32_t n_vocab = hparams.n_vocab;
+ const uint32_t n_lora = hparams.n_lora;
+
+ const uint32_t n_ff = ((2*(4*n_embd)/3 + n_mult - 1)/n_mult)*n_mult;
+
+ struct ggml_context * ctx = model->ctx;
+
+ model->tok_embeddings = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_vocab); // ("tok_embeddings.weight", {n_embd, n_vocab});
+ model->norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); // ("norm.weight", {n_embd});
+ model->outputa = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_lora, n_vocab); // ("output.weight", {n_embd, n_vocab});
+ model->outputb = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_lora); // ("output.weight", {n_embd, n_vocab});
+
+ model->layers.resize(n_layer);
+ for (uint32_t i = 0; i < n_layer; ++i) {
+ auto & layer = model->layers[i];
+
+ // std::string layers_i = "layers." + std::to_string(i);
+
+ layer.attention_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); // (layers_i + ".attention_norm.weight", {n_embd});
+
+ layer.wqa = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_lora, n_embd); // (layers_i + ".attention.wq.weight", {n_embd, n_embd});
+ layer.wqb = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_lora); // (layers_i + ".attention.wq.weight", {n_embd, n_embd});
+ layer.wka = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_lora, n_embd); // (layers_i + ".attention.wk.weight", {n_embd, n_embd});
+ layer.wkb = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_lora); // (layers_i + ".attention.wk.weight", {n_embd, n_embd});
+ layer.wva = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_lora, n_embd); // (layers_i + ".attention.wv.weight", {n_embd, n_embd});
+ layer.wvb = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_lora); // (layers_i + ".attention.wv.weight", {n_embd, n_embd});
+ layer.woa = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_lora, n_embd); // (layers_i + ".attention.wo.weight", {n_embd, n_embd});
+ layer.wob = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_lora); // (layers_i + ".attention.wo.weight", {n_embd, n_embd});
+
+ layer.ffn_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); // (layers_i + ".ffn_norm.weight", {n_embd});
+
+ layer.w1 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_ff); // (layers_i + ".feed_forward.w1.weight", {n_embd, n_ff});
+ layer.w2 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_ff, n_embd); // (layers_i + ".feed_forward.w2.weight", { n_ff, n_embd});
+ layer.w3 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_ff); // (layers_i + ".feed_forward.w3.weight", {n_embd, n_ff});
+ }
+}
+
+void set_param_model(struct llama_model * model) {
+ const auto& hparams = model->hparams;
+
+ const uint32_t n_layer = hparams.n_layer;
+
+ struct ggml_context* ctx = model->ctx;
+
+ ggml_set_param(ctx, model->tok_embeddings);
+ ggml_set_param(ctx, model->norm);
+ ggml_set_param(ctx, model->output);
+
+ for (uint32_t i = 0; i < n_layer; ++i) {
+ auto & layer = model->layers[i];
+
+ ggml_set_param(ctx, layer.attention_norm);
+ ggml_set_param(ctx, layer.wq);
+ ggml_set_param(ctx, layer.wk);
+ ggml_set_param(ctx, layer.wv);
+ ggml_set_param(ctx, layer.wo);
+ ggml_set_param(ctx, layer.ffn_norm);
+ ggml_set_param(ctx, layer.w1);
+ ggml_set_param(ctx, layer.w2);
+ ggml_set_param(ctx, layer.w3);
+ }
+}
+
+void set_param_model_lora(struct llama_model_lora * model) {
+ const auto& hparams = model->hparams;
+
+ const uint32_t n_layer = hparams.n_layer;
+
+ struct ggml_context* ctx = model->ctx;
+
+ ggml_set_param(ctx, model->tok_embeddings);
+ ggml_set_param(ctx, model->norm);
+ ggml_set_param(ctx, model->outputa);
+ ggml_set_param(ctx, model->outputb);
+
+ for (uint32_t i = 0; i < n_layer; ++i) {
+ auto & layer = model->layers[i];
+
+ ggml_set_param(ctx, layer.attention_norm);
+ ggml_set_param(ctx, layer.wqa);
+ ggml_set_param(ctx, layer.wqb);
+ ggml_set_param(ctx, layer.wka);
+ ggml_set_param(ctx, layer.wkb);
+ ggml_set_param(ctx, layer.wva);
+ ggml_set_param(ctx, layer.wvb);
+ ggml_set_param(ctx, layer.woa);
+ ggml_set_param(ctx, layer.wob);
+ ggml_set_param(ctx, layer.ffn_norm);
+ ggml_set_param(ctx, layer.w1);
+ ggml_set_param(ctx, layer.w2);
+ ggml_set_param(ctx, layer.w3);
+ }
+}
+
+void randomize_model(struct llama_model * model, int seed, float mean, float std, float min, float max) {
+ const auto & hparams = model->hparams;
+
+ const uint32_t n_layer = hparams.n_layer;
+
+ struct random_normal_distribution rnd;
+ init_random_normal_distribution(&rnd, seed, mean, std, min, max);
+ randomize_tensor_normal(model->tok_embeddings, model->tok_embeddings->n_dims, model->tok_embeddings->ne, &rnd);
+ randomize_tensor_normal(model->norm, model->norm->n_dims, model->norm->ne, &rnd);
+ randomize_tensor_normal(model->output, model->output->n_dims, model->output->ne, &rnd);
+
+ for (uint32_t i = 0; i < n_layer; ++i) {
+ auto & layer = model->layers[i];
+ randomize_tensor_normal(layer.attention_norm, layer.attention_norm->n_dims, layer.attention_norm->ne, &rnd);
+
+ randomize_tensor_normal(layer.wq, layer.wq->n_dims, layer.wq->ne, &rnd);
+ randomize_tensor_normal(layer.wk, layer.wk->n_dims, layer.wk->ne, &rnd);
+ randomize_tensor_normal(layer.wv, layer.wv->n_dims, layer.wv->ne, &rnd);
+ randomize_tensor_normal(layer.wo, layer.wo->n_dims, layer.wo->ne, &rnd);
+
+ randomize_tensor_normal(layer.ffn_norm, layer.ffn_norm->n_dims, layer.ffn_norm->ne, &rnd);
+
+ randomize_tensor_normal(layer.w1, layer.w1->n_dims, layer.w1->ne, &rnd);
+ randomize_tensor_normal(layer.w2, layer.w2->n_dims, layer.w2->ne, &rnd);
+ randomize_tensor_normal(layer.w3, layer.w3->n_dims, layer.w3->ne, &rnd);
+ }
+}
+
+
+void randomize_model_lora(struct llama_model_lora * model, int seed, float mean, float std, float min, float max) {
+ const auto & hparams = model->hparams;
+
+ const uint32_t n_layer = hparams.n_layer;
+
+ struct random_normal_distribution rnd;
+ init_random_normal_distribution(&rnd, seed, mean, std, min, max);
+ randomize_tensor_normal(model->tok_embeddings, model->tok_embeddings->n_dims, model->tok_embeddings->ne, &rnd);
+ randomize_tensor_normal(model->norm, model->norm->n_dims, model->norm->ne, &rnd);
+ randomize_tensor_normal(model->outputa, model->outputa->n_dims, model->outputa->ne, &rnd);
+ randomize_tensor_normal(model->outputb, model->outputb->n_dims, model->outputb->ne, &rnd);
+
+ for (uint32_t i = 0; i < n_layer; ++i) {
+ auto & layer = model->layers[i];
+ randomize_tensor_normal(layer.attention_norm, layer.attention_norm->n_dims, layer.attention_norm->ne, &rnd);
+
+ randomize_tensor_normal(layer.wqa, layer.wqa->n_dims, layer.wqa->ne, &rnd);
+ randomize_tensor_normal(layer.wqb, layer.wqb->n_dims, layer.wqb->ne, &rnd);
+ randomize_tensor_normal(layer.wka, layer.wka->n_dims, layer.wka->ne, &rnd);
+ randomize_tensor_normal(layer.wkb, layer.wkb->n_dims, layer.wkb->ne, &rnd);
+ randomize_tensor_normal(layer.wva, layer.wva->n_dims, layer.wva->ne, &rnd);
+ randomize_tensor_normal(layer.wvb, layer.wvb->n_dims, layer.wvb->ne, &rnd);
+ randomize_tensor_normal(layer.woa, layer.woa->n_dims, layer.woa->ne, &rnd);
+ randomize_tensor_normal(layer.wob, layer.wob->n_dims, layer.wob->ne, &rnd);
+
+ randomize_tensor_normal(layer.ffn_norm, layer.ffn_norm->n_dims, layer.ffn_norm->ne, &rnd);
+
+ randomize_tensor_normal(layer.w1, layer.w1->n_dims, layer.w1->ne, &rnd);
+ randomize_tensor_normal(layer.w2, layer.w2->n_dims, layer.w2->ne, &rnd);
+ randomize_tensor_normal(layer.w3, layer.w3->n_dims, layer.w3->ne, &rnd);
+ }
+}
+
+bool init_kv_cache(struct llama_kv_cache* cache, struct llama_model * model, int n_batch) {
+ const auto & hparams = model->hparams;
+
+ const uint32_t n_ctx = hparams.n_ctx;
+ const uint32_t n_embd = hparams.n_embd;
+ const uint32_t n_layer = hparams.n_layer;
+
+ const int64_t n_mem = n_layer*n_ctx*n_batch;
+ const int64_t n_elements = n_embd*n_mem;
+
+ // cache.buf.resize(2u*n_elements*ggml_type_size(wtype) + 2u*MB);
+
+ // struct ggml_init_params params;
+ // params.mem_size = cache.buf.size;
+ // params.mem_buffer = cache.buf.addr;
+ // params.no_alloc = false;
+ if (!cache->ctx) {
+ struct ggml_init_params params;
+ params.mem_size = 2u*n_elements*ggml_type_size(GGML_TYPE_F32) + 2u*1024*1024;
+ params.mem_buffer = NULL;
+ params.no_alloc = false;
+
+ cache->ctx = ggml_init(params);
+
+ if (!cache->ctx) {
+ fprintf(stderr, "%s: failed to allocate memory for kv cache\n", __func__);
+ return false;
+ }
+ }
+
+ cache->k = ggml_new_tensor_1d(cache->ctx, GGML_TYPE_F32, n_elements);
+ cache->v = ggml_new_tensor_1d(cache->ctx, GGML_TYPE_F32, n_elements);
+
+ return true;
+}
+
+bool init_kv_cache_lora(struct llama_kv_cache* cache, struct llama_model_lora * model, int n_batch) {
+ const auto & hparams = model->hparams;
+
+ const uint32_t n_ctx = hparams.n_ctx;
+ const uint32_t n_embd = hparams.n_embd;
+ const uint32_t n_layer = hparams.n_layer;
+
+ const int64_t n_mem = n_layer*n_ctx*n_batch;
+ const int64_t n_elements = n_embd*n_mem;
+
+ // cache.buf.resize(2u*n_elements*ggml_type_size(wtype) + 2u*MB);
+
+ // struct ggml_init_params params;
+ // params.mem_size = cache.buf.size;
+ // params.mem_buffer = cache.buf.addr;
+ // params.no_alloc = false;
+ if (!cache->ctx) {
+ struct ggml_init_params params;
+ params.mem_size = 2u*n_elements*ggml_type_size(GGML_TYPE_F32) + 2u*1024*1024;
+ params.mem_buffer = NULL;
+ params.no_alloc = false;
+
+ cache->ctx = ggml_init(params);
+
+ if (!cache->ctx) {
+ fprintf(stderr, "%s: failed to allocate memory for kv cache\n", __func__);
+ return false;
+ }
+ }
+
+ cache->k = ggml_new_tensor_1d(cache->ctx, GGML_TYPE_F32, n_elements);
+ cache->v = ggml_new_tensor_1d(cache->ctx, GGML_TYPE_F32, n_elements);
+
+ return true;
+}
+
+struct ggml_tensor * forward(
+ struct llama_model * model,
+ struct llama_kv_cache * cache,
+ struct ggml_context * ctx0,
+ struct ggml_cgraph * gf,
+ struct ggml_tensor * tokens_input,
+ const int n_tokens,
+ const int n_past) {
+
+ const int N = n_tokens;
+
+ struct llama_kv_cache& kv_self = *cache;
+ const auto & hparams = model->hparams;
+ const int n_ctx = hparams.n_ctx;
+ const int n_embd = hparams.n_embd;
+ const int n_layer = hparams.n_layer;
+ const int n_head = hparams.n_head;
+ const int n_rot = hparams.n_rot;
+
+ struct ggml_tensor * tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
+ memcpy(tokens->data, tokens_input->data, N*ggml_element_size(tokens));
+
+ struct ggml_tensor * kc = kv_self.k;
+ struct ggml_tensor * vc = kv_self.v;
+
+ // inpL shape [n_embd,N,1,1]
+ struct ggml_tensor * inpL = ggml_get_rows(ctx0, model->tok_embeddings, tokens);
+ for (int il = 0; il < n_layer; ++il) {
+ struct ggml_tensor * inpSA = inpL;
+
+ struct ggml_tensor * cur;
+
+ // lctx.use_buf(ctx0, 0);
+
+ // norm
+ {
+ // cur shape [n_embd,N,1,1]
+ cur = ggml_rms_norm(ctx0, inpL);
+
+ // cur = attention_norm*cur
+ cur = ggml_mul(ctx0,
+ ggml_repeat(ctx0, model->layers[il].attention_norm, cur),
+ cur);
+ }
+
+ // self-attention
+ {
+ // compute Q and K and RoPE them
+ // wq shape [n_embd, n_embd, 1, 1]
+ // wk shape [n_embd, n_embd, 1, 1]
+ // Qcur shape [n_embd/n_head, n_head, N, 1]
+ // Kcur shape [n_embd/n_head, n_head, N, 1]
+ struct ggml_tensor * Qcur = ggml_rope(ctx0, ggml_reshape_3d(ctx0, ggml_mul_mat(ctx0, model->layers[il].wq, cur), n_embd/n_head, n_head, N), n_past, n_rot, 0);
+ struct ggml_tensor * Kcur = ggml_rope(ctx0, ggml_reshape_3d(ctx0, ggml_mul_mat(ctx0, model->layers[il].wk, cur), n_embd/n_head, n_head, N), n_past, n_rot, 0);
+
+ // store key and value to memory
+ {
+ // compute the transposed [N, n_embd] V matrix
+ // wv shape [n_embd, n_embd, 1, 1]
+ // Vcur shape [n_embd, N, 1, 1]
+ struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_transpose(ctx0, ggml_reshape_2d(ctx0, ggml_mul_mat(ctx0, model->layers[il].wv, cur), n_embd, N)));
+
+ // kv_self.k shape [n_embd * n_ctx * n_layer, 1]
+ // kv_self.v shape [n_embd * n_ctx * n_layer, 1]
+ // k shape [n_embd * N, 1] == kv_self.k[:,n_past:n_past+N,il,0]
+ // v shape [N, n_embd, 1, 1] == kv_self.v[:,n_past:n_past+N,il,0]
+
+ /* {
+ struct ggml_tensor * k = ggml_view_1d(ctx0, kv_self.k, N*n_embd, (ggml_element_size(kv_self.k)*n_embd)*(il*n_ctx + n_past));
+ struct ggml_tensor * v = ggml_view_2d(ctx0, kv_self.v, N, n_embd,
+ ( n_ctx)*ggml_element_size(kv_self.v),
+ (il*n_ctx)*ggml_element_size(kv_self.v)*n_embd + n_past*ggml_element_size(kv_self.v));
+
+ // important: storing RoPE-ed version of K in the KV cache!
+ ggml_build_forward_expand(gf, ggml_cpy(ctx0, Kcur, k));
+ ggml_build_forward_expand(gf, ggml_cpy(ctx0, Vcur, v));
+ } //*/
+
+ kc = ggml_set_1d(ctx0, kc, ggml_reshape_1d(ctx0, Kcur, n_embd*N), (ggml_element_size(kv_self.k)*n_embd)*(il*n_ctx + n_past));
+ vc = ggml_set_2d(ctx0, vc, Vcur, ( n_ctx)*ggml_element_size(kv_self.v),
+ (il*n_ctx)*ggml_element_size(kv_self.v)*n_embd + n_past*ggml_element_size(kv_self.v));
+ }
+
+ // Qcur shape [n_embd/n_head, n_head, N, 1]
+ // Q shape [n_embd/n_head, N, n_head, 1]
+ struct ggml_tensor * Q =
+ ggml_permute(ctx0,
+ Qcur,
+ 0, 2, 1, 3);
+
+ // kv_self.k shape [n_embd * n_ctx * n_layer, 1]
+ // K shape [n_embd/n_head, n_past + N, n_head, 1]
+ struct ggml_tensor * K =
+ ggml_permute(ctx0,
+ ggml_reshape_3d(ctx0,
+ ggml_view_1d(ctx0, kc, (n_past + N)*n_embd, il*n_ctx*ggml_element_size(kc)*n_embd),
+ n_embd/n_head, n_head, n_past + N),
+ 0, 2, 1, 3);
+
+ // K * Q
+ // KQ shape [n_past + N, N, n_head, 1]
+ struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
+
+ // KQ_scaled = KQ / sqrt(n_embd/n_head)
+ // KQ_scaled shape [n_past + N, N, n_head, 1]
+ struct ggml_tensor * KQ_scaled =
+ ggml_scale(ctx0,
+ KQ,
+ ggml_new_f32(ctx0, 1.0f/sqrtf(float(n_embd)/n_head)));
+
+ // KQ_masked = mask_past(KQ_scaled)
+ // KQ_masked shape [n_past + N, N, n_head, 1]
+ struct ggml_tensor * KQ_masked = ggml_diag_mask_inf(ctx0, KQ_scaled, n_past);
+
+ // KQ = soft_max(KQ_masked)
+ // KQ_soft_max shape [n_past + N, N, n_head, 1]
+ struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctx0, KQ_masked);
+
+ // split cached V into n_head heads
+ //// V shape [n_past + N, n_embd/n_head, n_head, 1]
+ // V shape [n_past + N, n_embd/n_head, n_head, 1] == kv_self.v[:,:(n_past+N),il,1]
+ struct ggml_tensor * V =
+ ggml_view_3d(ctx0, vc,
+ n_past + N, n_embd/n_head, n_head,
+ n_ctx*ggml_element_size(vc),
+ n_ctx*ggml_element_size(vc)*n_embd/n_head,
+ il*n_ctx*ggml_element_size(vc)*n_embd);
+
+ // KQV shape [n_embd/n_head, N, n_head, 1]
+ struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max);
+
+ // KQV_merged = KQV.permute(0, 2, 1, 3)
+ // KQV_merged shape [n_embd/n_head, n_head, N, 1]
+ struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
+ // KQV_merged shape
+
+ // cur = KQV_merged.contiguous().view(n_embd, N)
+ // cur shape [n_embd,N,1,1]
+ cur = ggml_reshape_2d(ctx0, ggml_cont(ctx0, KQV_merged), n_embd, N);
+ // cur = ggml_cpy(ctx0,
+ // KQV_merged,
+ // ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N));
+
+ // projection (no bias)
+ // cur shape [n_embd,N,1,1]
+ cur = ggml_mul_mat(ctx0,
+ model->layers[il].wo,
+ cur);
+ }
+
+ // lctx.use_buf(ctx0, 1);
+
+ // inpFF shape [n_embd,N,1,1]
+ struct ggml_tensor * inpFF = ggml_add(ctx0, cur, inpSA);
+
+ // feed-forward network
+ {
+ // norm
+ {
+ // cur shape [n_embd,N,1,1]
+ cur = ggml_rms_norm(ctx0, inpFF);
+
+ // cur = ffn_norm*cur
+ // cur shape [n_embd,N,1,1]
+ cur = ggml_mul(ctx0,
+ ggml_repeat(ctx0, model->layers[il].ffn_norm, cur),
+ cur);
+ }
+
+ // tmp shape [n_ff,N,1,1]
+ struct ggml_tensor * tmp = ggml_mul_mat(ctx0,
+ model->layers[il].w3,
+ cur);
+
+ // cur shape [n_ff,N,1,1]
+ cur = ggml_mul_mat(ctx0,
+ model->layers[il].w1,
+ cur);
+
+ // SILU activation
+ // cur shape [n_ff,N,1,1]
+ cur = ggml_silu(ctx0, cur);
+
+ // cur shape [n_ff,N,1,1]
+ cur = ggml_mul(ctx0, cur, tmp);
+
+ // cur shape [n_embd,N,1,1]
+ cur = ggml_mul_mat(ctx0,
+ model->layers[il].w2,
+ cur);
+ }
+
+ // cur shape [n_embd,N,1,1]
+ cur = ggml_add(ctx0, cur, inpFF);
+
+ // input for next layer
+ // inpL shape [n_embd,N,1,1]
+ inpL = cur;
+ }
+
+ // norm
+ {
+
+ // inpL shape [n_embd,N,1,1]
+ inpL = ggml_rms_norm(ctx0, inpL);
+
+ // inpL = norm*inpL
+ // inpL shape [n_embd,N,1,1]
+ inpL = ggml_mul(ctx0,
+ ggml_repeat(ctx0, model->norm, inpL),
+ inpL);
+
+ //embeddings = inpL;
+ }
+
+ // lm_head
+ // inpL shape [n_vocab,N,1,1]
+ inpL = ggml_mul_mat(ctx0, model->output, inpL);
+
+ // run the computation
+ ggml_build_forward_expand(gf, inpL);
+
+ return inpL;
+}
+
+void assert_shape_1d(struct ggml_tensor * tensor, int64_t ne0) {
+ GGML_ASSERT(tensor->n_dims == 1);
+ GGML_ASSERT(tensor->ne[0] == ne0);
+}
+
+void assert_shape_2d(struct ggml_tensor * tensor, int64_t ne0, int64_t ne1) {
+ GGML_ASSERT(tensor->n_dims == 2);
+ GGML_ASSERT(tensor->ne[0] == ne0);
+ GGML_ASSERT(tensor->ne[1] == ne1);
+}
+
+void assert_shape_3d(struct ggml_tensor * tensor, int64_t ne0, int64_t ne1, int64_t ne2) {
+ GGML_ASSERT(tensor->n_dims == 3);
+ GGML_ASSERT(tensor->ne[0] == ne0);
+ GGML_ASSERT(tensor->ne[1] == ne1);
+ GGML_ASSERT(tensor->ne[2] == ne2);
+}
+
+void assert_shape_4d(struct ggml_tensor * tensor, int64_t ne0, int64_t ne1, int64_t ne2, int64_t ne3) {
+ GGML_ASSERT(tensor->n_dims == 4);
+ GGML_ASSERT(tensor->ne[0] == ne0);
+ GGML_ASSERT(tensor->ne[1] == ne1);
+ GGML_ASSERT(tensor->ne[2] == ne2);
+ GGML_ASSERT(tensor->ne[3] == ne3);
+}
+
+struct ggml_tensor * forward_batch(
+ struct llama_model * model,
+ struct llama_kv_cache * cache,
+ struct ggml_context * ctx0,
+ struct ggml_cgraph * gf,
+ struct ggml_tensor * tokens_input,
+ const int n_tokens,
+ const int n_past,
+ const int n_batch) {
+
+ const int N = n_tokens;
+
+ struct llama_kv_cache& kv_self = *cache;
+ const auto & hparams = model->hparams;
+ const int n_ctx = hparams.n_ctx;
+ const int n_vocab = hparams.n_vocab;
+ const int n_embd = hparams.n_embd;
+ const int n_layer = hparams.n_layer;
+ const int n_head = hparams.n_head;
+ const int n_rot = hparams.n_rot;
+ const int n_ff = get_n_ff(&hparams);
+
+ struct ggml_tensor * tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N*n_batch);
+ memcpy(tokens->data, tokens_input->data, ggml_element_size(tokens)*N*n_batch);
+
+ struct ggml_tensor * kc = kv_self.k;
+ struct ggml_tensor * vc = kv_self.v;
+
+ // inpL shape [n_embd,N*n_batch,1]
+ struct ggml_tensor * inpL = ggml_get_rows(ctx0, model->tok_embeddings, tokens);
+ assert_shape_2d(inpL, n_embd, N*n_batch);
+ for (int il = 0; il < n_layer; ++il) {
+ struct ggml_tensor * inpSA = inpL;
+
+ struct ggml_tensor * cur;
+
+ // lctx.use_buf(ctx0, 0);
+
+ // norm
+ {
+ // cur shape [n_embd,N*n_batch,1,1]
+ cur = ggml_rms_norm(ctx0, inpL);
+ assert_shape_2d(cur, n_embd, N*n_batch);
+
+ // cur = attention_norm*cur
+ cur = ggml_mul(ctx0,
+ ggml_repeat(ctx0, model->layers[il].attention_norm, cur),
+ cur);
+ assert_shape_2d(cur, n_embd, N*n_batch);
+ }
+
+ // self-attention
+ {
+ // compute Q and K and RoPE them
+ // wq shape [n_embd, n_embd, 1, 1]
+ // wk shape [n_embd, n_embd, 1, 1]
+ // Qcur shape [n_embd/n_head, n_head, N, n_batch]
+ // Kcur shape [n_embd/n_head, n_head, N, n_batch]
+ struct ggml_tensor * Qcur = ggml_rope(ctx0, ggml_reshape_4d(ctx0, ggml_mul_mat(ctx0, model->layers[il].wq, cur), n_embd/n_head, n_head, N, n_batch), n_past, n_rot, 0);
+ struct ggml_tensor * Kcur = ggml_rope(ctx0, ggml_reshape_4d(ctx0, ggml_mul_mat(ctx0, model->layers[il].wk, cur), n_embd/n_head, n_head, N, n_batch), n_past, n_rot, 0);
+ assert_shape_4d(Qcur, n_embd/n_head, n_head, N, n_batch);
+ assert_shape_4d(Kcur, n_embd/n_head, n_head, N, n_batch);
+
+ // store key and value to memory
+ {
+ // compute the transposed [N, n_embd] V matrix
+ // wv shape [n_embd, n_embd, 1, 1]
+ // Vcur shape [N, n_embd, n_batch, 1]
+ struct ggml_tensor * Vcur = ggml_cont(ctx0,
+ ggml_permute(ctx0,
+ ggml_reshape_3d(ctx0,
+ ggml_mul_mat(ctx0,
+ model->layers[il].wv,
+ cur),
+ n_embd, N, n_batch),
+ 1, 0, 2, 3));
+
+ assert_shape_3d(Vcur, N, n_embd, n_batch);
+
+ // kv_self.k shape [n_embd * n_ctx * n_batch * n_layer]
+ // kv_self.v shape [n_ctx * n_embd * n_batch * n_layer]
+ // k shape [n_embd * N, n_batch] == kv_self.k[:,n_past:n_past+N,:,il]
+ // v shape [N, n_embd, n_batch, 1] == kv_self.v[:,n_past:n_past+N,:,il]
+
+ /* {
+ struct ggml_tensor * k = ggml_view_1d(ctx0, kv_self.k, N*n_embd, (ggml_element_size(kv_self.k)*n_embd)*(il*n_ctx + n_past));
+ struct ggml_tensor * v = ggml_view_2d(ctx0, kv_self.v, N, n_embd,
+ ( n_ctx)*ggml_element_size(kv_self.v),
+ (il*n_ctx)*ggml_element_size(kv_self.v)*n_embd + n_past*ggml_element_size(kv_self.v));
+
+ // important: storing RoPE-ed version of K in the KV cache!
+ ggml_build_forward_expand(gf, ggml_cpy(ctx0, Kcur, k));
+ ggml_build_forward_expand(gf, ggml_cpy(ctx0, Vcur, v));
+ } //*/
+
+ kc = ggml_set_2d(ctx0, kc,
+ ggml_reshape_2d(ctx0, Kcur, n_embd*N, n_batch),
+ ggml_element_size(kc)*n_embd*n_ctx,
+ (ggml_element_size(kc)*n_embd)*(il*n_batch*n_ctx + n_past));
+ vc = ggml_set_2d(ctx0, vc,
+ ggml_reshape_2d(ctx0, Vcur, N*n_embd, n_batch),
+ ggml_element_size(vc)*n_ctx*n_embd,
+ ggml_element_size(vc)*(n_past + il*n_embd*n_batch*n_ctx));
+
+ assert_shape_1d(kc, n_embd * n_ctx * n_batch * n_layer);
+ assert_shape_1d(vc, n_embd * n_ctx * n_batch * n_layer);
+ }
+
+ // Qcur shape [n_embd/n_head, n_head, N, n_batch]
+ // Q shape [n_embd/n_head, N, n_head, n_batch]
+ struct ggml_tensor * Q =
+ ggml_permute(ctx0,
+ Qcur,
+ 0, 2, 1, 3);
+ assert_shape_4d(Q, n_embd/n_head, N, n_head, n_batch);
+
+ // kv_self.k shape [n_embd * n_ctx * n_batch * n_layer]
+ // K shape [n_embd/n_head, n_past + N, n_head, n_batch]
+ struct ggml_tensor * K =
+ ggml_permute(ctx0,
+ ggml_reshape_4d(ctx0,
+ ggml_view_3d(ctx0,
+ kc,
+ n_embd,
+ (n_past + N),
+ n_batch,
+ n_embd*ggml_element_size(kc),
+ n_ctx*n_embd*ggml_element_size(kc),
+ il*n_batch*n_ctx*n_embd*ggml_element_size(kc)),
+ n_embd/n_head, n_head, n_past + N, n_batch),
+ 0, 2, 1, 3);
+ assert_shape_4d(K, n_embd/n_head, n_past + N, n_head, n_batch);
+
+ // K * Q
+ // KQ shape [n_past + N, N, n_head, n_batch]
+ struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
+ assert_shape_4d(KQ, n_past + N, N, n_head, n_batch);
+
+ // KQ_scaled = KQ / sqrt(n_embd/n_head)
+ // KQ_scaled shape [n_past + N, N, n_head, n_batch]
+ struct ggml_tensor * KQ_scaled =
+ ggml_scale(ctx0,
+ KQ,
+ ggml_new_f32(ctx0, 1.0f/sqrtf(float(n_embd)/n_head)));
+ assert_shape_4d(KQ_scaled, n_past + N, N, n_head, n_batch);
+
+ // KQ_masked = mask_past(KQ_scaled)
+ // KQ_masked shape [n_past + N, N, n_head, n_batch]
+ struct ggml_tensor * KQ_masked = ggml_diag_mask_inf(ctx0, KQ_scaled, n_past);
+ assert_shape_4d(KQ_masked, n_past + N, N, n_head, n_batch);
+
+ // KQ = soft_max(KQ_masked)
+ // KQ_soft_max shape [n_past + N, N, n_head, n_batch]
+ struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctx0, KQ_masked);
+ assert_shape_4d(KQ_soft_max, n_past + N, N, n_head, n_batch);
+
+ // split cached V into n_head heads
+ // kv_self.v shape [n_ctx * n_embd * n_batch * n_layer]
+ // V shape [n_past + N, n_embd/n_head, n_head, n_batch] == kv_self.v[:(n_past+N),:,:,il]
+ struct ggml_tensor * V =
+ ggml_view_4d(ctx0, vc,
+ n_past + N, n_embd/n_head, n_head, n_batch,
+ ggml_element_size(vc)*n_ctx,
+ ggml_element_size(vc)*n_ctx*n_embd/n_head,
+ ggml_element_size(vc)*n_ctx*n_embd,
+ il*n_batch*n_ctx*n_embd*ggml_element_size(vc));
+ assert_shape_4d(V, n_past + N, n_embd/n_head, n_head, n_batch);
+
+ // KQV shape [n_embd/n_head, N, n_head, n_batch]
+ struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max);
+ assert_shape_4d(KQV, n_embd/n_head, N, n_head, n_batch);
+
+ // KQV_merged = KQV.permute(0, 2, 1, 3)
+ // KQV_merged shape [n_embd/n_head, n_head, N, n_batch]
+ struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
+ assert_shape_4d(KQV_merged, n_embd/n_head, n_head, N, n_batch);
+ // KQV_merged shape
+
+ // cur = KQV_merged.contiguous().view(n_embd, N)
+ // cur shape [n_embd,N*n_batch,1,1]
+ cur = ggml_reshape_2d(ctx0, ggml_cont(ctx0, KQV_merged), n_embd, N*n_batch);
+ assert_shape_2d(cur, n_embd, N*n_batch);
+ // cur = ggml_cpy(ctx0,
+ // KQV_merged,
+ // ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N));
+
+ // projection (no bias)
+ // cur shape [n_embd,N*n_batch,1,1]
+ cur = ggml_mul_mat(ctx0,
+ model->layers[il].wo,
+ cur);
+ assert_shape_2d(cur, n_embd, N*n_batch);
+ }
+
+ // lctx.use_buf(ctx0, 1);
+
+ // inpFF shape [n_embd,N*n_batch,1,1]
+ struct ggml_tensor * inpFF = ggml_add(ctx0, cur, inpSA);
+ assert_shape_2d(inpFF, n_embd, N*n_batch);
+
+ // feed-forward network
+ {
+ // norm
+ {
+ // cur shape [n_embd,N*n_batch,1,1]
+ cur = ggml_rms_norm(ctx0, inpFF);
+ assert_shape_2d(cur, n_embd, N*n_batch);
+
+ // cur = ffn_norm*cur
+ // cur shape [n_embd,N*n_batch,1,1]
+ cur = ggml_mul(ctx0,
+ ggml_repeat(ctx0, model->layers[il].ffn_norm, cur),
+ cur);
+ assert_shape_2d(cur, n_embd, N*n_batch);
+ }
+
+ // tmp shape [n_ff,N*n_batch,1,1]
+ struct ggml_tensor * tmp = ggml_mul_mat(ctx0,
+ model->layers[il].w3,
+ cur);
+ assert_shape_2d(tmp, n_ff, N*n_batch);
+
+ // cur shape [n_ff,N*n_batch,1,1]
+ cur = ggml_mul_mat(ctx0,
+ model->layers[il].w1,
+ cur);
+ assert_shape_2d(cur, n_ff, N*n_batch);
+
+ // SILU activation
+ // cur shape [n_ff,N*n_batch,1,1]
+ cur = ggml_silu(ctx0, cur);
+ assert_shape_2d(cur, n_ff, N*n_batch);
+
+ // cur shape [n_ff,N*n_batch,1,1]
+ cur = ggml_mul(ctx0, cur, tmp);
+ assert_shape_2d(cur, n_ff, N*n_batch);
+
+ // cur shape [n_embd,N*n_batch,1,1]
+ cur = ggml_mul_mat(ctx0,
+ model->layers[il].w2,
+ cur);
+ assert_shape_2d(cur, n_embd, N*n_batch);
+ }
+
+ // cur shape [n_embd,N*n_batch,1,1]
+ cur = ggml_add(ctx0, cur, inpFF);
+ assert_shape_2d(cur, n_embd, N*n_batch);
+
+ // input for next layer
+ // inpL shape [n_embd,N*n_batch,1,1]
+ inpL = cur;
+ assert_shape_2d(inpL, n_embd, N*n_batch);
+ }
+
+ // norm
+ {
+
+ // inpL shape [n_embd,N*n_batch,1,1]
+ inpL = ggml_rms_norm(ctx0, inpL);
+ assert_shape_2d(inpL, n_embd, N*n_batch);
+
+ // inpL = norm*inpL
+ // inpL shape [n_embd,N*n_batch,1,1]
+ inpL = ggml_mul(ctx0,
+ ggml_repeat(ctx0, model->norm, inpL),
+ inpL);
+
+ assert_shape_2d(inpL, n_embd, N*n_batch);
+
+ //embeddings = inpL;
+ }
+
+ // lm_head
+ // inpL shape [n_vocab,N*n_batch,1,1]
+ inpL = ggml_mul_mat(ctx0, model->output, inpL);
+ assert_shape_2d(inpL, n_vocab, N*n_batch);
+
+ {
+ // inpL shape [n_vocab,N,n_batch,1]
+ inpL = ggml_reshape_3d(ctx0,
+ inpL,
+ n_vocab, N, n_batch);
+ assert_shape_3d(inpL, n_vocab, N, n_batch);
+ }
+
+ // run the computation
+ ggml_build_forward_expand(gf, inpL);
+
+ return inpL;
+}
+
+
+struct ggml_tensor * forward_lora(
+ struct llama_model_lora * model,
+ struct llama_kv_cache * cache,
+ struct ggml_context * ctx0,
+ struct ggml_cgraph * gf,
+ struct ggml_tensor * tokens_input,
+ const int n_tokens,
+ const int n_past) {
+
+ const int N = n_tokens;
+
+ struct llama_kv_cache& kv_self = *cache;
+ const auto & hparams = model->hparams;
+
+ const int n_ctx = hparams.n_ctx;
+ const int n_embd = hparams.n_embd;
+ const int n_layer = hparams.n_layer;
+ const int n_head = hparams.n_head;
+ const int n_rot = hparams.n_rot;
+
+ struct ggml_tensor * tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
+ memcpy(tokens->data, tokens_input->data, N*ggml_element_size(tokens));
+
+ struct ggml_tensor * kc = kv_self.k;
+ struct ggml_tensor * vc = kv_self.v;
+
+ // inpL shape [n_embd,N,1,1]
+ struct ggml_tensor * inpL = ggml_get_rows(ctx0, model->tok_embeddings, tokens);
+ for (int il = 0; il < n_layer; ++il) {
+ struct ggml_tensor * inpSA = inpL;
+
+ struct ggml_tensor * cur;
+
+ // norm
+ {
+ // cur shape [n_embd,N,1,1]
+ cur = ggml_rms_norm(ctx0, inpL);
+
+ // cur = attention_norm*cur
+ cur = ggml_mul(ctx0,
+ ggml_repeat(ctx0, model->layers[il].attention_norm, cur),
+ cur);
+ }
+
+ // self-attention
+ {
+ // compute Q and K and RoPE them
+ // wq shape [n_embd, n_embd, 1, 1]
+ // wk shape [n_embd, n_embd, 1, 1]
+ // Qcur shape [n_embd/n_head, n_head, N, 1]
+ // Kcur shape [n_embd/n_head, n_head, N, 1]
+ struct ggml_tensor * Qcur = ggml_rope(ctx0,
+ ggml_reshape_3d(ctx0,
+ ggml_mul_mat(ctx0,
+ model->layers[il].wqa,
+ ggml_mul_mat(ctx0,
+ model->layers[il].wqb,
+ cur)),
+ n_embd/n_head, n_head, N),
+ n_past, n_rot, 0);
+ struct ggml_tensor * Kcur = ggml_rope(ctx0,
+ ggml_reshape_3d(ctx0,
+ ggml_mul_mat(ctx0,
+ model->layers[il].wka,
+ ggml_mul_mat(ctx0,
+ model->layers[il].wkb,
+ cur)),
+ n_embd/n_head, n_head, N),
+ n_past, n_rot, 0);
+
+ // store key and value to memory
+ {
+ // compute the transposed [N, n_embd] V matrix
+ // wv shape [n_embd, n_embd, 1, 1]
+ // Vcur shape [n_embd, N, 1, 1]
+ struct ggml_tensor * Vcur = ggml_cont(ctx0,
+ ggml_transpose(ctx0,
+ ggml_reshape_2d(ctx0,
+ ggml_mul_mat(ctx0,
+ model->layers[il].wva,
+ ggml_mul_mat(ctx0,
+ model->layers[il].wvb,
+ cur)),
+ n_embd, N)));
+
+ // kv_self.k shape [n_embd * n_ctx * n_layer, 1]
+ // kv_self.v shape [n_embd * n_ctx * n_layer, 1]
+ // k shape [n_embd * N, 1] == kv_self.k[:,n_past:n_past+N,il,0]
+ // v shape [N, n_embd, 1, 1] == kv_self.v[:,n_past:n_past+N,il,0]
+
+ /* {
+ struct ggml_tensor * k = ggml_view_1d(ctx0, kv_self.k, N*n_embd, (ggml_element_size(kv_self.k)*n_embd)*(il*n_ctx + n_past));
+ struct ggml_tensor * v = ggml_view_2d(ctx0, kv_self.v, N, n_embd,
+ ( n_ctx)*ggml_element_size(kv_self.v),
+ (il*n_ctx)*ggml_element_size(kv_self.v)*n_embd + n_past*ggml_element_size(kv_self.v));
+
+ // important: storing RoPE-ed version of K in the KV cache!
+ ggml_build_forward_expand(gf, ggml_cpy(ctx0, Kcur, k));
+ ggml_build_forward_expand(gf, ggml_cpy(ctx0, Vcur, v));
+ } //*/
+
+ kc = ggml_set_1d(ctx0, kc, ggml_reshape_1d(ctx0, Kcur, n_embd*N), (ggml_element_size(kv_self.k)*n_embd)*(il*n_ctx + n_past));
+ vc = ggml_set_2d(ctx0, vc, Vcur, ( n_ctx)*ggml_element_size(kv_self.v),
+ (il*n_ctx)*ggml_element_size(kv_self.v)*n_embd + n_past*ggml_element_size(kv_self.v));
+ }
+
+ // Qcur shape [n_embd/n_head, n_head, N, 1]
+ // Q shape [n_embd/n_head, N, n_head, 1]
+ struct ggml_tensor * Q =
+ ggml_permute(ctx0,
+ Qcur,
+ 0, 2, 1, 3);
+
+ // kv_self.k shape [n_embd * n_ctx * n_layer, 1]
+ // K shape [n_embd/n_head, n_past + N, n_head, 1]
+ struct ggml_tensor * K =
+ ggml_permute(ctx0,
+ ggml_reshape_3d(ctx0,
+ ggml_view_1d(ctx0, kc, (n_past + N)*n_embd, il*n_ctx*ggml_element_size(kc)*n_embd),
+ n_embd/n_head, n_head, n_past + N),
+ 0, 2, 1, 3);
+
+ // K * Q
+ // KQ shape [n_past + N, N, n_head, 1]
+ struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
+
+ // KQ_scaled = KQ / sqrt(n_embd/n_head)
+ // KQ_scaled shape [n_past + N, N, n_head, 1]
+ struct ggml_tensor * KQ_scaled =
+ ggml_scale(ctx0,
+ KQ,
+ ggml_new_f32(ctx0, 1.0f/sqrtf(float(n_embd)/n_head)));
+
+ // KQ_masked = mask_past(KQ_scaled)
+ // KQ_masked shape [n_past + N, N, n_head, 1]
+ struct ggml_tensor * KQ_masked = ggml_diag_mask_inf(ctx0, KQ_scaled, n_past);
+
+ // KQ = soft_max(KQ_masked)
+ // KQ_soft_max shape [n_past + N, N, n_head, 1]
+ struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctx0, KQ_masked);
+
+ // split cached V into n_head heads
+ //// V shape [n_past + N, n_embd/n_head, n_head, 1]
+ // V shape [n_past + N, n_embd/n_head, n_head, 1] == kv_self.v[:,:(n_past+N),il,1]
+ struct ggml_tensor * V =
+ ggml_view_3d(ctx0, vc,
+ n_past + N, n_embd/n_head, n_head,
+ n_ctx*ggml_element_size(vc),
+ n_ctx*ggml_element_size(vc)*n_embd/n_head,
+ il*n_ctx*ggml_element_size(vc)*n_embd);
+
+ // KQV shape [n_embd/n_head, N, n_head, 1]
+ struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max);
+
+ // KQV_merged = KQV.permute(0, 2, 1, 3)
+ // KQV_merged shape [n_embd/n_head, n_head, N, 1]
+ struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
+ // KQV_merged shape
+
+ // cur = KQV_merged.contiguous().view(n_embd, N)
+ // cur shape [n_embd,N,1,1]
+ cur = ggml_reshape_2d(ctx0, ggml_cont(ctx0, KQV_merged), n_embd, N);
+ // cur = ggml_cpy(ctx0,
+ // KQV_merged,
+ // ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N));
+
+ // projection (no bias)
+ // cur shape [n_embd,N,1,1]
+ cur = ggml_mul_mat(ctx0,
+ model->layers[il].woa,
+ ggml_mul_mat(ctx0,
+ model->layers[il].wob,
+ cur));
+ }
+
+ // inpFF shape [n_embd,N,1,1]
+ struct ggml_tensor * inpFF = ggml_add(ctx0, cur, inpSA);
+
+ // feed-forward network
+ {
+ // norm
+ {
+ // cur shape [n_embd,N,1,1]
+ cur = ggml_rms_norm(ctx0, inpFF);
+
+ // cur = ffn_norm*cur
+ // cur shape [n_embd,N,1,1]
+ cur = ggml_mul(ctx0,
+ ggml_repeat(ctx0, model->layers[il].ffn_norm, cur),
+ cur);
+ }
+
+ // tmp shape [n_ff,N,1,1]
+ struct ggml_tensor * tmp = ggml_mul_mat(ctx0,
+ model->layers[il].w3,
+ cur);
+
+ // cur shape [n_ff,N,1,1]
+ cur = ggml_mul_mat(ctx0,
+ model->layers[il].w1,
+ cur);
+
+ // SILU activation
+ // cur shape [n_ff,N,1,1]
+ cur = ggml_silu(ctx0, cur);
+
+ // cur shape [n_ff,N,1,1]
+ cur = ggml_mul(ctx0, cur, tmp);
+
+ // cur shape [n_embd,N,1,1]
+ cur = ggml_mul_mat(ctx0,
+ model->layers[il].w2,
+ cur);
+ }
+
+ // cur shape [n_embd,N,1,1]
+ cur = ggml_add(ctx0, cur, inpFF);
+
+ // input for next layer
+ // inpL shape [n_embd,N,1,1]
+ inpL = cur;
+ }
+
+ // norm
+ {
+
+ // inpL shape [n_embd,N,1,1]
+ inpL = ggml_rms_norm(ctx0, inpL);
+
+ // inpL = norm*inpL
+ // inpL shape [n_embd,N,1,1]
+ inpL = ggml_mul(ctx0,
+ ggml_repeat(ctx0, model->norm, inpL),
+ inpL);
+
+ //embeddings = inpL;
+ }
+
+
+ // lm_head
+ // inpL shape [n_vocab,N,1,1]
+ inpL = ggml_mul_mat(ctx0,
+ model->outputa,
+ ggml_mul_mat(ctx0,
+ model->outputb,
+ inpL));
+
+ // ggml_set_scratch(ctx0, { 0, 0, nullptr, });
+ // run the computation
+ ggml_build_forward_expand(gf, inpL);
+
+ return inpL;
+}
+
+void sample_softmax(struct ggml_tensor * logits, struct ggml_tensor * probs, struct ggml_tensor * best_samples) {
+ assert(logits->n_dims == 2);
+ assert(probs->n_dims == 2);
+ assert(best_samples->n_dims == 1);
+ assert(logits->ne[1] == best_samples->ne[0]);
+ assert(logits->ne[0] == probs->ne[0]);
+ assert(logits->ne[1] == probs->ne[1]);
+ for (int i = 0; i < logits->ne[1]; ++i) {
+ float max_logit = ggml_get_f32_1d(logits, i * logits->ne[0]);
+ ggml_set_i32_1d(best_samples, i, 0);
+ for (int k = 0; k < logits->ne[0]; ++k) {
+ float logit = ggml_get_f32_1d(logits, i * logits->ne[0] + k);
+ if (logit > max_logit) {
+ max_logit = logit;
+ ggml_set_i32_1d(best_samples, i, k);
+ }
+ }
+ float psum = 0;
+ for (int k = 0; k < logits->ne[0]; ++k) {
+ float logit = ggml_get_f32_1d(logits, i * logits->ne[0] + k);
+ float p = (logit == -INFINITY) ? 0 : expf(logit - max_logit);
+ psum += p;
+ ggml_set_f32_1d(probs, i * probs->ne[0] + k, p);
+ }
+ for (int k = 0; k < logits->ne[0]; ++k) {
+ float p = ggml_get_f32_1d(probs, i*probs->ne[0] + k);
+ ggml_set_f32_1d(probs, i * probs->ne[0] + k, p / psum);
+ }
+ }
+}
+
+void sample_softmax_batch(struct ggml_context * ctx, struct ggml_tensor * logits, struct ggml_tensor * probs, struct ggml_tensor * best_samples) {
+ GGML_ASSERT(best_samples->n_dims == 2);
+ GGML_ASSERT(logits->n_dims == 3);
+ GGML_ASSERT(probs->n_dims == 3);
+ int n_tokens = best_samples->ne[0];
+ int n_batch = best_samples->ne[1];
+ int n_vocab = logits->ne[0];
+ GGML_ASSERT(n_tokens == logits->ne[1]);
+ GGML_ASSERT(n_batch == logits->ne[2]);
+ GGML_ASSERT(n_vocab == probs->ne[0]);
+ GGML_ASSERT(n_tokens == probs->ne[1]);
+ GGML_ASSERT(n_batch == probs->ne[2]);
+
+ for (int k = 0; k < n_batch; ++k) {
+ struct ggml_tensor * best_samples_k = ggml_view_1d(ctx,
+ best_samples,
+ best_samples->ne[0],
+ k*best_samples->nb[1]);
+ struct ggml_tensor * logits_k = ggml_view_2d(ctx,
+ logits,
+ logits->ne[0],
+ logits->ne[1],
+ logits->nb[1],
+ k*logits->nb[2]);
+ struct ggml_tensor * probs_k = ggml_view_2d(ctx,
+ probs,
+ probs->ne[0],
+ probs->ne[1],
+ probs->nb[1],
+ k*probs->nb[2]);
+ sample_softmax(logits_k, probs_k, best_samples_k);
+ }
+}
+
+void print_row(struct ggml_tensor * probs, int i) {
+ for (int k = 0; k < probs->ne[0]; ++k) {
+ float p = ggml_get_f32_1d(probs, i*probs->ne[0] + k);
+ printf(" %.2f", p);
+ }
+ printf("\n");
+}
+
+void print_matrix(struct ggml_tensor * probs) {
+ assert(probs->n_dims == 2);
+ for (int i = 0; i < probs->ne[1]; ++i) {
+ for (int k = 0; k < probs->ne[0]; ++k) {
+ float p = ggml_get_f32_1d(probs, i*probs->ne[0] + k);
+ printf(" %.2f", p);
+ }
+ printf("\n");
+ }
+}
+
+void print_token(int token, int n_vocab) {
+ for (int k = 0; k < token; ++k) {
+ printf(" ");
+ }
+ printf("X");
+ for (int k = token+1; k < n_vocab; ++k) {
+ printf(" ");
+ }
+ printf("\n");
+}
+
+void print_tokens(struct ggml_tensor * tokens, int n_vocab) {
+ for (int i=0; i<tokens->ne[0]; ++i) {
+ int token = ggml_get_i32_1d(tokens, i);
+ print_token(token, n_vocab);
+ }
+}
+
+void get_example_targets(int example_id, struct ggml_tensor * tokens_input, struct ggml_tensor * targets) {
+ int n_tokens = tokens_input->ne[0];
+ int n_vocab = targets->ne[0];
+ float randomness = 0.0f;
+ // ggml_set_zero(targets);
+ ggml_set_f32(targets, -1.0f);
+ ggml_set_i32_1d(tokens_input, 0, 0);
+ for (int i=1; i<n_tokens+1; ++i) {
+ float x = example_id + i * 3.14159f * 2.0f * 1.0f * 0.5f / n_tokens;
+ float y = sinf(x);//*cosf(x*1.1f+1.0f);
+ float z = (y+1.0f)*0.5f; // scale to [0..1]
+ z += (frand()-0.5f)*(randomness/n_vocab);
+ z = (z < 0.0f) ? 0.0f : (z > 1.0f) ? 1.0f : z; // clamp to [0..1]
+ int token = std::max(1,std::min(1+(int)(z*(float)(n_vocab-1)), n_vocab-1));
+ ggml_set_f32_1d(targets, (i-1)*n_vocab + token, +1.0f);
+ if (i<n_tokens) {
+ ggml_set_i32_1d(tokens_input, i, token);
+ }
+ }
+}
+
+void get_example_targets_batch(struct ggml_context * ctx, int example_id, struct ggml_tensor * tokens_input, struct ggml_tensor * targets) {
+ GGML_ASSERT(tokens_input->n_dims == 2);
+ GGML_ASSERT( targets->n_dims == 3);
+ int n_tokens = tokens_input->ne[0];
+ int n_batch = tokens_input->ne[1];
+ GGML_ASSERT(n_tokens == targets->ne[1]);
+ GGML_ASSERT(n_batch == targets->ne[2]);
+
+ for (int k=0; k<n_batch; ++k) {
+ struct ggml_tensor * tokens_input_k = ggml_view_1d(ctx,
+ tokens_input,
+ tokens_input->ne[0],
+ k*tokens_input->nb[1]);
+ struct ggml_tensor * targets_k = ggml_view_2d(ctx,
+ targets,
+ targets->ne[0],
+ targets->ne[1],
+ targets->nb[1],
+ k*targets->nb[2]);
+ get_example_targets(example_id*n_batch + k, tokens_input_k, targets_k);
+ }
+}
+
+void lshift_examples(struct ggml_tensor * tokens_input, struct ggml_tensor * targets, int n_shift) {
+ int n_tokens = tokens_input->ne[0];
+ int n_vocab = targets->ne[0];
+ for (int i=0; i<n_tokens-n_shift; ++i) {
+ ggml_set_i32_1d(tokens_input, i, ggml_get_i32_1d(tokens_input, i + n_shift));
+ for (int k=0; k<n_vocab; ++k) {
+ ggml_set_f32_1d(targets, i*n_vocab + k, ggml_get_f32_1d(targets, (i + n_shift)*n_vocab + k));
+ }
+ }
+}
+
+struct ggml_tensor * square_error_loss(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b) {
+ // todo: instead of a-b: a[1:]-b[:-1]
+ return ggml_sum(ctx, ggml_sqr(ctx, ggml_sub(ctx, a, b)));
+}
+
+struct ggml_tensor * cross_entropy_loss(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b) {
+ const float eps = 1e-3;
+ return
+ ggml_sum(ctx,
+ ggml_neg(ctx,
+ ggml_sum_rows(ctx,
+ ggml_mul(ctx,
+ ggml_soft_max(ctx, a),
+ ggml_log(ctx,
+ ggml_add1(ctx,
+ ggml_soft_max(ctx, b),
+ ggml_new_f32(ctx, eps)))))));
+}
+
+int main(int argc, char ** argv) {
+ if (argc < 1) {
+ fprintf(stderr, "usage: %s\n", argv[0]);
+
+ return 1;
+ }
+
+ struct ggml_init_params lcparams;
+ lcparams.mem_size = 1024ll*1024ll*1024ll;
+ lcparams.mem_buffer = NULL;
+ lcparams.no_alloc = false;
+
+ struct llama_model model;
+ model.hparams.n_vocab = 8;
+ model.hparams.n_ctx = 8;
+ model.hparams.n_embd = 32;
+ model.hparams.n_mult = 2;
+ model.hparams.n_head = 8;
+ model.hparams.n_layer = 1;
+ model.hparams.n_rot = std::min(16u, model.hparams.n_embd / model.hparams.n_head);
+
+ // model.hparams.n_embd = 32;
+ // model.hparams.n_mult = 2;
+ // model.hparams.n_head = 4;
+ // model.hparams.n_layer = 8;
+ // model.hparams.n_rot = 8;
+
+ model.ctx = ggml_init(lcparams);
+ printf("init model\n");
+ init_model(&model);
+ set_param_model(&model);
+
+ randomize_model(&model, 1337, 0.0f, 1.0f, -1.0f, +1.0f);
+
+/*
+ struct llama_model_lora model_lora;
+ // model.hparams.n_vocab = 6;
+ // model.hparams.n_ctx = 64;
+ // model.hparams.n_embd = 128;
+ // model.hparams.n_mult = 2;
+ // model.hparams.n_head = 8;
+ // model.hparams.n_layer = 6;
+ // model.hparams.n_rot = model.hparams.n_embd / model.hparams.n_head;
+
+ model_lora.hparams.n_vocab = 16;
+ model_lora.hparams.n_ctx = 32;
+ model_lora.hparams.n_embd = 256;
+ model_lora.hparams.n_mult = 2;
+ model_lora.hparams.n_head = 16;
+ model_lora.hparams.n_layer = 1;
+ model_lora.hparams.n_lora = 64;
+ model_lora.hparams.n_rot = MIN(16, model_lora.hparams.n_embd / model_lora.hparams.n_head);
+ // model.hparams.n_rot = (model.hparams.n_embd / model.hparams.n_head) / 2;
+
+ // model.hparams.n_embd = 32;
+ // model.hparams.n_mult = 2;
+ // model.hparams.n_head = 4;
+ // model.hparams.n_layer = 8;
+ // model.hparams.n_rot = 8;
+
+ model_lora.ctx = ggml_init(lcparams);
+ printf("init model_lora\n");
+ init_model_lora(&model_lora);
+ set_param_model_lora(&model_lora);
+
+ randomize_model_lora(&model_lora, 1337, 0.0f, 1.0f, -1.0f, +1.0f);
+*/
+ int n_batch = 8;
+ // key + value cache for the self attention
+ struct llama_kv_cache kv_self;
+ printf("init_kv_cache\n");
+ kv_self.ctx = model.ctx;
+ init_kv_cache(&kv_self, &model, n_batch);
+ //init_kv_cache_lora(&kv_self, &model_lora);
+
+ size_t compute_size = 1024ll*1024ll*1024ll;
+ uint8_t * compute_addr = new uint8_t[compute_size];
+
+ int n_examples = 256;
+ int n_tokens = model.hparams.n_ctx;
+ int n_vocab = model.hparams.n_vocab;
+
+ for (int ex=0; ex<n_examples; ++ex) {
+ struct ggml_init_params params = {
+ /*.mem_size =*/ compute_size,
+ /*.mem_buffer =*/ compute_addr,
+ /*.no_alloc =*/ false,
+ };
+
+ struct ggml_context * ctx0 = ggml_init(params);
+
+ struct ggml_tensor * after_opt_best_samples = ggml_new_tensor_2d(ctx0, GGML_TYPE_I32, n_tokens, n_batch);
+ struct ggml_tensor * after_opt_probs = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_vocab, n_tokens, n_batch);
+ struct ggml_tensor * tokens_input = ggml_new_tensor_2d(ctx0, GGML_TYPE_I32, n_tokens, n_batch);
+ struct ggml_tensor * targets = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_vocab, n_tokens, n_batch);
+
+ int n_past = 0;
+
+ ggml_cgraph gf = {};
+ gf.n_threads = 1;
+
+ get_example_targets_batch(ctx0, 64*ex+0, tokens_input, targets);
+
+ struct ggml_tensor * logits = forward_batch(&model, &kv_self, ctx0, &gf, tokens_input, n_tokens, n_past, n_batch);
+ // struct ggml_tensor * e = cross_entropy_loss(ctx0, targets, logits);
+ struct ggml_tensor * e = square_error_loss(ctx0, targets, logits);
+
+ ggml_build_forward_expand(&gf, e);
+ ggml_graph_compute(ctx0, &gf);
+
+ float error_before_opt = ggml_get_f32_1d(e, 0);
+
+ struct ggml_opt_params opt_params_adam = ggml_opt_default_params(GGML_OPT_ADAM);
+ struct ggml_opt_params opt_params_lbfgs = ggml_opt_default_params(GGML_OPT_LBFGS);
+ opt_params_adam.print_forward_graph = false;
+ opt_params_adam.print_backward_graph = false;
+ opt_params_lbfgs.print_forward_graph = false;
+ opt_params_lbfgs.print_backward_graph = false;
+ opt_params_adam.adam.n_iter = 16;
+ opt_params_lbfgs.lbfgs.n_iter = 16;
+ // ggml_opt(ctx0, opt_params_adam, e);
+ ggml_opt(ctx0, opt_params_lbfgs, e);
+ //
+ ggml_build_forward_expand(&gf, e);
+ ggml_graph_compute(ctx0, &gf);
+
+ float error_after_opt = ggml_get_f32_1d(e, 0);
+
+ if (ex % 8 == 0) {
+ printf("Example %d\n", (ex+1));
+ printf("error_before_opt: %.2f\n", error_before_opt);
+ printf("error_after_opt: %.2f\n", error_after_opt);
+ }
+
+ if (ex % 64 == 0) {
+ sample_softmax_batch(ctx0, logits, after_opt_probs, after_opt_best_samples);
+ // printf("probabilities after optimization:\n");
+ // print_matrix(after_opt_probs);
+ printf("best samples after optimization:\n");
+ print_tokens(after_opt_best_samples, n_vocab);
+ }
+
+ ggml_free(ctx0);
+ }
+
+ {
+ int n_gen = 128;
+ int sample_ctx = n_tokens-n_tokens/8;
+
+ printf("Generating %d tokens.\n", n_gen);
+
+ struct ggml_tensor * tokens_input = ggml_new_tensor_1d(model.ctx, GGML_TYPE_I32, n_tokens);
+ struct ggml_tensor * targets = ggml_new_tensor_2d(model.ctx, GGML_TYPE_F32, n_vocab, n_tokens);
+
+ get_example_targets(137, tokens_input, targets);
+ for (int i=sample_ctx; i<n_tokens; ++i) {
+ ggml_set_i32_1d(tokens_input, i, n_vocab/2);
+ }
+
+ for (int i=0; i<sample_ctx-1; ++i) {
+ print_token(ggml_get_i32_1d(tokens_input, i), n_vocab);
+ }
+ printf("---\n");
+ for (int i=0; i<n_gen; ++i) {
+ struct ggml_init_params params = {
+ /*.mem_size =*/ compute_size,
+ /*.mem_buffer =*/ compute_addr,
+ /*.no_alloc =*/ false,
+ };
+ struct ggml_context * ctx0 = ggml_init(params);
+
+ ggml_cgraph gf = {};
+ gf.n_threads = 1;
+
+ int n_past = 0;
+ struct ggml_tensor * logits = forward(&model, &kv_self, ctx0, &gf, tokens_input, sample_ctx, n_past);
+
+ ggml_build_forward_expand(&gf, logits);
+ ggml_graph_compute(ctx0, &gf);
+
+ struct ggml_tensor * best_samples = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, sample_ctx);
+ struct ggml_tensor * probs = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_vocab, sample_ctx);
+
+ sample_softmax(logits, probs, best_samples);
+
+ // int sample_at = n_tokens-1;
+ int token = ggml_get_i32_1d(best_samples, sample_ctx-1);
+
+ // print_row(probs, sample_at);
+ print_token(token, n_vocab);
+
+ lshift_examples(tokens_input, targets, 1);
+ ggml_set_i32_1d(tokens_input, 0, 0);
+ ggml_set_i32_1d(tokens_input, sample_ctx-1, token);
+
+ ggml_free(ctx0);
+ }
+ }
+
+ print_matrix(model.tok_embeddings);
+
+ printf("done\n");
+ // ggml_free(kv_self.ctx);
+ // ggml_free(model_lora.ctx);
+ ggml_free(model.ctx);
+ return 0;
+}