aboutsummaryrefslogtreecommitdiff
path: root/llama.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'llama.cpp')
-rw-r--r--llama.cpp483
1 files changed, 376 insertions, 107 deletions
diff --git a/llama.cpp b/llama.cpp
index 4699e5c..1032fb9 100644
--- a/llama.cpp
+++ b/llama.cpp
@@ -28,6 +28,7 @@
#include <atomic>
#include <mutex>
#include <sstream>
+#include <numeric>
#define LLAMA_USE_SCRATCH
#define LLAMA_MAX_SCRATCH_BUFFERS 16
@@ -1475,109 +1476,402 @@ static std::vector<llama_vocab::id> llama_tokenize(const llama_vocab & vocab, co
// sampling
//
-static void sample_top_k(std::vector<std::pair<float, llama_vocab::id>> & logits_id, int top_k) {
- // find the top k tokens
- std::partial_sort(
- logits_id.begin(),
- logits_id.begin() + top_k, logits_id.end(),
- [](const std::pair<float, llama_vocab::id> & a, const std::pair<float, llama_vocab::id> & b) {
- return a.first > b.first;
- });
+void llama_sample_softmax(struct llama_context * ctx, llama_token_data_array * candidates) {
+ assert(candidates->size > 0);
+
+ const int64_t t_start_sample_us = ggml_time_us();
- logits_id.resize(top_k);
+ // Sort the logits in descending order
+ if (!candidates->sorted) {
+ std::sort(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) {
+ return a.logit > b.logit;
+ });
+ candidates->sorted = true;
+ }
+
+ float max_l = candidates->data[0].logit;
+ float cum_sum = 0.0f;
+ for (size_t i = 0; i < candidates->size; ++i) {
+ float p = expf(candidates->data[i].logit - max_l);
+ candidates->data[i].p = p;
+ cum_sum += p;
+ }
+ for (size_t i = 0; i < candidates->size; ++i) {
+ candidates->data[i].p /= cum_sum;
+ }
+
+ if (ctx) {
+ ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
+ }
}
-static llama_vocab::id llama_sample_top_p_top_k(
- llama_context & lctx,
- const std::vector<llama_vocab::id> & last_n_tokens,
- int top_k,
- float top_p,
- float temp,
- float repeat_penalty) {
- auto & rng = lctx.rng;
-
- const int n_logits = lctx.model.hparams.n_vocab;
-
- const auto & logits = lctx.logits;
- const auto * plogits = logits.data() + logits.size() - n_logits;
-
- if (temp <= 0) {
- // select the token with the highest logit directly
- float max_logit = plogits[0];
- llama_vocab::id max_id = 0;
-
- for (int i = 1; i < n_logits; ++i) {
- if (plogits[i] > max_logit) {
- max_logit = plogits[i];
- max_id = i;
- }
+void llama_sample_top_k(struct llama_context * ctx, llama_token_data_array * candidates, int k, size_t min_keep) {
+ const int64_t t_start_sample_us = ggml_time_us();
+
+ k = std::max(k, (int) min_keep);
+ k = std::min(k, (int) candidates->size);
+
+ // Sort scores in descending order
+ if (!candidates->sorted) {
+ auto comp = [](const llama_token_data & a, const llama_token_data & b) {
+ return a.logit > b.logit;
+ };
+ if (k == (int) candidates->size) {
+ std::sort(candidates->data, candidates->data + candidates->size, comp);
+ } else {
+ std::partial_sort(candidates->data, candidates->data + k, candidates->data + candidates->size, comp);
}
- return max_id;
+ candidates->sorted = true;
}
+ candidates->size = k;
- std::vector<std::pair<float, llama_vocab::id>> logits_id;
- logits_id.reserve(n_logits);
+ if (ctx) {
+ ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
+ }
+}
- {
- const float scale = 1.0f/temp;
- for (int i = 0; i < n_logits; ++i) {
- // repetition penalty from ctrl paper (https://arxiv.org/abs/1909.05858)
- // credit https://github.com/facebookresearch/llama/compare/main...shawwn:llama:main
- if (std::find(last_n_tokens.begin(), last_n_tokens.end(), i) != last_n_tokens.end()) {
- // if score < 0 then repetition penalty has to multiplied to reduce the previous token probability
- if (plogits[i] < 0.0f) {
- logits_id.push_back(std::make_pair(plogits[i]*scale*repeat_penalty, i));
- } else {
- logits_id.push_back(std::make_pair(plogits[i]*scale/repeat_penalty, i));
- }
- } else {
- logits_id.push_back(std::make_pair(plogits[i]*scale, i));
- }
+void llama_sample_top_p(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) {
+ if (p >= 1.0f) {
+ return;
+ }
+
+ const int64_t t_start_sample_us = ggml_time_us();
+
+ llama_sample_softmax(ctx, candidates);
+
+ // Compute the cumulative probabilities
+ float cum_sum = 0.0f;
+ size_t last_idx = candidates->size;
+
+ for (size_t i = 0; i < candidates->size; ++i) {
+ cum_sum += candidates->data[i].p;
+
+ // Check if the running sum is greater than p or if we have kept at least min_keep tokens
+ if (cum_sum > p && i >= min_keep) {
+ last_idx = i;
+ break;
}
}
- sample_top_k(logits_id, top_k > 0 ? std::min(top_k, n_logits) : n_logits);
+ // Resize the output vector to keep only the top-p tokens
+ candidates->size = last_idx;
- // compute probs for the top k tokens
- std::vector<float> probs;
- probs.reserve(logits_id.size());
+ if (ctx) {
+ ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
+ }
+}
- float maxl = logits_id[0].first;
- double sum = 0.0;
- for (const auto & kv : logits_id) {
- const float p = expf(kv.first - maxl);
- probs.push_back(p);
- sum += p;
+void llama_sample_tail_free(struct llama_context * ctx, llama_token_data_array * candidates, float z, size_t min_keep) {
+ if (z >= 1.0f || candidates->size <= 2) {
+ return;
}
- // normalize the probs
- for (auto & p : probs) {
- p /= sum;
+ const int64_t t_start_sample_us = ggml_time_us();
+
+ llama_sample_softmax(nullptr, candidates);
+
+ // Compute the first and second derivatives
+ std::vector<float> first_derivatives(candidates->size - 1);
+ std::vector<float> second_derivatives(candidates->size - 2);
+
+ for (size_t i = 0; i < first_derivatives.size(); ++i) {
+ first_derivatives[i] = candidates->data[i].p - candidates->data[i + 1].p;
+ }
+ for (size_t i = 0; i < second_derivatives.size(); ++i) {
+ second_derivatives[i] = first_derivatives[i] - first_derivatives[i + 1];
}
- if (top_p < 1.0) {
- double cumsum = 0.0;
- for (int i = 0; i < (int) probs.size(); i++) {
- cumsum += probs[i];
- if (cumsum >= top_p) {
- probs.resize(i + 1);
- logits_id.resize(i + 1);
- break;
- }
+ // Calculate absolute value of second derivatives
+ for (size_t i = 0; i < second_derivatives.size(); ++i) {
+ second_derivatives[i] = abs(second_derivatives[i]);
+ }
+
+ // Normalize the second derivatives
+ float second_derivatives_sum = std::accumulate(second_derivatives.begin(), second_derivatives.end(), 0.0f);
+ for (float & value : second_derivatives) {
+ value /= second_derivatives_sum;
+ }
+
+ float cum_sum = 0.0f;
+ size_t last_idx = candidates->size;
+ for (size_t i = 0; i < second_derivatives.size(); ++i) {
+ cum_sum += second_derivatives[i];
+
+ // Check if the running sum is greater than z or if we have kept at least min_keep tokens
+ if (cum_sum > z && i >= min_keep) {
+ last_idx = i;
+ break;
}
}
- //printf("\n");
- //for (int i = 0; i < (int) 10; i++) {
- // printf("%d: '%s' %f\n", i, lctx.vocab.id_to_token.at(logits_id[i].second).tok.c_str(), probs[i]);
- //}
- //printf("\n\n");
- //exit(0);
+ // Resize the output vector to keep only the tokens above the tail location
+ candidates->size = last_idx;
+
+ if (ctx) {
+ ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
+ }
+}
+
+
+void llama_sample_typical(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) {
+ // Reference implementation:
+ // https://github.com/huggingface/transformers/compare/main...cimeister:typical-sampling:typical-pr
+ if (p >= 1.0f) {
+ return;
+ }
+
+ const int64_t t_start_sample_us = ggml_time_us();
+
+ // Compute the softmax of logits and calculate entropy
+ llama_sample_softmax(nullptr, candidates);
+
+ float entropy = 0.0f;
+ for (size_t i = 0; i < candidates->size; ++i) {
+ entropy += -candidates->data[i].p * logf(candidates->data[i].p);
+ }
+
+ // Compute the absolute difference between negative log probability and entropy for each candidate
+ std::vector<float> shifted_scores;
+ for (size_t i = 0; i < candidates->size; ++i) {
+ float shifted_score = fabsf(-logf(candidates->data[i].p) - entropy);
+ shifted_scores.push_back(shifted_score);
+ }
+
+ // Sort tokens based on the shifted_scores and their corresponding indices
+ std::vector<size_t> indices(candidates->size);
+ std::iota(indices.begin(), indices.end(), 0);
+
+ std::sort(indices.begin(), indices.end(), [&](size_t a, size_t b) {
+ return shifted_scores[a] < shifted_scores[b];
+ });
+
+ // Compute the cumulative probabilities
+ float cum_sum = 0.0f;
+ size_t last_idx = indices.size();
+
+ for (size_t i = 0; i < indices.size(); ++i) {
+ size_t idx = indices[i];
+ cum_sum += candidates->data[idx].p;
+
+ // Check if the running sum is greater than typical or if we have kept at least min_keep tokens
+ if (cum_sum > p && i >= min_keep - 1) {
+ last_idx = i + 1;
+ break;
+ }
+ }
+
+ // Resize the output vector to keep only the locally typical tokens
+ std::vector<llama_token_data> new_candidates;
+ for (size_t i = 0; i < last_idx; ++i) {
+ size_t idx = indices[i];
+ new_candidates.push_back(candidates->data[idx]);
+ }
+
+ // Replace the data in candidates with the new_candidates data
+ std::copy(new_candidates.begin(), new_candidates.end(), candidates->data);
+ candidates->size = new_candidates.size();
+
+ if (ctx) {
+ ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
+ }
+}
+
+void llama_sample_temperature(struct llama_context * ctx, llama_token_data_array * candidates_p, float temp) {
+ const int64_t t_start_sample_us = ggml_time_us();
+
+ for (size_t i = 0; i < candidates_p->size; ++i) {
+ candidates_p->data[i].logit /= temp;
+ }
+
+ if (ctx) {
+ ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
+ }
+}
+
+void llama_sample_repetition_penalty(struct llama_context * ctx, llama_token_data_array * candidates, llama_token * last_tokens, size_t last_tokens_size, float penalty) {
+ if (last_tokens_size == 0 || penalty == 1.0f) {
+ return;
+ }
+
+ const int64_t t_start_sample_us = ggml_time_us();
+
+ for (size_t i = 0; i < candidates->size; ++i) {
+ auto token_iter = std::find(last_tokens, last_tokens + last_tokens_size, candidates->data[i].id);
+ if (token_iter == last_tokens + last_tokens_size) {
+ continue;
+ }
+
+ // The academic publication that described this technique actually just only divided, but that would cause tokens with negative logits to become more likely, which is obviously wrong.
+ // This is common fix for this problem, which is to multiply by the penalty instead of dividing.
+ if (candidates->data[i].logit <= 0) {
+ candidates->data[i].logit *= penalty;
+ } else {
+ candidates->data[i].logit /= penalty;
+ }
+ }
+
+ candidates->sorted = false;
+
+ if (ctx) {
+ ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
+ }
+}
+
+void llama_sample_frequency_and_presence_penalties(struct llama_context * ctx, llama_token_data_array * candidates, llama_token * last_tokens_p, size_t last_tokens_size, float alpha_frequency, float alpha_presence) {
+ if (last_tokens_size == 0 || (alpha_frequency == 0.0f && alpha_presence == 0.0f)) {
+ return;
+ }
+
+ const int64_t t_start_sample_us = ggml_time_us();
+
+ // Create a frequency map to count occurrences of each token in last_tokens
+ std::unordered_map<llama_token, int> token_count;
+ for (size_t i = 0; i < last_tokens_size; ++i) {
+ token_count[last_tokens_p[i]]++;
+ }
+
+ // Apply frequency and presence penalties to the candidates
+ for (size_t i = 0; i < candidates->size; ++i) {
+ auto token_iter = token_count.find(candidates->data[i].id);
+ if (token_iter == token_count.end()) {
+ continue;
+ }
+
+ int count = token_iter->second;
+ candidates->data[i].logit -= float(count) * alpha_frequency + float(count > 0) * alpha_presence;
+ }
+
+ candidates->sorted = false;
+
+ if (ctx) {
+ ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
+ }
+}
+
+
+llama_token llama_sample_token_mirostat(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, int m, float * mu) {
+ assert(ctx);
+ auto N = float(llama_n_vocab(ctx));
+ int64_t t_start_sample_us;
+ t_start_sample_us = ggml_time_us();
+
+ llama_sample_softmax(nullptr, candidates);
+
+ // Estimate s_hat using the most probable m tokens
+ float s_hat = 0.0;
+ float sum_ti_bi = 0.0;
+ float sum_ti_sq = 0.0;
+ for (size_t i = 0; i < size_t(m - 1) && i < candidates->size - 1; ++i) {
+ float t_i = logf(float(i + 2) / float(i + 1));
+ float b_i = logf(candidates->data[i].p / candidates->data[i + 1].p);
+ sum_ti_bi += t_i * b_i;
+ sum_ti_sq += t_i * t_i;
+ }
+ s_hat = sum_ti_bi / sum_ti_sq;
+
+ // Compute k from the estimated s_hat and target surprise value
+ float epsilon_hat = s_hat - 1;
+ float k = powf((epsilon_hat * powf(2, *mu)) / (1 - powf(N, -epsilon_hat)), 1 / s_hat);
+
+ // Sample the next word X using top-k sampling
+ llama_sample_top_k(nullptr, candidates, int(k));
+ if (ctx) {
+ ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
+ }
+ llama_token X = llama_sample_token(ctx, candidates);
+ t_start_sample_us = ggml_time_us();
+
+ // Compute error as the difference between observed surprise and target surprise value
+ size_t X_idx = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
+ return candidate.id == X;
+ }));
+ float observed_surprise = -log2f(candidates->data[X_idx].p);
+ float e = observed_surprise - tau;
+
+ // Update mu using the learning rate and error
+ *mu = *mu - eta * e;
+
+ if (ctx) {
+ ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
+ ctx->n_sample++;
+ }
+ return X;
+}
+
+llama_token llama_sample_token_mirostat_v2(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, float * mu) {
+ assert(ctx);
+ int64_t t_start_sample_us;
+ t_start_sample_us = ggml_time_us();
+
+ llama_sample_softmax(ctx, candidates);
+
+ // Truncate the words with surprise values greater than mu
+ candidates->size = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
+ return -log2f(candidate.p) > *mu;
+ }));
+
+ // Normalize the probabilities of the remaining words
+ llama_sample_softmax(ctx, candidates);
+
+ // Sample the next word X from the remaining words
+ if (ctx) {
+ ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
+ }
+ llama_token X = llama_sample_token(ctx, candidates);
+ t_start_sample_us = ggml_time_us();
+
+ // Compute error as the difference between observed surprise and target surprise value
+ size_t X_idx = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
+ return candidate.id == X;
+ }));
+ float observed_surprise = -log2f(candidates->data[X_idx].p);
+ float e = observed_surprise - tau;
+
+ // Update mu using the learning rate and error
+ *mu = *mu - eta * e;
+
+ if (ctx) {
+ ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
+ }
+ return X;
+}
+
+llama_token llama_sample_token_greedy(struct llama_context * ctx, llama_token_data_array * candidates) {
+ const int64_t t_start_sample_us = ggml_time_us();
+
+ // Find max element
+ auto max_iter = std::max_element(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) {
+ return a.logit < b.logit;
+ });
+
+ llama_token result = max_iter->id;
+ if (ctx) {
+ ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
+ ctx->n_sample++;
+ }
+ return result;
+}
+
+llama_token llama_sample_token(struct llama_context * ctx, llama_token_data_array * candidates) {
+ assert(ctx);
+ const int64_t t_start_sample_us = ggml_time_us();
+ llama_sample_softmax(nullptr, candidates);
+
+ std::vector<float> probs;
+ probs.reserve(candidates->size);
+ for (size_t i = 0; i < candidates->size; ++i) {
+ probs.push_back(candidates->data[i].p);
+ }
std::discrete_distribution<> dist(probs.begin(), probs.end());
+ auto & rng = ctx->rng;
int idx = dist(rng);
- return logits_id[idx].second;
+ llama_token result = candidates->data[idx].id;
+
+ ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
+ ctx->n_sample++;
+ return result;
}
//
@@ -2348,33 +2642,8 @@ llama_token llama_token_eos() {
return 2;
}
-llama_token llama_sample_top_p_top_k(
- llama_context * ctx,
- const llama_token * last_n_tokens_data,
- int last_n_tokens_size,
- int top_k,
- float top_p,
- float temp,
- float repeat_penalty) {
- const int64_t t_start_sample_us = ggml_time_us();
-
- llama_token result = 0;
-
- // TODO: avoid this ...
- const auto last_n_tokens = std::vector<llama_token>(last_n_tokens_data, last_n_tokens_data + last_n_tokens_size);
-
- result = llama_sample_top_p_top_k(
- *ctx,
- last_n_tokens,
- top_k,
- top_p,
- temp,
- repeat_penalty);
-
- ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
- ctx->n_sample++;
-
- return result;
+llama_token llama_token_nl() {
+ return 13;
}