aboutsummaryrefslogtreecommitdiff
AgeCommit message (Collapse)Author
2023-06-13baby-llama : fix operator!= (#1821)0xspringtime
* Update baby-llama.cpp Seems to be an error in the implementation of the operator!= function. It attempts to compare the this pointer (a llama_hparams_lora object) with the other pointer (a llama_hparams object) using memcmp. This can lead to incorrect results because the sizes of the objects being compared (sizeof(llama_hparams) and sizeof(llama_hparams_lora)) are different, should now be able to compare two llama_hparams_lora objects for inequality. * Update baby-llama.cpp * Update baby-llama.cpp
2023-06-13train : improved training-from-scratch example (#1652)xaedes
* add python wrapper https://gist.github.com/abetlen/2b90e5f153f6efd00931d098de5c73ce * fix decoding error. adds errors=ignore parameter * add python bindings for functions to get and set the whole llama state (rng, logits, embedding and kv_cache) * update python bindings * add text generating baby-llama from scratch example * fix race condition bug in ggml_compute_forward_diag_mask_f32 * implement ggml_soft_max_back for more performant backward pass of soft_max avoids creating big intermediate matrices of size n_embd x n_embd for llama layers and n_vocab x n_vocab for cross entropy loss * improve softmax backward pass go from quadratic runtime to linear runtime by simplifying the formulas * fix race condition bug in non-inplace ggml_compute_forward_diag_mask_f32 memcpy needs to be synchronized across threads to avoid race conditions. => do it in INIT phase * fix bug in ggml_compute_forward_soft_max_back_f32 on DEBUG build * improve performance of mul_mat backward pass avoid transpose by using mul_mat with swapped arguments * avoid printing too much newlines in baby-llama-text * activate threading in baby-llama-text * add ggml_out_prod and use it for mul_mat backward pass for improved performance performance stats report improvement from 37 seconds to 16 seconds runtime during my training tests * better weight initialization improves training convergence at start * better weight initialization improves training convergence at start * improve ggml_out_prod performance - change iteration order (>15s -> 10s runtime) - parallelize over one more dimension: over dst matrix rows (10s -> <5s runtime) * add llama sampler, shuffle samples and constrain sampling to tokens occurring in train data * fix get_samples call, add model tensor names, increase model size, start training samples after newline * save train trained model to checkpoint and load model to be trained from checkpoint * use inplace functions where possible * initialize rng with srand * use different arguments for input and output checkpoint * ggml fixes to support backward pass on inplace operations * remove duplicate include * fix cross entropy loss - add target probabilities for each sample which is then used in cross entropy loss * print used memory before and after optimization * sample with non-greedy sampling parameters at the end of training * add cmake target for baby-llama-text * add ggml_add1_inplace to header * enable gradient propagation for inplace add1 and scale operations those functions backward passes don't need the original src0, so they also work when forward is inplace * implement AdamW in ggml_opt_adam by adding weight decay parameter (default 0.001f) also add a schedule parameter (default 1.0f) that can be used to scale alpha and decay according to learning schedule. setting the decay parameter to zero disables AdamW resulting in normal Adam optimizer. since the difference between Adam and AdamW is minimal it is not implemented as another optimizer, but integrated into the existing Adam optimizer. * use inplace operations in cross_entropy_loss * fix random weight initialization scale * add missing default parameters for adam optimizer * add ggml_opt_context, so that we can properly resume training otherwise the optimizer states, tracking statistics about the error function and its derivates, will reset to zero each time ggml_opt is called, hindering convergence on resumed training. now the optimizer context and all its memory is stored in a separate struct. * fix bug in llama_sample_token_mirostat_v2 when all candidates are filtered out through mu threshold, the following soft_max operation will fail. so keep at least one. * add forward function without using cache, for more performant training during training on whole samples no cache is required. removing the cache and simplifying the remaining code results in performance and memory usage improvement. * print suppressed newline tokens as string "\n" printing too much actual newlines is suppressed to avoid flooding the console. * store optimizer state in training checkpoint and add learning schedule persistent optimizer state allows to resume training without resetting the optimizer learning schedule consists of linear warmup ramp followed by cosine decay with restarts * remove unused functions * fix bug in get_samples which corrupted training targets * save checkpoint only when it was trained * simplify code * remove trailing whitespace * simplify backward pass for SQRT * replace inefficient repeat backward pass with dedicated repeat_back operation * add ggml_cross_entropy_loss with backward pass for faster training cross entropy loss can also be implemented using softmax and log, but as dedicated operation it is faster and especially avoids unnecessary memory overhead. * add tests for cross_entropy_loss backward pass finite differences regularly results in estimated gradient of zero, despite the backward pass giving non zero gradient. _probably_ the finite differences fails due to numerical issues * use ggml_cross_entropy_loss in text training example * remove trailing whitespace * slightly improve how cross entropy loss is compute btw: directly implemented cross entropy loss seems to have way lower magnitudes than when implemented with softmax and log. probably the input to log gets closer to zero due to float numerics. maybe the multiplication by (1.0-eps)/sum is more accurate.. * add llama_get_vocab to get the vocabulary as output parameters * set default model.type for unknown models with few layers * add export of training checkpoint to llama compatible model file * get vocabulary for exporting training checkpoint to llama compatible model file * implement backward pass of flash attention * bugfixes for backward pass of flash attention * test flash attention backward pass need to set loose error bounds to pass. the finitie differences are close to numeric limits and often return quite different values than the backward pass. reducing eps further lets the gradients vanish completely. likewise setting eps to big results in wronger values. the softmax in the middle of the function is probably the most responsible for the numeric issues using finite differences. * add option to train with flash attention and move options to the top of the main function training from scratch also works with flash attention training convergence and generation results after fix number of iterations are worse than when not using flash attention. maybe there still lingers a bug in the flash attention backward pass? but training works, just with slower convergence. flash attention is still worth to use, because it requires way less memory and is faster with high n_ctx * add train_params and command line option parser * remove unnecessary comments * add train params to specify memory size * remove python bindings * rename baby-llama-text to train-text-from-scratch * replace auto parameters in lambda function * add #include <climits> * add explicit cast to fix compile error "error: non-constant-expression cannot be narrowed from type 'int64_t' (aka 'long long') to 'uint32_t' (aka 'unsigned int') in initializer list [-Wc++11-narrowing]" * remove trailing whitespace * add ggml_opt_resume_g which accepts forward and backward cgraphs * fix formulas in comments * bug fix for ggml_compute_forward_get_rows_back_f32 the result should be set to zero, not to whatever data is in opt0 * improve training memory usage with scratch buffers instead of relying on the automatic backward pass, we manually create the graph for the backward pass. it turns out that all backward pass operations need only temporary memory which can be reused after each layer. will compute backward pass for ALL model parameters * add option to use scratch buffers in training or not make it configurable because currently training with scratch buffers implies flash attention and optimization over all parameters. * ci : disable temporary * store view offset and permute axes in opt[0] instead of storing it in padding use memcpy to store offset, because offset is of type size_t. when storing it as int32_t offset would have to be smaller than 2^31 which is not necessarily true. * minor : fix compile warnings + minor style changes * fix bug in threaded indices calculation of ggml_compute_forward_flash_attn_back_f32 * store view offset like in master branch * bug fix in forward_batch_wo_cache_flash_attn_train * scratch buffer bug fixes in forward_batch_wo_cache_flash_attn_train data of permute and reshape is the same as their input. if we want to preserve the output of permute/reshape, we also need to preserve their inputs. replace reshape(src0, src1) with reshape_nd calls so that we don't need src1. replace (temporary) t03 with ggml_repeat(ctx0, layer.attention_norm, t02). in the future we could also use the new broadcasting ggml_mul to avoid these repeat calls. for this we need backward pass of broadcasting ggml_mul. * remove unnecessary scratch buffer 0 buf 0 is persistent memory, so we can just disable scratch for this by using buf -1 * avoid creating unnecessary grad tensors previously we need to create grads for model parameters, so that expand(..) correctly populates cgraph->leafs & cgraph->grads this wasted memory, because unnecessary grad for each op were automatically created: the automatically generated grad was unnecessary because we later manually set the grad (e.g. t35->grad = expand(gb, ...) ). this discarded the automatically generated grad resulting in wasted memory. improved this by changing expand(..) to not use ggml_build_forward_expand. expand set cgraph->nodes but not the leafs. cgraph->leafs & cgraph->grads are set in another pass after the last expand call. * print used training seed * zero initialize gfbuf and gbbuf * ci : re-enable workflows + add README for training --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-06-13llama : do a warm-up eval at start for better timings (#1824)Georgi Gerganov
2023-06-13Allow "quantizing" to f16 and f32 (#1787)Kerfuffle
* Allow "quantizing" to f16 and f32 Fix an issue where quantizing didn't respect LLAMA_NO_K_QUANTS Add brief help to the list of quantization types in the quantize tool Ignore case for quantization type arguments in the quantize tool
2023-06-12Metal implementation for all k_quants (#1807)Kawrakow
* metal : improve q4_K 28.3 -> 26.0 ms/token by avoiding a branch in the calculation of the scales. * metal : small improvement for Q4_K * metal : still optimizing Q4_K This commit pushes it down to 25.3 ms / token. The crazy idea of using 6 bits for the scales is really costly on Metal: if I remove the bit fiddling necessary to make the block scales, time goes almost to the Q4_0 23 ms/token. Before pushing the k-quants upstream I had a Q4_K variant that had used 8-bit scales. It wasn't more accurate, used 0.125 bits more per weight, was running slightly slower on the CPU (due to the larger model size and being memory bound there), and the difference was entirely negligible under CUDA. So, I decided to publish the version with 6-bit scales. Perhaps I should re-consider and change to 8-bit scales? * metal : some more optimizations Q2_K: 25.4 ms/token Q6_K: 27.3 ms/token Q4_0: 22.8 ms/token Q4_1: 23.1 ms/token * metal : Q3_K support Something is not quite right yet. * metal : Q5_K support Initial version achieves 31.2 ms/token, 210 GB/s * metal : still not able to figure out why q3_K does not work * Minor * metal : yet another failed attempt to make q3_K work * metal : optimize Q5_K 31.2 ms -> 27.8 ms. 250 GB/s. * metal : q3_K still not working Adding a heavily commented q3_K metal kernel to explain my obviously faulty logic. Perhaps someone could spot the issue? * metal : q3_K finally working Not optimized at all. What was the issue? The scales are not 4-bytes aligned, and I was accessing them with a uint32_t pointer. When I tried that on CUDA, I got an error (illegal memory access) and added a memcpy to a local array of 3 uint32_t's. But on Metal it told me there is no memcpy, so I tried accessing directly. There is no error, just garbage results. At some point I did try accessing the scales with an uint16_t pointer (the scales are for sure 2-byte aligned), but was still getting garbage. I guess, there must have been another bug. No access to scales is via a uint16_t pointer and, after starting from scratch from the C dequantize function, it finally works. * metal : Q3_K 1st optimization pass * metal : Q3_K second optimization pass - 29.6 ms/token * metal : Q3_K cleanup * metal : fixed accidentally broken Q2_K --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2023-06-12ci : run when changing only the CUDA sources (#1800)slaren
2023-06-12Leverage mmap for offloading tensors to GPU (#1597)Howard Su
* Rebase to latest * Show progress * Add assert to make sure we only allocate temp buffer for non-CPU backend tensor Co-authored-by: Johannes Gäßler <johannesg@5d6.de> --------- Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2023-06-12metal : fix failure to load model (#1817)Kawrakow
The number of buffers in the ggml context was left unitialized. This leads to sporadic failures to load the model on startup. It is actually strange that the failure occurred so infrequantly. Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2023-06-11Fix issue where interactive mode crashes when input exceeds ctx size (#1789)Kerfuffle
* Fix issue where interactive mode in the main example crashes when input exceeds ctx size * Ensure the context size is at least 8 tokens in the main example. Closes #1768
2023-06-11Fixed WSL cuda's OOM error (#1594)Kyle Liang
* In the function , add the cuda error bypass. * remove excessive codes and prints --------- Co-authored-by: liang <liangmanlai@126.com>
2023-06-11Update SHA256SUMS with current hashes for models quantized using q4_0 (#1798)Ryan Landay
2023-06-10cmake : fix Metal build (close #1791)Georgi Gerganov
2023-06-10k-quants : GCC12 compilation fix (#1792)Artyom Lebedev
2023-06-10metal : fix issue with ggml-metal.metal path. Closes #1769 (#1782)Andrei
* Fix issue with ggml-metal.metal path * Add ggml-metal.metal as a resource for llama target * Update flake.nix metal kernel substitution
2023-06-10doc : fix wrong address of BLIS.md (#1772)Aisuko
Signed-off-by: Aisuko <urakiny@gmail.com>
2023-06-10ggml : force no_alloc == false when creating opt tensors (close #1699)Georgi Gerganov
This is needed to make operators like ggml_view() be able to store their parameters in the ggml context's memory and not get discarded when no_alloc is true
2023-06-10metal : add Q4_1 implementation (#1785)Kawrakow
23.3 ms / token, so just ~1% slower than q4_0. Achieves 290 GB/s memory throughput. Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2023-06-10llama : support requantizing models instead of only allowing quantization ↵Kerfuffle
from 16/32bit (#1691) * Add support for quantizing already quantized models * Threaded dequantizing and f16 to f32 conversion * Clean up thread blocks with spares calculation a bit * Use std::runtime_error exceptions.
2023-06-10ggml : workaround for missing _mm256_setr_m128i in GCC < 8 (#1638)Xingchen Song(宋星辰)
2023-06-10make : add SSSE3 compilation use case (#1659)rankaiyx
2023-06-09OpenCL: Add release memory (#1741)Robert Sung-wook Shin
* Add opencl release memory * Rename function name
2023-06-09Windows nvcc workaround (#1753)Johannes Gäßler
Fix gibberish output on Windows when using CUDA
2023-06-09metal : fix build "tanhf" -> "tanh"Georgi Gerganov
2023-06-09metal : add GELU implementation (#1770)AT
Co-authored-by: Adam Treat <adam@nomic.ai>
2023-06-09metal : faster q4_0 (#1775)Kawrakow
* metal : 8% faster q4_0 Avoid copying into local uchar4 anf float4. * metal : 17% faster Q4_0 Use 64 threads in a thread group. --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2023-06-08metal : add Q2_K implementation (#1762)Kawrakow
* metal : add Q2_K implementation 27.1 ms / token on M2 Max 30-core GPU, so about the same speed as Q4_0. Memory throughput is ~156 GB/s. The access pattern used in the Q2_K CUDA implementation resulted in significantly lower performance (~31 ms/token). * Fixing merge conflicts --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2023-06-08Revert "ggml : load data into int8x16x4_t using vld4q_s8 on arm64 (#1738)"Georgi Gerganov
This reverts commit 8432d4d9f716b25133e3ed671d91e21f6f3be867.
2023-06-08ggml : load data into int8x16x4_t using vld4q_s8 on arm64 (#1738)le.chang
2023-06-08metal : Q6_K implementation (#1752)Kawrakow
* Metal implementation for Q4_K Very slow for now: 42 ms / token, Q4_0 runs in 28 ms/token on my 30-core M2 Max GPU. * Optimizing Q4_K on metal The first token always takes longer, I guess because the metal kernel is being jit-compiled. So, using n = 128 to measure time. At this point Q4_K takes 29.5 ms / token compared to 27.2 ms / token for Q4_0. Quite a bit better than the initial attempt, but still not good enough. * Optimizing q4_K metal dot some more For n = 256 it is now 28.1 ms/token compared to 27 ms/token for q4_0. * Fix after merge with master * Metal implementation for Q6_K Similar to the CUDA implementation. No idea if this is the optimum for Metal, but the few alternative variants I tried all had a lower performance. We get 36.5 ms / token on M2 Max with 30 GPU cores. This corresponds to ~200 GB/second throughput. * clang-tidy : add config back * Much better Q6_K implementation for metal 28.3 ms / token for 7B. Subtracting ~9 ms that is spent in other compute graph operations, we are left with ~19 ms for the matrix multiplications. The model is ~5.5 GB, so we are getting 1000 / 19 * 5.5 = 290 GB/s! --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2023-06-08Add llama.cpp docker support for non-latin languages (#1673)qingfengfenga
* Modify Dockerfile default character set to improve compatibility (#1673)
2023-06-08ggml : fix fprintf warnings (#1720)Steven Roussey
2023-06-08clang-tidy : restore dot file from accidental deletionGeorgi Gerganov
2023-06-08metal : add Q4_K implementation (#1733)Kawrakow
* Metal implementation for Q4_K Very slow for now: 42 ms / token, Q4_0 runs in 28 ms/token on my 30-core M2 Max GPU. * Optimizing Q4_K on metal The first token always takes longer, I guess because the metal kernel is being jit-compiled. So, using n = 128 to measure time. At this point Q4_K takes 29.5 ms / token compared to 27.2 ms / token for Q4_0. Quite a bit better than the initial attempt, but still not good enough. * Optimizing q4_K metal dot some more For n = 256 it is now 28.1 ms/token compared to 27 ms/token for q4_0. * Fix after merge with master --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2023-06-08k-quants : add missing compile definition to CMakeLists (#1748)johnson442
2023-06-07k-quants : allow to optionally disable at compile time (#1734)Georgi Gerganov
* k-quants : put behind optional compile flag LLAMA_K_QUANTS * build : enable k-quants by default
2023-06-07flake : update to support metal on m1/m2 (#1724)jacobi petrucciani
2023-06-07readme : add June roadmapGeorgi Gerganov
2023-06-06main: add the possibility to open the prompt cache read-only (#1640)Willy Tarreau
The prompt cache constitutes a nice speed up when using the same prompt prefix across multiple evaluations, but when using it, it will also be updated, which is not always desirable. One use case is to have a large prompt containing some context and usage rules, and a second part containing variable data of the problem being studied. In this case it's desirable to be able to save the first part once, and to always reuse it as-is without updating it with the second part. The new argument --prompt-cache-ro enables this read-only mode on the prompt cache. The prompt's contents that match the cache are loaded from the cache but the rest is not modified. This allowed to reduce a total analysis time from 112s to 49.7s here, without having to backup and restore a copy of the prompt, which takes significant time at 500 MB. Signed-off-by: Willy Tarreau <w@1wt.eu>
2023-06-06llama : fix vram_scratch varGeorgi Gerganov
2023-06-06llama : fix compile warningsGeorgi Gerganov
2023-06-06Multi GPU support, CUDA refactor, CUDA scratch buffer (#1703)Johannes Gäßler
* CUDA multi GPU + scratch ggml_cuda_compute_forward Tensor parallelism ggml_cuda_add ggml_cuda_rms_norm ggml_cuda_silu CUDA scratch buffer --main-gpu CLI option
2023-06-06metal : add f16 supportGeorgi Gerganov
2023-06-06Clblast fixes + enhancements to save VRAM and offload more layers (#1675)LostRuins
* Use events instead of clFinish, where possible * OpenCL: Don't load gpu layers into RAM, add mul_f32 kernel * Reduce queueing overhead for contiguous tensors by using single mul kernel call * Adapt to #1612 cl_mem malloc changes * Reduce code duplication between cuda and opencl branches * Improve implementation * Clblast fixes + enhancements to save VRAM: 1. Change all Clblast buffers to CL_MEM_READ_WRITE, as the pool malloc currently doesn't properly handle them. 2. When recycling buffers in pool malloc, always assign the SMALLEST available buffer that fits, instead of the FIRST available buffer 3. When failing to recycle a buffer in pool malloc (all too small), instead recycle the largest available free buffer by resizing it. * change max value size_t to use limits * removed flags from the CL pool malloc, apply code tidying suggestions.
2023-06-06ggml : fix builds, add ggml-quants-k.o (close #1712, close #1710)Georgi Gerganov
2023-06-06gitignore : add .clang-tidyGeorgi Gerganov
2023-06-06llama : temporary disable Q6_K output quantization (#1711)Georgi Gerganov
2023-06-06metal : add checks for buffer size (#1706)Spencer Sutton
Co-authored-by: Spencer Sutton <Spencer.Sutton@precisely.com>
2023-06-05docs : add performance troubleshoot + example benchmark documentation (#1674)Yuval Peled
* test anchor link * test table * add benchmarks * Add performance troubleshoot & benchmark * add benchmarks * remove unneeded line --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-06-05readme : fix typo (#1700)Foul-Tarnished
Fix a typo in a command in README.md
2023-06-05llama : consistently catch and throw only exceptions deriving from ↵mgroeber9110
std::exception (#1599) Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>