aboutsummaryrefslogtreecommitdiff
path: root/ggml-cuda.h
AgeCommit message (Collapse)Author
2023-06-28CUDA GPU acceleration for LoRAs + f16 models (#1970)Johannes Gäßler
2023-06-14CUDA full GPU acceleration, KV cache in VRAM (#1827)Johannes Gäßler
* Fixed CUDA RoPE * ggml_cuda_mul_mat_vec_p021 * ggml_cuda_scale * ggml_cuda_diag_mask_inf * ggml_is_permuted * ggml_cuda_cpy * flatten rows for ggml_cuda_op * Added a --low-vram option * Fixed Windows performance * Fixed LLAMA_CUDA_DMMV_Y > 1 for WizardLM
2023-06-12Leverage mmap for offloading tensors to GPU (#1597)Howard Su
* Rebase to latest * Show progress * Add assert to make sure we only allocate temp buffer for non-CPU backend tensor Co-authored-by: Johannes Gäßler <johannesg@5d6.de> --------- Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2023-06-06Multi GPU support, CUDA refactor, CUDA scratch buffer (#1703)Johannes Gäßler
* CUDA multi GPU + scratch ggml_cuda_compute_forward Tensor parallelism ggml_cuda_add ggml_cuda_rms_norm ggml_cuda_silu CUDA scratch buffer --main-gpu CLI option
2023-05-20cuda : loading models directly into VRAM, norm calculation on GPU, ↵Johannes Gäßler
broadcasting for ggml_mul (#1483) * Broadcasting for ggml_mul * CUDA kernel for ggml_mul, norms in VRAM * GPU weights not in RAM, direct loading with cuFile * fixup! GPU weights not in RAM, direct loading with cuFile * fixup! GPU weights not in RAM, direct loading with cuFile * define default model path once, sync path with readme (#1366) * ~7% faster Q5_1 AVX2 code (#1477) * convert.py: Support models which are stored in a single pytorch_model.bin (#1469) * Support models in a single pytorch_model.bin * Remove spurious line with typo * benchmark-matmul: Print the average of the test results (#1490) * Remove unused n_parts parameter (#1509) * Fixes #1511 lambda issue for w64devkit (mingw) (#1513) * Fix for w64devkit and mingw * make kv_f16 the default for api users (#1517) * minor : fix compile warnings * readme : adds WizardLM to the list of supported models (#1485) * main : make reverse prompt option act as a stop token in non-interactive mode (#1032) * Make reverse prompt option act as a stop token in non-interactive scenarios * Making requested review changes * Update gpt_params_parse and fix a merge error * Revert "Update gpt_params_parse and fix a merge error" This reverts commit 2bb2ff1748513591ad45b175a75ed1d8089d84c8. * Update gpt_params_parse and fix a merge error take 2 * examples : add persistent chat (#1495) * examples : add persistent chat * examples : fix whitespace --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * tests : add missing header * ggml : use F16 instead of F32 in Q4_0, Q4_1, Q8_0 (#1508) * ggml : use F16 instead of F32 in Q4_0, Q4_1 and Q8_0 * llama : bump LLAMA_FILE_VERSION to 3 * cuda : update Q4 and Q8 dequantize kernels * ggml : fix AVX dot products * readme : update performance table + hot topics * ggml : fix scalar implementation of Q4_1 dot * llama : fix compile warnings in llama_set_state_data() * llama : fix name shadowing and C4146 (#1526) * Fix name shadowing and C4146 * Fix if macros not using defined when required * Update llama-util.h Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com> * Update llama-util.h Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com> * Code style Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> --------- Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Fix for mingw (#1462) * llama : add llama_init_backend() API (close #1527) * feature : add blis and other BLAS implementation support (#1502) * feature: add blis support * feature: allow all BLA_VENDOR to be assigned in cmake arguments. align with whisper.cpp pr 927 * fix: version detection for BLA_SIZEOF_INTEGER, recover min version of cmake * Fix typo in INTEGER Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Revert "feature : add blis and other BLAS implementation support (#1502)" This reverts commit 07e9ace0f9da424d82e75df969642522880feb92. * GPU weights not in RAM, direct loading with cuFile * llama : code style fixes + progress print fix * ggml : ggml_mul better broadcast support * cmake : workarounds for cufile when CMake version < 3.25 * gg rebase fixup * Loop in llama.cpp, fixed progress callback * Attempt clang-tidy fix * llama : fix vram size computation * Add forgotten fclose() --------- Co-authored-by: András Salamon <ott2@users.noreply.github.com> Co-authored-by: Ilya Kurdyukov <59548320+ilyakurdyukov@users.noreply.github.com> Co-authored-by: Tom Jobbins <784313+TheBloke@users.noreply.github.com> Co-authored-by: rankaiyx <rankaiyx@rankaiyx.com> Co-authored-by: Stephan Walter <stephan@walter.name> Co-authored-by: DannyDaemonic <DannyDaemonic@gmail.com> Co-authored-by: Erik Scholz <Green-Sky@users.noreply.github.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> Co-authored-by: David Kennedy <dakennedyd@gmail.com> Co-authored-by: Jason McCartney <jmac@theroot.org> Co-authored-by: Evan Jones <evan.q.jones@gmail.com> Co-authored-by: Maxime <672982+maximegmd@users.noreply.github.com> Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com> Co-authored-by: Zenix <zenixls2@gmail.com>
2023-05-13ggml : GPU-accelerated token generation (#1412)Johannes Gäßler
* CUDA kernel for q4_0 dequant. + mat. vec. mult. * Added q4_1 via template * Added missing __syncthreads(); * --gpu_layers -> --gpu-layers * Shorter dequantize_mul_mat_vec line * q5_0 dequantize_mul_mat kernel * More readable dequantize_mul_mat_vec logic * dequantize_mul_mat_vec kernels for q5_1, q8_0, f16 * llama : offload "output" tensor to GPU too + coding style fixes --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-05-01cuBLAS: refactor and optimize f16 mat mul performance (#1259)slaren
* cuBLAS: refactor, convert fp16 to fp32 on device * cuBLAS: use multiple streams, choose smartly between mul_mat_q and mul_mat_f16 * fix build * cuBLAS: update block_q5_1
2023-04-29cuBLAS: use host pinned memory and dequantize while copying (#1207)slaren
* cuBLAS: dequantize simultaneously while copying memory * cuBLAS: use host pinned memory * cuBLAS: improve ggml_compute_forward_mul_mat_f16_f32 with pinned memory * cuBLAS: also pin kv cache * fix rebase
2023-04-29cuBLAS: non-contiguous tensor support (#1215)Henri Vasserman
* Cuda: non-contiguous tensor support * remove extra stuff * rename * fix error * more fixes, now OpenBLAS and CLBlast build too * now then?
2023-04-28Remove Q4_3 which is no better than Q5 (#1218)Stephan Walter
2023-04-26ggml : add Q5_0 and Q5_1 quantization (#1187)Georgi Gerganov
* ggml : add Q5_0 quantization (cuBLAS only) * ggml : fix Q5_0 qh -> uint32_t * ggml : fix q5_0 histogram stats * ggml : q5_0 scalar dot product * ggml : q5_0 ARM NEON dot * ggml : q5_0 more efficient ARM NEON using uint64_t masks * ggml : rename Q5_0 -> Q5_1 * ggml : adding Q5_0 mode * quantize : add Q5_0 and Q5_1 to map * ggml : AVX2 optimizations for Q5_0, Q5_1 (#1195) --------- Co-authored-by: Stephan Walter <stephan@walter.name>
2023-04-25ggml : add Q8_0 quantization format (rename the old one to Q8_1) (ARM NEON) ↵Georgi Gerganov
(#1179) * ggml : add Q8_0 quantization format (rename the old one to Q8_1) * tests : fix test-quantize-fns * ggml : finalize Q8_0 implementation * ggml : use q4_0_q8_0 and q4_2_q8_0 * ggml : fix Q8_0 dot product bug (ARM) * ggml : Q8_0 unroll x2 * ggml : fix bug - using wrong block type * ggml : extend quantize_fns_t with "vec_dot_type" * ggml : fix Q8_0 to use 255 values out of 256 * ggml : fix assert using wrong QK4_2 instead of QK4_3
2023-04-21Improve cuBLAS performance by using a memory pool (#1094)slaren
* Improve cuBLAS performance by using a memory pool * Move cuda specific definitions to ggml-cuda.h/cu * Add CXX flags to nvcc * Change memory pool synchronization mechanism to a spin lock General code cleanup
2023-04-20Add Q4_3 support to cuBLAS (#1086)slaren
2023-04-20Improve cuBLAS performance by dequantizing on the GPU (#1065)slaren