aboutsummaryrefslogtreecommitdiff
path: root/ggml-metal.m
AgeCommit message (Collapse)Author
2023-06-10metal : add Q4_1 implementation (#1785)Kawrakow
23.3 ms / token, so just ~1% slower than q4_0. Achieves 290 GB/s memory throughput. Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2023-06-09metal : add GELU implementation (#1770)AT
Co-authored-by: Adam Treat <adam@nomic.ai>
2023-06-09metal : faster q4_0 (#1775)Kawrakow
* metal : 8% faster q4_0 Avoid copying into local uchar4 anf float4. * metal : 17% faster Q4_0 Use 64 threads in a thread group. --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2023-06-08metal : add Q2_K implementation (#1762)Kawrakow
* metal : add Q2_K implementation 27.1 ms / token on M2 Max 30-core GPU, so about the same speed as Q4_0. Memory throughput is ~156 GB/s. The access pattern used in the Q2_K CUDA implementation resulted in significantly lower performance (~31 ms/token). * Fixing merge conflicts --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2023-06-08metal : Q6_K implementation (#1752)Kawrakow
* Metal implementation for Q4_K Very slow for now: 42 ms / token, Q4_0 runs in 28 ms/token on my 30-core M2 Max GPU. * Optimizing Q4_K on metal The first token always takes longer, I guess because the metal kernel is being jit-compiled. So, using n = 128 to measure time. At this point Q4_K takes 29.5 ms / token compared to 27.2 ms / token for Q4_0. Quite a bit better than the initial attempt, but still not good enough. * Optimizing q4_K metal dot some more For n = 256 it is now 28.1 ms/token compared to 27 ms/token for q4_0. * Fix after merge with master * Metal implementation for Q6_K Similar to the CUDA implementation. No idea if this is the optimum for Metal, but the few alternative variants I tried all had a lower performance. We get 36.5 ms / token on M2 Max with 30 GPU cores. This corresponds to ~200 GB/second throughput. * clang-tidy : add config back * Much better Q6_K implementation for metal 28.3 ms / token for 7B. Subtracting ~9 ms that is spent in other compute graph operations, we are left with ~19 ms for the matrix multiplications. The model is ~5.5 GB, so we are getting 1000 / 19 * 5.5 = 290 GB/s! --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2023-06-08metal : add Q4_K implementation (#1733)Kawrakow
* Metal implementation for Q4_K Very slow for now: 42 ms / token, Q4_0 runs in 28 ms/token on my 30-core M2 Max GPU. * Optimizing Q4_K on metal The first token always takes longer, I guess because the metal kernel is being jit-compiled. So, using n = 128 to measure time. At this point Q4_K takes 29.5 ms / token compared to 27.2 ms / token for Q4_0. Quite a bit better than the initial attempt, but still not good enough. * Optimizing q4_K metal dot some more For n = 256 it is now 28.1 ms/token compared to 27 ms/token for q4_0. * Fix after merge with master --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2023-06-06metal : add f16 supportGeorgi Gerganov
2023-06-06metal : add checks for buffer size (#1706)Spencer Sutton
Co-authored-by: Spencer Sutton <Spencer.Sutton@precisely.com>
2023-06-05metal : use shared buffers between CPU and GPU (#1696)kiltyj
* Use MTLDevice.newBufferWithBytesNoCopy to share buffers between CPU and GPU * Page-align buffers used by Metal * Remove trailing whitespace * Only import unistd.h for Metal builds * metal : remove unnecessary copies --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-06-04llama : Metal inference (#1642)Georgi Gerganov
* mtl : export the LLaMA computation graph * ci : disable temporary * mtl : adapt the MNIST example as starter * mtl : no need for mtl-export tool, add cli arg for main instead * mtl : export just a small part of the graph for now to make it easier * mtl : move MSL code into separate file for easy editing * mtl : initial get_rows_q4_0 kernel * mtl : confirmed get_rows_q4_0 is working correctly * mtl : add rms_norm kernel + confirm working * mtl : add mul kernel + confirm working * mtl : initial mul_mat Q4 kernel (wrong results) * mtl : mul_mat fixes (still wrong) * mtl : another mul_mat Q4 (still does not work) * mtl : working mul_mat q4 * ggml : fix handling of "view" ops in ggml_graph_import() * mtl : add rope kernel * mtl : add reshape and transpose handling * ggml : store offset as opt arg for ggml_view_xd() operators * mtl : add cpy kernel + handle view ops * mtl : confirm f16 x f32 attention mul mat * mtl : add scale kernel * mtl : add diag_mask_inf kernel * mtl : fix soft_max kernel * ggml : update ggml_nbytes() to handle non-contiguous tensors * mtl : verify V tensor contents * mtl : add f32 -> f32 cpy kernel * mtl : add silu kernel * mtl : add non-broadcast mul kernel * mtl : full GPU inference of the computation graph * mtl : optimize rms_norm and soft_max kernels * mtl : add f16 mat x f32 vec multiplication kernel * mtl : fix bug in f16 x f32 mul mat + speed-up computation * mtl : faster mul_mat_q4_0_f32 kernel * mtl : fix kernel signature + roll inner loop * mtl : more threads for rms_norm + better timing * mtl : remove printfs from inner loop * mtl : simplify implementation * mtl : add save/load vocab to ggml file * mtl : plug Metal inference into llama.cpp (very quick-n-dirty) * mtl : make it work with main example Lots of hacks but at least now it generates text * mtl : preparing for merge * mtl : clean-up ggml mtl interface + suport scratch / inplace * mtl : remove temp / debug code * metal : final refactoring and simplification * Revert "ci : disable temporary" This reverts commit 98c267fc77fe811082f672538fc91bcfc9072d63. * metal : add comments * metal : clean-up stuff, fix typos * readme : add Metal instructions * readme : add example for main