Age | Commit message (Collapse) | Author |
|
* metal : improve q4_K
28.3 -> 26.0 ms/token by avoiding a branch in the
calculation of the scales.
* metal : small improvement for Q4_K
* metal : still optimizing Q4_K
This commit pushes it down to 25.3 ms / token.
The crazy idea of using 6 bits for the scales is really costly on
Metal: if I remove the bit fiddling necessary to make the block
scales, time goes almost to the Q4_0 23 ms/token.
Before pushing the k-quants upstream I had a Q4_K variant that
had used 8-bit scales. It wasn't more accurate, used 0.125 bits more per weight,
was running slightly slower on the CPU (due to the larger model size
and being memory bound there), and the difference was entirely
negligible under CUDA. So, I decided to publish the version with 6-bit
scales. Perhaps I should re-consider and change to 8-bit scales?
* metal : some more optimizations
Q2_K: 25.4 ms/token
Q6_K: 27.3 ms/token
Q4_0: 22.8 ms/token
Q4_1: 23.1 ms/token
* metal : Q3_K support
Something is not quite right yet.
* metal : Q5_K support
Initial version achieves 31.2 ms/token, 210 GB/s
* metal : still not able to figure out why q3_K does not work
* Minor
* metal : yet another failed attempt to make q3_K work
* metal : optimize Q5_K
31.2 ms -> 27.8 ms.
250 GB/s.
* metal : q3_K still not working
Adding a heavily commented q3_K metal kernel to explain
my obviously faulty logic. Perhaps someone could spot the issue?
* metal : q3_K finally working
Not optimized at all.
What was the issue? The scales are not 4-bytes aligned,
and I was accessing them with a uint32_t pointer.
When I tried that on CUDA, I got an error (illegal memory access)
and added a memcpy to a local array of 3 uint32_t's.
But on Metal it told me there is no memcpy, so I tried
accessing directly. There is no error, just garbage results.
At some point I did try accessing the scales with an uint16_t
pointer (the scales are for sure 2-byte aligned), but was
still getting garbage. I guess, there must have been another bug.
No access to scales is via a uint16_t pointer and, after starting
from scratch from the C dequantize function, it finally works.
* metal : Q3_K 1st optimization pass
* metal : Q3_K second optimization pass - 29.6 ms/token
* metal : Q3_K cleanup
* metal : fixed accidentally broken Q2_K
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
23.3 ms / token, so just ~1% slower than q4_0.
Achieves 290 GB/s memory throughput.
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
|
|
Co-authored-by: Adam Treat <adam@nomic.ai>
|
|
* metal : 8% faster q4_0
Avoid copying into local uchar4 anf float4.
* metal : 17% faster Q4_0
Use 64 threads in a thread group.
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
* metal : add Q2_K implementation
27.1 ms / token on M2 Max 30-core GPU, so about the
same speed as Q4_0. Memory throughput is ~156 GB/s.
The access pattern used in the Q2_K
CUDA implementation resulted in significantly lower
performance (~31 ms/token).
* Fixing merge conflicts
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
* Metal implementation for Q4_K
Very slow for now:
42 ms / token, Q4_0 runs in 28 ms/token on my
30-core M2 Max GPU.
* Optimizing Q4_K on metal
The first token always takes longer, I guess because
the metal kernel is being jit-compiled.
So, using n = 128 to measure time.
At this point Q4_K takes 29.5 ms / token
compared to 27.2 ms / token for Q4_0.
Quite a bit better than the initial attempt,
but still not good enough.
* Optimizing q4_K metal dot some more
For n = 256 it is now 28.1 ms/token compared to
27 ms/token for q4_0.
* Fix after merge with master
* Metal implementation for Q6_K
Similar to the CUDA implementation.
No idea if this is the optimum for Metal, but the few
alternative variants I tried all had a lower performance.
We get 36.5 ms / token on M2 Max with 30 GPU cores.
This corresponds to ~200 GB/second throughput.
* clang-tidy : add config back
* Much better Q6_K implementation for metal
28.3 ms / token for 7B. Subtracting ~9 ms that is spent in
other compute graph operations, we are left with ~19 ms
for the matrix multiplications. The model is ~5.5 GB,
so we are getting 1000 / 19 * 5.5 = 290 GB/s!
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
* Metal implementation for Q4_K
Very slow for now:
42 ms / token, Q4_0 runs in 28 ms/token on my
30-core M2 Max GPU.
* Optimizing Q4_K on metal
The first token always takes longer, I guess because
the metal kernel is being jit-compiled.
So, using n = 128 to measure time.
At this point Q4_K takes 29.5 ms / token
compared to 27.2 ms / token for Q4_0.
Quite a bit better than the initial attempt,
but still not good enough.
* Optimizing q4_K metal dot some more
For n = 256 it is now 28.1 ms/token compared to
27 ms/token for q4_0.
* Fix after merge with master
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
|
|
|
|
* mtl : export the LLaMA computation graph
* ci : disable temporary
* mtl : adapt the MNIST example as starter
* mtl : no need for mtl-export tool, add cli arg for main instead
* mtl : export just a small part of the graph for now to make it easier
* mtl : move MSL code into separate file for easy editing
* mtl : initial get_rows_q4_0 kernel
* mtl : confirmed get_rows_q4_0 is working correctly
* mtl : add rms_norm kernel + confirm working
* mtl : add mul kernel + confirm working
* mtl : initial mul_mat Q4 kernel (wrong results)
* mtl : mul_mat fixes (still wrong)
* mtl : another mul_mat Q4 (still does not work)
* mtl : working mul_mat q4
* ggml : fix handling of "view" ops in ggml_graph_import()
* mtl : add rope kernel
* mtl : add reshape and transpose handling
* ggml : store offset as opt arg for ggml_view_xd() operators
* mtl : add cpy kernel + handle view ops
* mtl : confirm f16 x f32 attention mul mat
* mtl : add scale kernel
* mtl : add diag_mask_inf kernel
* mtl : fix soft_max kernel
* ggml : update ggml_nbytes() to handle non-contiguous tensors
* mtl : verify V tensor contents
* mtl : add f32 -> f32 cpy kernel
* mtl : add silu kernel
* mtl : add non-broadcast mul kernel
* mtl : full GPU inference of the computation graph
* mtl : optimize rms_norm and soft_max kernels
* mtl : add f16 mat x f32 vec multiplication kernel
* mtl : fix bug in f16 x f32 mul mat + speed-up computation
* mtl : faster mul_mat_q4_0_f32 kernel
* mtl : fix kernel signature + roll inner loop
* mtl : more threads for rms_norm + better timing
* mtl : remove printfs from inner loop
* mtl : simplify implementation
* mtl : add save/load vocab to ggml file
* mtl : plug Metal inference into llama.cpp (very quick-n-dirty)
* mtl : make it work with main example
Lots of hacks but at least now it generates text
* mtl : preparing for merge
* mtl : clean-up ggml mtl interface + suport scratch / inplace
* mtl : remove temp / debug code
* metal : final refactoring and simplification
* Revert "ci : disable temporary"
This reverts commit 98c267fc77fe811082f672538fc91bcfc9072d63.
* metal : add comments
* metal : clean-up stuff, fix typos
* readme : add Metal instructions
* readme : add example for main
|