From ed9a54e5129a11c2a5b555e1dc65e875e3c37b4f Mon Sep 17 00:00:00 2001 From: Georgi Gerganov Date: Tue, 4 Jul 2023 21:54:11 +0300 Subject: ggml : sync latest (new ops, macros, refactoring) (#2106) - add ggml_argmax() - add ggml_tanh() - add ggml_elu() - refactor ggml_conv_1d() and variants - refactor ggml_conv_2d() and variants - add helper macros to reduce code duplication in ggml.c --- ggml.c | 1518 +++++++++++++++++--------------------------------- ggml.h | 118 ++-- scripts/sync-ggml.sh | 11 +- 3 files changed, 592 insertions(+), 1055 deletions(-) diff --git a/ggml.c b/ggml.c index afeb72f..88cbed7 100644 --- a/ggml.c +++ b/ggml.c @@ -220,9 +220,27 @@ inline static void* ggml_aligned_malloc(size_t size) { #define GGML_ALIGNED_FREE(ptr) free(ptr) #endif -#define UNUSED(x) (void)(x) +#define UNUSED GGML_UNUSED #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0) +// +// tensor access macros +// + +#define GGML_TENSOR_UNARY_OP_LOCALS \ + GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne); \ + GGML_TENSOR_LOCALS(size_t, nb0, src0, nb); \ + GGML_TENSOR_LOCALS(int64_t, ne, dst, ne); \ + GGML_TENSOR_LOCALS(size_t, nb, dst, nb); + +#define GGML_TENSOR_BINARY_OP_LOCALS \ + GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne); \ + GGML_TENSOR_LOCALS(size_t, nb0, src0, nb); \ + GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne); \ + GGML_TENSOR_LOCALS(size_t, nb1, src1, nb); \ + GGML_TENSOR_LOCALS(int64_t, ne, dst, ne); \ + GGML_TENSOR_LOCALS(size_t, nb, dst, nb); + #if defined(GGML_USE_ACCELERATE) #include #if defined(GGML_USE_CLBLAST) // allow usage of CLBlast alongside Accelerate functions @@ -3447,6 +3465,8 @@ inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); } inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); } inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; } +inline static void ggml_vec_tanh_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = tanhf(x[i]); } +inline static void ggml_vec_elu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : expf(x[i])-1; } inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; } static const float GELU_COEF_A = 0.044715f; @@ -3598,6 +3618,16 @@ inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x *s = 1.f/(*s); } +inline static void ggml_vec_argmax_f32(const int n, int * s, const float * x) { + float max = -INFINITY; + int idx = 0; + for (int i = 0; i < n; ++i) { + max = MAX(max, x[i]); + if (max == x[i]) { idx = i; } + } + *s = idx; +} + // // data types // @@ -3707,12 +3737,15 @@ static const char * GGML_OP_NAME[GGML_OP_COUNT] = { "SUM", "SUM_ROWS", "MEAN", + "ARGMAX", "REPEAT", "REPEAT_BACK", "ABS", "SGN", "NEG", "STEP", + "TANH", + "ELU", "RELU", "GELU", "GELU_QUICK", @@ -3744,9 +3777,8 @@ static const char * GGML_OP_NAME[GGML_OP_COUNT] = { "ROPE_BACK", "ALIBI", "CLAMP", - "CONV_1D_S1_PH", - "CONV_1D_S2_PH", - "CONV_2D_SK_P0", + "CONV_1D", + "CONV_2D", "FLASH_ATTN", "FLASH_FF", @@ -3765,7 +3797,7 @@ static const char * GGML_OP_NAME[GGML_OP_COUNT] = { "CROSS_ENTROPY_LOSS_BACK", }; -static_assert(GGML_OP_COUNT == 64, "GGML_OP_COUNT != 64"); +static_assert(GGML_OP_COUNT == 66, "GGML_OP_COUNT != 66"); static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = { "none", @@ -3783,12 +3815,15 @@ static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = { "Σx", "Σx_k", "Σx/n", + "argmax(x)", "repeat(x)", "repeat_back(x)", "abs(x)", "sgn(x)", "-x", "step(x)", + "tanh(x)", + "elu(x)", "relu(x)", "gelu(x)", "gelu_quick(x)", @@ -3820,9 +3855,8 @@ static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = { "rope_back(x)", "alibi(x)", "clamp(x)", - "conv_1d_s1_ph(x)", - "conv_1d_s2_ph(x)", - "conv_2d_sk_p0(x)", + "conv_1d(x)", + "conv_2d(x)", "flash_attn(x)", "flash_ff(x)", @@ -3841,7 +3875,7 @@ static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = { "cross_entropy_loss_back(x,y)", }; -static_assert(GGML_OP_COUNT == 64, "GGML_OP_COUNT != 64"); +static_assert(GGML_OP_COUNT == 66, "GGML_OP_COUNT != 66"); static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN"); static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN"); @@ -3867,9 +3901,8 @@ static void ggml_setup_op_has_task_pass(void) { p[GGML_OP_GET_ROWS_BACK ] = true; p[GGML_OP_DIAG_MASK_INF ] = true; p[GGML_OP_DIAG_MASK_ZERO ] = true; - p[GGML_OP_CONV_1D_S1_PH ] = true; - p[GGML_OP_CONV_1D_S2_PH ] = true; - p[GGML_OP_CONV_2D_SK_P0 ] = true; + p[GGML_OP_CONV_1D ] = true; + p[GGML_OP_CONV_2D ] = true; p[GGML_OP_FLASH_ATTN_BACK ] = true; p[GGML_OP_CROSS_ENTROPY_LOSS ] = true; } @@ -5440,6 +5473,30 @@ struct ggml_tensor * ggml_mean( return result; } +// ggml_argmax + +struct ggml_tensor * ggml_argmax( + struct ggml_context * ctx, + struct ggml_tensor * a) { + GGML_ASSERT(ggml_is_matrix(a)); + bool is_node = false; + + if (a->grad) { + GGML_ASSERT(false); + is_node = true; + } + + int64_t ne[GGML_MAX_DIMS] = { a->ne[1], 1, 1, 1 }; + struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_I32, a->n_dims, ne); + + result->op = GGML_OP_ARGMAX; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src0 = a; + result->src1 = NULL; + + return result; +} + // ggml_repeat struct ggml_tensor * ggml_repeat( @@ -5633,6 +5690,74 @@ struct ggml_tensor * ggml_step_inplace( return ggml_step_impl(ctx, a, true); } +// ggml_tanh + +struct ggml_tensor * ggml_tanh_impl( + struct ggml_context * ctx, + struct ggml_tensor * a, + bool inplace) { + bool is_node = false; + + if (!inplace && (a->grad)) { + is_node = true; + } + + struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); + + result->op = GGML_OP_TANH; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src0 = a; + result->src1 = NULL; + + return result; +} + +struct ggml_tensor * ggml_tanh( + struct ggml_context * ctx, + struct ggml_tensor * a) { + return ggml_tanh_impl(ctx, a, false); +} + +struct ggml_tensor * ggml_tanh_inplace( + struct ggml_context * ctx, + struct ggml_tensor * a) { + return ggml_tanh_impl(ctx, a, true); +} + +// ggml_elu + +struct ggml_tensor * ggml_elu_impl( + struct ggml_context * ctx, + struct ggml_tensor * a, + bool inplace) { + bool is_node = false; + + if (!inplace && (a->grad)) { + is_node = true; + } + + struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); + + result->op = GGML_OP_ELU; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src0 = a; + result->src1 = NULL; + + return result; +} + +struct ggml_tensor * ggml_elu( + struct ggml_context * ctx, + struct ggml_tensor * a) { + return ggml_elu_impl(ctx, a, false); +} + +struct ggml_tensor * ggml_elu_inplace( + struct ggml_context * ctx, + struct ggml_tensor * a) { + return ggml_elu_impl(ctx, a, true); +} + // ggml_relu struct ggml_tensor * ggml_relu_impl( @@ -6874,6 +6999,8 @@ struct ggml_tensor * ggml_rope_back( int n_dims, int mode) { GGML_ASSERT(n_past >= 0); + GGML_ASSERT((mode & 4) == 0 && "ggml_rope_back() for ChatGLM not implemented yet"); + bool is_node = false; if (a->grad) { @@ -6974,15 +7101,21 @@ struct ggml_tensor * ggml_clamp( return result; } -// ggml_conv_1d_s1_ph +// ggml_conv_1d -struct ggml_tensor * ggml_conv_1d_s1_ph( +static int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d) { + return (ins + 2 * p - d * (ks - 1) - 1) / s + 1; +} + +GGML_API struct ggml_tensor * ggml_conv_1d( struct ggml_context * ctx, struct ggml_tensor * a, - struct ggml_tensor * b) { + struct ggml_tensor * b, + int s0, + int p0, + int d0) { GGML_ASSERT(ggml_is_matrix(b)); GGML_ASSERT(a->ne[1] == b->ne[1]); - GGML_ASSERT(a->ne[3] == 1); bool is_node = false; if (a->grad || b->grad) { @@ -6990,26 +7123,43 @@ struct ggml_tensor * ggml_conv_1d_s1_ph( is_node = true; } - const int64_t ne[4] = { b->ne[0], a->ne[2], 1, 1, }; - struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne); + const int64_t ne[4] = { + ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0), + a->ne[2], 1, 1, + }; + struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne); + + ggml_scratch_save(ctx); + struct ggml_tensor* c = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3); + ((int32_t*)c->data)[0] = s0; + ((int32_t*)c->data)[1] = p0; + ((int32_t*)c->data)[2] = d0; + ggml_scratch_load(ctx); - result->op = GGML_OP_CONV_1D_S1_PH; + result->op = GGML_OP_CONV_1D; result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; result->src0 = a; result->src1 = b; + result->opt[0] = c; return result; } -// ggml_conv_1d_s2_ph +// ggml_conv_2d -struct ggml_tensor * ggml_conv_1d_s2_ph( - struct ggml_context * ctx, - struct ggml_tensor * a, - struct ggml_tensor * b) { - GGML_ASSERT(ggml_is_matrix(b)); - GGML_ASSERT(a->ne[1] == b->ne[1]); - GGML_ASSERT(a->ne[3] == 1); +struct ggml_tensor* ggml_conv_2d( + struct ggml_context* ctx, + struct ggml_tensor * a, + struct ggml_tensor * b, + int s0, + int s1, + int p0, + int p1, + int d0, + int d1) { + + GGML_ASSERT(b->ne[3] == 1); + GGML_ASSERT(a->ne[2] == b->ne[2]); bool is_node = false; if (a->grad || b->grad) { @@ -7017,43 +7167,42 @@ struct ggml_tensor * ggml_conv_1d_s2_ph( is_node = true; } - const int64_t ne[4] = { b->ne[0]/2, a->ne[2], 1, 1, }; - struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne); + const int64_t ne[4] = { + ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0), + ggml_calc_conv_output_size(b->ne[1], a->ne[1], s1, p1, d1), + a->ne[3], 1, + }; + struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne); + + ggml_scratch_save(ctx); + struct ggml_tensor* c = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 6); + ((int32_t*)c->data)[0] = s0; + ((int32_t*)c->data)[1] = s1; + ((int32_t*)c->data)[2] = p0; + ((int32_t*)c->data)[3] = p1; + ((int32_t*)c->data)[4] = d0; + ((int32_t*)c->data)[5] = d1; + ggml_scratch_load(ctx); - result->op = GGML_OP_CONV_1D_S2_PH; + result->op = GGML_OP_CONV_2D; result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; result->src0 = a; result->src1 = b; + result->opt[0] = c; return result; + } -// ggml_conv_2d_sk_p0 +// ggml_conv_1d_ph -struct ggml_tensor * ggml_conv_2d_sk_p0( +struct ggml_tensor* ggml_conv_1d_ph( struct ggml_context * ctx, struct ggml_tensor * a, - struct ggml_tensor * b) { - GGML_ASSERT(b->ne[3] == 1); - GGML_ASSERT(a->ne[2] == b->ne[2]); - GGML_ASSERT(b->ne[0] % a->ne[0] == 0); - GGML_ASSERT(b->ne[1] % a->ne[1] == 0); - bool is_node = false; - - if (a->grad || b->grad) { - GGML_ASSERT(false); // TODO: implement backward - is_node = true; - } - - const int64_t ne[4] = { b->ne[0]/a->ne[0], b->ne[1]/a->ne[1], a->ne[3], 1, }; - struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne); - - result->op = GGML_OP_CONV_2D_SK_P0; - result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; - result->src0 = a; - result->src1 = b; - - return result; + struct ggml_tensor * b, + int s, + int d) { + return ggml_conv_1d(ctx, a, b, s, a->ne[0] / 2, d); } // ggml_flash_attn @@ -7603,25 +7752,7 @@ static void ggml_compute_forward_dup_f16( return; } - const int64_t ne00 = src0->ne[0]; - const int64_t ne01 = src0->ne[1]; - const int64_t ne02 = src0->ne[2]; - const int64_t ne03 = src0->ne[3]; - - const int64_t ne0 = dst->ne[0]; - const int64_t ne1 = dst->ne[1]; - const int64_t ne2 = dst->ne[2]; - const int64_t ne3 = dst->ne[3]; - - const size_t nb00 = src0->nb[0]; - const size_t nb01 = src0->nb[1]; - const size_t nb02 = src0->nb[2]; - const size_t nb03 = src0->nb[3]; - - const size_t nb0 = dst->nb[0]; - const size_t nb1 = dst->nb[1]; - const size_t nb2 = dst->nb[2]; - const size_t nb3 = dst->nb[3]; + GGML_TENSOR_UNARY_OP_LOCALS; const int ith = params->ith; // thread index const int nth = params->nth; // number of threads @@ -7892,25 +8023,7 @@ static void ggml_compute_forward_dup_f32( return; } - const int64_t ne00 = src0->ne[0]; - const int64_t ne01 = src0->ne[1]; - const int64_t ne02 = src0->ne[2]; - const int64_t ne03 = src0->ne[3]; - - const int64_t ne0 = dst->ne[0]; - const int64_t ne1 = dst->ne[1]; - const int64_t ne2 = dst->ne[2]; - const int64_t ne3 = dst->ne[3]; - - const size_t nb00 = src0->nb[0]; - const size_t nb01 = src0->nb[1]; - const size_t nb02 = src0->nb[2]; - const size_t nb03 = src0->nb[3]; - - const size_t nb0 = dst->nb[0]; - const size_t nb1 = dst->nb[1]; - const size_t nb2 = dst->nb[2]; - const size_t nb3 = dst->nb[3]; + GGML_TENSOR_UNARY_OP_LOCALS; const int ith = params->ith; // thread index const int nth = params->nth; // number of threads @@ -8208,24 +8321,8 @@ static void ggml_compute_forward_add_f32( const int nth = params->nth; const int nr = ggml_nrows(src0); - const int64_t ne0 = src0->ne[0]; - const int64_t ne1 = src0->ne[1]; - const int64_t ne2 = src0->ne[2]; - - const size_t nb00 = src0->nb[0]; - const size_t nb01 = src0->nb[1]; - const size_t nb02 = src0->nb[2]; - const size_t nb03 = src0->nb[3]; - const size_t nb10 = src1->nb[0]; - const size_t nb11 = src1->nb[1]; - const size_t nb12 = src1->nb[2]; - const size_t nb13 = src1->nb[3]; - - const size_t nb0 = dst->nb[0]; - const size_t nb1 = dst->nb[1]; - const size_t nb2 = dst->nb[2]; - const size_t nb3 = dst->nb[3]; + GGML_TENSOR_BINARY_OP_LOCALS; GGML_ASSERT( nb0 == sizeof(float)); GGML_ASSERT(nb00 == sizeof(float)); @@ -8294,28 +8391,12 @@ static void ggml_compute_forward_add_f16_f32( const int nth = params->nth; const int nr = ggml_nrows(src0); - const int64_t ne0 = src0->ne[0]; - const int64_t ne1 = src0->ne[1]; - const int64_t ne2 = src0->ne[2]; - - const size_t nb00 = src0->nb[0]; - const size_t nb01 = src0->nb[1]; - const size_t nb02 = src0->nb[2]; - const size_t nb03 = src0->nb[3]; - const size_t nb10 = src1->nb[0]; - const size_t nb11 = src1->nb[1]; - const size_t nb12 = src1->nb[2]; - const size_t nb13 = src1->nb[3]; - - const size_t nb0 = dst->nb[0]; - const size_t nb1 = dst->nb[1]; - const size_t nb2 = dst->nb[2]; - const size_t nb3 = dst->nb[3]; + GGML_TENSOR_BINARY_OP_LOCALS; GGML_ASSERT(src0->type == GGML_TYPE_F16); GGML_ASSERT(src1->type == GGML_TYPE_F32); - GGML_ASSERT(dst->type == GGML_TYPE_F16); + GGML_ASSERT(dst->type == GGML_TYPE_F16); GGML_ASSERT( nb0 == sizeof(ggml_fp16_t)); GGML_ASSERT(nb00 == sizeof(ggml_fp16_t)); @@ -8364,24 +8445,8 @@ static void ggml_compute_forward_add_f16_f16( const int nth = params->nth; const int nr = ggml_nrows(src0); - const int64_t ne0 = src0->ne[0]; - const int64_t ne1 = src0->ne[1]; - const int64_t ne2 = src0->ne[2]; - - const size_t nb00 = src0->nb[0]; - const size_t nb01 = src0->nb[1]; - const size_t nb02 = src0->nb[2]; - const size_t nb03 = src0->nb[3]; - - const size_t nb10 = src1->nb[0]; - const size_t nb11 = src1->nb[1]; - const size_t nb12 = src1->nb[2]; - const size_t nb13 = src1->nb[3]; - const size_t nb0 = dst->nb[0]; - const size_t nb1 = dst->nb[1]; - const size_t nb2 = dst->nb[2]; - const size_t nb3 = dst->nb[3]; + GGML_TENSOR_BINARY_OP_LOCALS; GGML_ASSERT(src0->type == GGML_TYPE_F16); GGML_ASSERT(src1->type == GGML_TYPE_F16); @@ -8431,25 +8496,8 @@ static void ggml_compute_forward_add_q_f32( } const int nr = ggml_nrows(src0); - const int64_t ne00 = src0->ne[0]; - const int64_t ne01 = src0->ne[1]; - const int64_t ne02 = src0->ne[2]; - //const int64_t ne03 = src0->ne[3]; - - const size_t nb00 = src0->nb[0]; - const size_t nb01 = src0->nb[1]; - const size_t nb02 = src0->nb[2]; - const size_t nb03 = src0->nb[3]; - - const size_t nb10 = src1->nb[0]; - const size_t nb11 = src1->nb[1]; - const size_t nb12 = src1->nb[2]; - const size_t nb13 = src1->nb[3]; - const size_t nb0 = dst->nb[0]; - const size_t nb1 = dst->nb[1]; - const size_t nb2 = dst->nb[2]; - const size_t nb3 = dst->nb[3]; + GGML_TENSOR_BINARY_OP_LOCALS; const int ith = params->ith; const int nth = params->nth; @@ -8570,19 +8618,8 @@ static void ggml_compute_forward_add1_f32( const int nth = params->nth; const int nr = ggml_nrows(src0); - const int64_t ne0 = src0->ne[0]; - const int64_t ne1 = src0->ne[1]; - const int64_t ne2 = src0->ne[2]; - - const size_t nb00 = src0->nb[0]; - const size_t nb01 = src0->nb[1]; - const size_t nb02 = src0->nb[2]; - const size_t nb03 = src0->nb[3]; - const size_t nb0 = dst->nb[0]; - const size_t nb1 = dst->nb[1]; - const size_t nb2 = dst->nb[2]; - const size_t nb3 = dst->nb[3]; + GGML_TENSOR_UNARY_OP_LOCALS; GGML_ASSERT( nb0 == sizeof(float)); GGML_ASSERT(nb00 == sizeof(float)); @@ -8636,23 +8673,12 @@ static void ggml_compute_forward_add1_f16_f32( const int nth = params->nth; const int nr = ggml_nrows(src0); - const int64_t ne0 = src0->ne[0]; - const int64_t ne1 = src0->ne[1]; - const int64_t ne2 = src0->ne[2]; - - const size_t nb00 = src0->nb[0]; - const size_t nb01 = src0->nb[1]; - const size_t nb02 = src0->nb[2]; - const size_t nb03 = src0->nb[3]; - const size_t nb0 = dst->nb[0]; - const size_t nb1 = dst->nb[1]; - const size_t nb2 = dst->nb[2]; - const size_t nb3 = dst->nb[3]; + GGML_TENSOR_UNARY_OP_LOCALS; GGML_ASSERT(src0->type == GGML_TYPE_F16); GGML_ASSERT(src1->type == GGML_TYPE_F32); - GGML_ASSERT(dst->type == GGML_TYPE_F16); + GGML_ASSERT(dst->type == GGML_TYPE_F16); GGML_ASSERT( nb0 == sizeof(ggml_fp16_t)); GGML_ASSERT(nb00 == sizeof(ggml_fp16_t)); @@ -8697,23 +8723,12 @@ static void ggml_compute_forward_add1_f16_f16( const int nth = params->nth; const int nr = ggml_nrows(src0); - const int64_t ne0 = src0->ne[0]; - const int64_t ne1 = src0->ne[1]; - const int64_t ne2 = src0->ne[2]; - - const size_t nb00 = src0->nb[0]; - const size_t nb01 = src0->nb[1]; - const size_t nb02 = src0->nb[2]; - const size_t nb03 = src0->nb[3]; - const size_t nb0 = dst->nb[0]; - const size_t nb1 = dst->nb[1]; - const size_t nb2 = dst->nb[2]; - const size_t nb3 = dst->nb[3]; + GGML_TENSOR_UNARY_OP_LOCALS; GGML_ASSERT(src0->type == GGML_TYPE_F16); GGML_ASSERT(src1->type == GGML_TYPE_F16); - GGML_ASSERT(dst->type == GGML_TYPE_F16); + GGML_ASSERT(dst->type == GGML_TYPE_F16); GGML_ASSERT( nb0 == sizeof(ggml_fp16_t)); GGML_ASSERT(nb00 == sizeof(ggml_fp16_t)); @@ -8758,19 +8773,8 @@ static void ggml_compute_forward_add1_q_f32( const int nth = params->nth; const int nr = ggml_nrows(src0); - const int64_t ne0 = src0->ne[0]; - const int64_t ne1 = src0->ne[1]; - const int64_t ne2 = src0->ne[2]; - - const size_t nb00 = src0->nb[0]; - const size_t nb01 = src0->nb[1]; - const size_t nb02 = src0->nb[2]; - const size_t nb03 = src0->nb[3]; - const size_t nb0 = dst->nb[0]; - const size_t nb1 = dst->nb[1]; - const size_t nb2 = dst->nb[2]; - const size_t nb3 = dst->nb[3]; + GGML_TENSOR_UNARY_OP_LOCALS; const enum ggml_type type = src0->type; dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q; @@ -8902,15 +8906,8 @@ static void ggml_compute_forward_acc_f32( const int nr = ggml_nrows(src1); const int nc = src1->ne[0]; - const int64_t ne10 = src1->ne[0]; - const int64_t ne11 = src1->ne[1]; - const int64_t ne12 = src1->ne[2]; - const int64_t ne13 = src1->ne[3]; - - const size_t nb10 = src1->nb[0]; - const size_t nb11 = src1->nb[1]; - const size_t nb12 = src1->nb[2]; - const size_t nb13 = src1->nb[3]; + GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne); + GGML_TENSOR_LOCALS(size_t, nb1, src1, nb); // src0 and dst as viewed during acc const size_t nb0 = ggml_element_size(src0); @@ -8999,24 +8996,8 @@ static void ggml_compute_forward_sub_f32( } const int nr = ggml_nrows(src0); - const int64_t ne0 = src0->ne[0]; - const int64_t ne1 = src0->ne[1]; - const int64_t ne2 = src0->ne[2]; - - const size_t nb00 = src0->nb[0]; - const size_t nb01 = src0->nb[1]; - const size_t nb02 = src0->nb[2]; - const size_t nb03 = src0->nb[3]; - - const size_t nb10 = src1->nb[0]; - const size_t nb11 = src1->nb[1]; - const size_t nb12 = src1->nb[2]; - const size_t nb13 = src1->nb[3]; - const size_t nb0 = dst->nb[0]; - const size_t nb1 = dst->nb[1]; - const size_t nb2 = dst->nb[2]; - const size_t nb3 = dst->nb[3]; + GGML_TENSOR_BINARY_OP_LOCALS; GGML_ASSERT( nb0 == sizeof(float)); GGML_ASSERT(nb00 == sizeof(float)); @@ -9106,29 +9087,7 @@ static void ggml_compute_forward_mul_f32( const int64_t nr = ggml_nrows(src0); - const int64_t ne00 = src0->ne[0]; - const int64_t ne01 = src0->ne[1]; - const int64_t ne02 = src0->ne[2]; - - const int64_t ne10 = src1->ne[0]; - const int64_t ne11 = src1->ne[1]; - const int64_t ne12 = src1->ne[2]; - const int64_t ne13 = src1->ne[3]; - - const size_t nb00 = src0->nb[0]; - const size_t nb01 = src0->nb[1]; - const size_t nb02 = src0->nb[2]; - const size_t nb03 = src0->nb[3]; - - const size_t nb10 = src1->nb[0]; - const size_t nb11 = src1->nb[1]; - const size_t nb12 = src1->nb[2]; - const size_t nb13 = src1->nb[3]; - - const size_t nb0 = dst->nb[0]; - const size_t nb1 = dst->nb[1]; - const size_t nb2 = dst->nb[2]; - const size_t nb3 = dst->nb[3]; + GGML_TENSOR_BINARY_OP_LOCALS; GGML_ASSERT( nb0 == sizeof(float)); GGML_ASSERT(nb00 == sizeof(float)); @@ -9216,24 +9175,8 @@ static void ggml_compute_forward_div_f32( } const int nr = ggml_nrows(src0); - const int64_t ne0 = src0->ne[0]; - const int64_t ne1 = src0->ne[1]; - const int64_t ne2 = src0->ne[2]; - - const size_t nb00 = src0->nb[0]; - const size_t nb01 = src0->nb[1]; - const size_t nb02 = src0->nb[2]; - const size_t nb03 = src0->nb[3]; - const size_t nb10 = src1->nb[0]; - const size_t nb11 = src1->nb[1]; - const size_t nb12 = src1->nb[2]; - const size_t nb13 = src1->nb[3]; - - const size_t nb0 = dst->nb[0]; - const size_t nb1 = dst->nb[1]; - const size_t nb2 = dst->nb[2]; - const size_t nb3 = dst->nb[3]; + GGML_TENSOR_BINARY_OP_LOCALS; GGML_ASSERT( nb0 == sizeof(float)); GGML_ASSERT(nb00 == sizeof(float)); @@ -9440,14 +9383,8 @@ static void ggml_compute_forward_sum_f32( assert(ggml_is_scalar(dst)); assert(src0->nb[0] == sizeof(float)); - const int64_t ne00 = src0->ne[0]; - const int64_t ne01 = src0->ne[1]; - const int64_t ne02 = src0->ne[2]; - const int64_t ne03 = src0->ne[3]; - - const size_t nb01 = src0->nb[1]; - const size_t nb02 = src0->nb[2]; - const size_t nb03 = src0->nb[3]; + GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne); + GGML_TENSOR_LOCALS(size_t, nb0, src0, nb); ggml_float sum = 0; ggml_float row_sum = 0; @@ -9496,29 +9433,13 @@ static void ggml_compute_forward_sum_rows_f32( GGML_ASSERT(src0->nb[0] == sizeof(float)); GGML_ASSERT(dst->nb[0] == sizeof(float)); - const int64_t ne00 = src0->ne[0]; - const int64_t ne01 = src0->ne[1]; - const int64_t ne02 = src0->ne[2]; - const int64_t ne03 = src0->ne[3]; - - const int64_t ne0 = dst->ne[0]; - const int64_t ne1 = dst->ne[1]; - const int64_t ne2 = dst->ne[2]; - const int64_t ne3 = dst->ne[3]; + GGML_TENSOR_UNARY_OP_LOCALS; GGML_ASSERT(ne0 == 1); GGML_ASSERT(ne1 == ne01); GGML_ASSERT(ne2 == ne02); GGML_ASSERT(ne3 == ne03); - const size_t nb01 = src0->nb[1]; - const size_t nb02 = src0->nb[2]; - const size_t nb03 = src0->nb[3]; - - const size_t nb1 = dst->nb[1]; - const size_t nb2 = dst->nb[2]; - const size_t nb3 = dst->nb[3]; - for (int64_t i3 = 0; i3 < ne03; i3++) { for (int64_t i2 = 0; i2 < ne02; i2++) { for (int64_t i1 = 0; i1 < ne01; i1++) { @@ -9562,19 +9483,7 @@ static void ggml_compute_forward_mean_f32( assert(src0->nb[0] == sizeof(float)); - const int64_t ne00 = src0->ne[0]; - const int64_t ne01 = src0->ne[1]; - const int64_t ne02 = src0->ne[2]; - const int64_t ne03 = src0->ne[3]; - - const size_t nb01 = src0->nb[1]; - const size_t nb02 = src0->nb[2]; - const size_t nb03 = src0->nb[3]; - - const int64_t ne0 = dst->ne[0]; - const int64_t ne1 = dst->ne[1]; - const int64_t ne2 = dst->ne[2]; - const int64_t ne3 = dst->ne[3]; + GGML_TENSOR_UNARY_OP_LOCALS; assert(ne0 == 1); assert(ne1 == ne01); @@ -9586,10 +9495,6 @@ static void ggml_compute_forward_mean_f32( UNUSED(ne2); UNUSED(ne3); - const size_t nb1 = dst->nb[1]; - const size_t nb2 = dst->nb[2]; - const size_t nb3 = dst->nb[3]; - for (int64_t i03 = 0; i03 < ne03; i03++) { for (int64_t i02 = 0; i02 < ne02; i02++) { for (int64_t i01 = 0; i01 < ne01; i01++) { @@ -9619,46 +9524,74 @@ static void ggml_compute_forward_mean( } } -// ggml_compute_forward_repeat +// ggml_compute_forward_argmax -static void ggml_compute_forward_repeat_f32( +static void ggml_compute_forward_argmax_f32( const struct ggml_compute_params * params, const struct ggml_tensor * src0, struct ggml_tensor * dst) { - GGML_ASSERT(params->ith == 0); - GGML_ASSERT(ggml_can_repeat(src0, dst)); + assert(params->ith == 0); if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { return; } - const int64_t ne0 = dst->ne[0]; - const int64_t ne1 = dst->ne[1]; - const int64_t ne2 = dst->ne[2]; - const int64_t ne3 = dst->ne[3]; + assert(src0->nb[0] == sizeof(float)); + assert(dst->nb[0] == sizeof(float)); const int64_t ne00 = src0->ne[0]; const int64_t ne01 = src0->ne[1]; - const int64_t ne02 = src0->ne[2]; - const int64_t ne03 = src0->ne[3]; - - const size_t nb0 = dst->nb[0]; - const size_t nb1 = dst->nb[1]; - const size_t nb2 = dst->nb[2]; - const size_t nb3 = dst->nb[3]; - const size_t nb00 = src0->nb[0]; const size_t nb01 = src0->nb[1]; - const size_t nb02 = src0->nb[2]; - const size_t nb03 = src0->nb[3]; + const size_t nb0 = dst->nb[0]; - // guaranteed to be an integer due to the check in ggml_can_repeat - const int nr0 = (int)(ne0/ne00); - const int nr1 = (int)(ne1/ne01); - const int nr2 = (int)(ne2/ne02); - const int nr3 = (int)(ne3/ne03); + for (int64_t i1 = 0; i1 < ne01; i1++) { + float * src = (float *) ((char *) src0->data + i1*nb01); + int32_t * dst_ = (int32_t *) ((char *) dst->data + i1*nb0); + int v = 0; + ggml_vec_argmax_f32(ne00, &v, src); + dst_[0] = v; + } +} - // TODO: support for transposed / permuted tensors +static void ggml_compute_forward_argmax( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + struct ggml_tensor * dst) { + switch (src0->type) { + case GGML_TYPE_F32: + { + ggml_compute_forward_argmax_f32(params, src0, dst); + } break; + default: + { + GGML_ASSERT(false); + } break; + } +} + +// ggml_compute_forward_repeat + +static void ggml_compute_forward_repeat_f32( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + struct ggml_tensor * dst) { + GGML_ASSERT(params->ith == 0); + GGML_ASSERT(ggml_can_repeat(src0, dst)); + + if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + return; + } + + GGML_TENSOR_UNARY_OP_LOCALS; + + // guaranteed to be an integer due to the check in ggml_can_repeat + const int nr0 = (int)(ne0/ne00); + const int nr1 = (int)(ne1/ne01); + const int nr2 = (int)(ne2/ne02); + const int nr3 = (int)(ne3/ne03); + + // TODO: support for transposed / permuted tensors GGML_ASSERT(nb0 == sizeof(float)); GGML_ASSERT(nb00 == sizeof(float)); @@ -9711,25 +9644,7 @@ static void ggml_compute_forward_repeat_back_f32( return; } - const int64_t ne0 = dst->ne[0]; - const int64_t ne1 = dst->ne[1]; - const int64_t ne2 = dst->ne[2]; - const int64_t ne3 = dst->ne[3]; - - const int64_t ne00 = src0->ne[0]; - const int64_t ne01 = src0->ne[1]; - const int64_t ne02 = src0->ne[2]; - const int64_t ne03 = src0->ne[3]; - - const size_t nb0 = dst->nb[0]; - const size_t nb1 = dst->nb[1]; - const size_t nb2 = dst->nb[2]; - const size_t nb3 = dst->nb[3]; - - const size_t nb00 = src0->nb[0]; - const size_t nb01 = src0->nb[1]; - const size_t nb02 = src0->nb[2]; - const size_t nb03 = src0->nb[3]; + GGML_TENSOR_UNARY_OP_LOCALS; // guaranteed to be an integer due to the check in ggml_can_repeat const int nr0 = (int)(ne00/ne0); @@ -9959,6 +9874,90 @@ static void ggml_compute_forward_step( } } +// ggml_compute_forward_tanh + +static void ggml_compute_forward_tanh_f32( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + struct ggml_tensor * dst) { + assert(params->ith == 0); + assert(ggml_are_same_shape(src0, dst)); + + if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + return; + } + + const int n = ggml_nrows(src0); + const int nc = src0->ne[0]; + + assert(dst->nb[0] == sizeof(float)); + assert(src0->nb[0] == sizeof(float)); + + for (int i = 0; i < n; i++) { + ggml_vec_tanh_f32(nc, + (float *) ((char *) dst->data + i*( dst->nb[1])), + (float *) ((char *) src0->data + i*(src0->nb[1]))); + } +} + +static void ggml_compute_forward_tanh( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + struct ggml_tensor * dst) { + switch (src0->type) { + case GGML_TYPE_F32: + { + ggml_compute_forward_tanh_f32(params, src0, dst); + } break; + default: + { + GGML_ASSERT(false); + } break; + } +} + +// ggml_compute_forward_elu + +static void ggml_compute_forward_elu_f32( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + struct ggml_tensor * dst) { + assert(params->ith == 0); + assert(ggml_are_same_shape(src0, dst)); + + if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + return; + } + + const int n = ggml_nrows(src0); + const int nc = src0->ne[0]; + + assert(dst->nb[0] == sizeof(float)); + assert(src0->nb[0] == sizeof(float)); + + for (int i = 0; i < n; i++) { + ggml_vec_elu_f32(nc, + (float *) ((char *) dst->data + i*( dst->nb[1])), + (float *) ((char *) src0->data + i*(src0->nb[1]))); + } +} + +static void ggml_compute_forward_elu( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + struct ggml_tensor * dst) { + switch (src0->type) { + case GGML_TYPE_F32: + { + ggml_compute_forward_elu_f32(params, src0, dst); + } break; + default: + { + GGML_ASSERT(false); + } break; + } +} + // ggml_compute_forward_relu static void ggml_compute_forward_relu_f32( @@ -10260,18 +10259,7 @@ static void ggml_compute_forward_norm_f32( const int ith = params->ith; const int nth = params->nth; - const int64_t ne00 = src0->ne[0]; - const int64_t ne01 = src0->ne[1]; - const int64_t ne02 = src0->ne[2]; - const int64_t ne03 = src0->ne[3]; - - const size_t nb01 = src0->nb[1]; - const size_t nb02 = src0->nb[2]; - const size_t nb03 = src0->nb[3]; - - const size_t nb1 = dst->nb[1]; - const size_t nb2 = dst->nb[2]; - const size_t nb3 = dst->nb[3]; + GGML_TENSOR_UNARY_OP_LOCALS; const float eps = 1e-5f; // TODO: make this a parameter @@ -10337,18 +10325,7 @@ static void ggml_compute_forward_rms_norm_f32( const int ith = params->ith; const int nth = params->nth; - const int64_t ne00 = src0->ne[0]; - const int64_t ne01 = src0->ne[1]; - const int64_t ne02 = src0->ne[2]; - const int64_t ne03 = src0->ne[3]; - - const size_t nb01 = src0->nb[1]; - const size_t nb02 = src0->nb[2]; - const size_t nb03 = src0->nb[3]; - - const size_t nb1 = dst->nb[1]; - const size_t nb2 = dst->nb[2]; - const size_t nb3 = dst->nb[3]; + GGML_TENSOR_UNARY_OP_LOCALS; const float eps = 1e-6f; // TODO: make this a parameter @@ -10413,22 +10390,7 @@ static void ggml_compute_forward_rms_norm_back_f32( const int ith = params->ith; const int nth = params->nth; - const int64_t ne00 = src0->ne[0]; - const int64_t ne01 = src0->ne[1]; - const int64_t ne02 = src0->ne[2]; - const int64_t ne03 = src0->ne[3]; - - const size_t nb01 = src0->nb[1]; - const size_t nb02 = src0->nb[2]; - const size_t nb03 = src0->nb[3]; - - const size_t nb11 = src1->nb[1]; - const size_t nb12 = src1->nb[2]; - const size_t nb13 = src1->nb[3]; - - const size_t nb1 = dst->nb[1]; - const size_t nb2 = dst->nb[2]; - const size_t nb3 = dst->nb[3]; + GGML_TENSOR_BINARY_OP_LOCALS; const float eps = 1e-6f; // TODO: make this a parameter @@ -10624,41 +10586,7 @@ static void ggml_compute_forward_mul_mat_f32( int64_t t0 = ggml_perf_time_us(); UNUSED(t0); - const int64_t ne00 = src0->ne[0]; - const int64_t ne01 = src0->ne[1]; - const int64_t ne02 = src0->ne[2]; - const int64_t ne03 = src0->ne[3]; - -#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) - const int64_t ne10 = src1->ne[0]; -#endif - const int64_t ne11 = src1->ne[1]; -#ifndef NDEBUG - const int64_t ne12 = src1->ne[2]; - const int64_t ne13 = src1->ne[3]; - - const int64_t ne0 = dst->ne[0]; - const int64_t ne1 = dst->ne[1]; - const int64_t ne2 = dst->ne[2]; - const int64_t ne3 = dst->ne[3]; - - const int nb00 = src0->nb[0]; -#endif - const int nb01 = src0->nb[1]; - const int nb02 = src0->nb[2]; - const int nb03 = src0->nb[3]; - -#ifndef NDEBUG - const int nb10 = src1->nb[0]; -#endif - const int nb11 = src1->nb[1]; - const int nb12 = src1->nb[2]; - const int nb13 = src1->nb[3]; - - const int nb0 = dst->nb[0]; - const int nb1 = dst->nb[1]; - const int nb2 = dst->nb[2]; - const int nb3 = dst->nb[3]; + GGML_TENSOR_BINARY_OP_LOCALS; const int ith = params->ith; const int nth = params->nth; @@ -10795,37 +10723,10 @@ static void ggml_compute_forward_mul_mat_f16_f32( int64_t t0 = ggml_perf_time_us(); UNUSED(t0); - const int64_t ne00 = src0->ne[0]; - const int64_t ne01 = src0->ne[1]; - const int64_t ne02 = src0->ne[2]; - const int64_t ne03 = src0->ne[3]; + GGML_TENSOR_BINARY_OP_LOCALS; - const int64_t ne10 = src1->ne[0]; - const int64_t ne11 = src1->ne[1]; - const int64_t ne12 = src1->ne[2]; - const int64_t ne13 = src1->ne[3]; - - const int64_t ne0 = dst->ne[0]; - const int64_t ne1 = dst->ne[1]; - const int64_t ne2 = dst->ne[2]; - const int64_t ne3 = dst->ne[3]; //const int64_t ne = ne0*ne1*ne2*ne3; - const int nb00 = src0->nb[0]; - const int nb01 = src0->nb[1]; - const int nb02 = src0->nb[2]; - const int nb03 = src0->nb[3]; - - const int nb10 = src1->nb[0]; - const int nb11 = src1->nb[1]; - const int nb12 = src1->nb[2]; - const int nb13 = src1->nb[3]; - - const int nb0 = dst->nb[0]; - const int nb1 = dst->nb[1]; - const int nb2 = dst->nb[2]; - const int nb3 = dst->nb[3]; - const int ith = params->ith; const int nth = params->nth; @@ -10995,35 +10896,7 @@ static void ggml_compute_forward_mul_mat_q_f32( int64_t t0 = ggml_perf_time_us(); UNUSED(t0); - const int64_t ne00 = src0->ne[0]; - const int64_t ne01 = src0->ne[1]; - const int64_t ne02 = src0->ne[2]; - const int64_t ne03 = src0->ne[3]; - - const int64_t ne10 = src1->ne[0]; - const int64_t ne11 = src1->ne[1]; - const int64_t ne12 = src1->ne[2]; - const int64_t ne13 = src1->ne[3]; - - const int64_t ne0 = dst->ne[0]; - const int64_t ne1 = dst->ne[1]; - const int64_t ne2 = dst->ne[2]; - const int64_t ne3 = dst->ne[3]; - - const int nb00 = src0->nb[0]; - const int nb01 = src0->nb[1]; - const int nb02 = src0->nb[2]; - const int nb03 = src0->nb[3]; - - const int nb10 = src1->nb[0]; - const int nb11 = src1->nb[1]; - const int nb12 = src1->nb[2]; - const int nb13 = src1->nb[3]; - - const int nb0 = dst->nb[0]; - const int nb1 = dst->nb[1]; - const int nb2 = dst->nb[2]; - const int nb3 = dst->nb[3]; + GGML_TENSOR_BINARY_OP_LOCALS; const int ith = params->ith; const int nth = params->nth; @@ -11039,7 +10912,7 @@ static void ggml_compute_forward_mul_mat_q_f32( enum ggml_type const vec_dot_type = quantize_fns[type].vec_dot_type; // we don't support permuted src0 or src1 - GGML_ASSERT(nb00 == (int) GGML_TYPE_SIZE[type]); + GGML_ASSERT(nb00 == GGML_TYPE_SIZE[type]); GGML_ASSERT(nb10 == sizeof(float)); // dst cannot be transposed or permuted @@ -11233,35 +11106,7 @@ static void ggml_compute_forward_out_prod_f32( int64_t t0 = ggml_perf_time_us(); UNUSED(t0); - const int64_t ne00 = src0->ne[0]; - const int64_t ne01 = src0->ne[1]; - const int64_t ne02 = src0->ne[2]; - const int64_t ne03 = src0->ne[3]; - - const int64_t ne10 = src1->ne[0]; - //const int64_t ne11 = src1->ne[1]; - const int64_t ne12 = src1->ne[2]; - const int64_t ne13 = src1->ne[3]; - - const int64_t ne0 = dst->ne[0]; - const int64_t ne1 = dst->ne[1]; - const int64_t ne2 = dst->ne[2]; - const int64_t ne3 = dst->ne[3]; - - const int nb00 = src0->nb[0]; - const int nb01 = src0->nb[1]; - const int nb02 = src0->nb[2]; - const int nb03 = src0->nb[3]; - - const int nb10 = src1->nb[0]; - const int nb11 = src1->nb[1]; - const int nb12 = src1->nb[2]; - const int nb13 = src1->nb[3]; - - const int nb0 = dst->nb[0]; - const int nb1 = dst->nb[1]; - const int nb2 = dst->nb[2]; - const int nb3 = dst->nb[3]; + GGML_TENSOR_BINARY_OP_LOCALS; const int ith = params->ith; const int nth = params->nth; @@ -11496,15 +11341,8 @@ static void ggml_compute_forward_set_f32( const int nr = ggml_nrows(src1); const int nc = src1->ne[0]; - const int64_t ne10 = src1->ne[0]; - const int64_t ne11 = src1->ne[1]; - const int64_t ne12 = src1->ne[2]; - const int64_t ne13 = src1->ne[3]; - - const size_t nb10 = src1->nb[0]; - const size_t nb11 = src1->nb[1]; - const size_t nb12 = src1->nb[2]; - const size_t nb13 = src1->nb[3]; + GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne); + GGML_TENSOR_LOCALS(size_t, nb1, src1, nb); // src0 and dst as viewed during set const size_t nb0 = ggml_element_size(src0); @@ -11895,29 +11733,14 @@ static void ggml_compute_forward_diag_f32( // TODO: handle transposed/permuted matrices - const int ne00 = src0->ne[0]; - const int ne01 = src0->ne[1]; - const int ne02 = src0->ne[2]; - const int ne03 = src0->ne[3]; - const int ne0 = dst->ne[0]; - const int ne1 = dst->ne[1]; - const int ne2 = dst->ne[2]; - const int ne3 = dst->ne[3]; + GGML_TENSOR_UNARY_OP_LOCALS; + GGML_ASSERT(ne00 == ne0); GGML_ASSERT(ne00 == ne1); GGML_ASSERT(ne01 == 1); GGML_ASSERT(ne02 == ne2); GGML_ASSERT(ne03 == ne3); - const int nb00 = src0->nb[0]; - //const int nb01 = src0->nb[1]; - const int nb02 = src0->nb[2]; - const int nb03 = src0->nb[3]; - const int nb0 = dst->nb[0]; - const int nb1 = dst->nb[1]; - const int nb2 = dst->nb[2]; - const int nb3 = dst->nb[3]; - GGML_ASSERT(nb00 == sizeof(float)); GGML_ASSERT(nb0 == sizeof(float)); @@ -12494,20 +12317,7 @@ static void ggml_compute_forward_rope_f32( assert(n_past >= 0); - const size_t nb00 = src0->nb[0]; - const size_t nb01 = src0->nb[1]; - const size_t nb02 = src0->nb[2]; - const size_t nb03 = src0->nb[3]; - - const int64_t ne0 = dst->ne[0]; - const int64_t ne1 = dst->ne[1]; - const int64_t ne2 = dst->ne[2]; - const int64_t ne3 = dst->ne[3]; - - const size_t nb0 = dst->nb[0]; - const size_t nb1 = dst->nb[1]; - const size_t nb2 = dst->nb[2]; - const size_t nb3 = dst->nb[3]; + GGML_TENSOR_UNARY_OP_LOCALS; //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3); //printf("n_past = %d, ne2 = %d\n", n_past, ne2); @@ -12634,20 +12444,7 @@ static void ggml_compute_forward_rope_f16( assert(n_past >= 0); - const size_t nb00 = src0->nb[0]; - const size_t nb01 = src0->nb[1]; - const size_t nb02 = src0->nb[2]; - const size_t nb03 = src0->nb[3]; - - const int64_t ne0 = dst->ne[0]; - const int64_t ne1 = dst->ne[1]; - const int64_t ne2 = dst->ne[2]; - const int64_t ne3 = dst->ne[3]; - - const size_t nb0 = dst->nb[0]; - const size_t nb1 = dst->nb[1]; - const size_t nb2 = dst->nb[2]; - const size_t nb3 = dst->nb[3]; + GGML_TENSOR_UNARY_OP_LOCALS; //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3); //printf("n_past = %d, ne2 = %d\n", n_past, ne2); @@ -12800,21 +12597,7 @@ static void ggml_compute_forward_rope_back_f32( assert(n_past >= 0); - const size_t nb00 = src0->nb[0]; - const size_t nb01 = src0->nb[1]; - const size_t nb02 = src0->nb[2]; - const size_t nb03 = src0->nb[3]; - - const int64_t ne0 = dst->ne[0]; - const int64_t ne1 = dst->ne[1]; - const int64_t ne2 = dst->ne[2]; - const int64_t ne3 = dst->ne[3]; - - const size_t nb0 = dst->nb[0]; - const size_t nb1 = dst->nb[1]; - const size_t nb2 = dst->nb[2]; - const size_t nb3 = dst->nb[3]; - + GGML_TENSOR_UNARY_OP_LOCALS; //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3); //printf("n_past = %d, ne2 = %d\n", n_past, ne2); @@ -12913,21 +12696,7 @@ static void ggml_compute_forward_rope_back_f16( assert(n_past >= 0); - const size_t nb00 = src0->nb[0]; - const size_t nb01 = src0->nb[1]; - const size_t nb02 = src0->nb[2]; - const size_t nb03 = src0->nb[3]; - - const int64_t ne0 = dst->ne[0]; - const int64_t ne1 = dst->ne[1]; - const int64_t ne2 = dst->ne[2]; - const int64_t ne3 = dst->ne[3]; - - const size_t nb0 = dst->nb[0]; - const size_t nb1 = dst->nb[1]; - const size_t nb2 = dst->nb[2]; - const size_t nb3 = dst->nb[3]; - + GGML_TENSOR_UNARY_OP_LOCALS; //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3); //printf("n_past = %d, ne2 = %d\n", n_past, ne2); @@ -13025,7 +12794,7 @@ static void ggml_compute_forward_rope_back( } } -// ggml_compute_forward_conv_1d_s1_ph +// ggml_compute_forward_conv_1d static void ggml_compute_forward_conv_1d_s1_ph_f16_f32( const struct ggml_compute_params * params, @@ -13039,36 +12808,7 @@ static void ggml_compute_forward_conv_1d_s1_ph_f16_f32( int64_t t0 = ggml_perf_time_us(); UNUSED(t0); - const int64_t ne00 = src0->ne[0]; - const int64_t ne01 = src0->ne[1]; - const int64_t ne02 = src0->ne[2]; - //const int64_t ne03 = src0->ne[3]; - - const int64_t ne10 = src1->ne[0]; - const int64_t ne11 = src1->ne[1]; - //const int64_t ne12 = src1->ne[2]; - //const int64_t ne13 = src1->ne[3]; - - //const int64_t ne0 = dst->ne[0]; - //const int64_t ne1 = dst->ne[1]; - //const int64_t ne2 = dst->ne[2]; - //const int64_t ne3 = dst->ne[3]; - //const int64_t ne = ne0*ne1*ne2*ne3; - - const int nb00 = src0->nb[0]; - const int nb01 = src0->nb[1]; - const int nb02 = src0->nb[2]; - //const int nb03 = src0->nb[3]; - - const int nb10 = src1->nb[0]; - const int nb11 = src1->nb[1]; - //const int nb12 = src1->nb[2]; - //const int nb13 = src1->nb[3]; - - //const int nb0 = dst->nb[0]; - const int nb1 = dst->nb[1]; - //const int nb2 = dst->nb[2]; - //const int nb3 = dst->nb[3]; + GGML_TENSOR_BINARY_OP_LOCALS; const int ith = params->ith; const int nth = params->nth; @@ -13159,36 +12899,7 @@ static void ggml_compute_forward_conv_1d_s1_ph_f32( int64_t t0 = ggml_perf_time_us(); UNUSED(t0); - const int64_t ne00 = src0->ne[0]; - const int64_t ne01 = src0->ne[1]; - const int64_t ne02 = src0->ne[2]; - //const int64_t ne03 = src0->ne[3]; - - const int64_t ne10 = src1->ne[0]; - const int64_t ne11 = src1->ne[1]; - //const int64_t ne12 = src1->ne[2]; - //const int64_t ne13 = src1->ne[3]; - - //const int64_t ne0 = dst->ne[0]; - //const int64_t ne1 = dst->ne[1]; - //const int64_t ne2 = dst->ne[2]; - //const int64_t ne3 = dst->ne[3]; - //const int64_t ne = ne0*ne1*ne2*ne3; - - const int nb00 = src0->nb[0]; - const int nb01 = src0->nb[1]; - const int nb02 = src0->nb[2]; - //const int nb03 = src0->nb[3]; - - const int nb10 = src1->nb[0]; - const int nb11 = src1->nb[1]; - //const int nb12 = src1->nb[2]; - //const int nb13 = src1->nb[3]; - - //const int nb0 = dst->nb[0]; - const int nb1 = dst->nb[1]; - //const int nb2 = dst->nb[2]; - //const int nb3 = dst->nb[3]; + GGML_TENSOR_BINARY_OP_LOCALS; const int ith = params->ith; const int nth = params->nth; @@ -13288,8 +12999,6 @@ static void ggml_compute_forward_conv_1d_s1_ph( } } -// ggml_compute_forward_conv_1d_s2_ph - static void ggml_compute_forward_conv_1d_s2_ph_f16_f32( const struct ggml_compute_params * params, const struct ggml_tensor * src0, @@ -13302,36 +13011,7 @@ static void ggml_compute_forward_conv_1d_s2_ph_f16_f32( int64_t t0 = ggml_perf_time_us(); UNUSED(t0); - const int64_t ne00 = src0->ne[0]; - const int64_t ne01 = src0->ne[1]; - const int64_t ne02 = src0->ne[2]; - //const int64_t ne03 = src0->ne[3]; - - const int64_t ne10 = src1->ne[0]; - const int64_t ne11 = src1->ne[1]; - //const int64_t ne12 = src1->ne[2]; - //const int64_t ne13 = src1->ne[3]; - - //const int64_t ne0 = dst->ne[0]; - //const int64_t ne1 = dst->ne[1]; - //const int64_t ne2 = dst->ne[2]; - //const int64_t ne3 = dst->ne[3]; - //const int64_t ne = ne0*ne1*ne2*ne3; - - const int nb00 = src0->nb[0]; - const int nb01 = src0->nb[1]; - const int nb02 = src0->nb[2]; - //const int nb03 = src0->nb[3]; - - const int nb10 = src1->nb[0]; - const int nb11 = src1->nb[1]; - //const int nb12 = src1->nb[2]; - //const int nb13 = src1->nb[3]; - - //const int nb0 = dst->nb[0]; - const int nb1 = dst->nb[1]; - //const int nb2 = dst->nb[2]; - //const int nb3 = dst->nb[3]; + GGML_TENSOR_BINARY_OP_LOCALS; const int ith = params->ith; const int nth = params->nth; @@ -13422,36 +13102,7 @@ static void ggml_compute_forward_conv_1d_s2_ph_f32( int64_t t0 = ggml_perf_time_us(); UNUSED(t0); - const int64_t ne00 = src0->ne[0]; - const int64_t ne01 = src0->ne[1]; - const int64_t ne02 = src0->ne[2]; - //const int64_t ne03 = src0->ne[3]; - - const int64_t ne10 = src1->ne[0]; - const int64_t ne11 = src1->ne[1]; - //const int64_t ne12 = src1->ne[2]; - //const int64_t ne13 = src1->ne[3]; - - //const int64_t ne0 = dst->ne[0]; - //const int64_t ne1 = dst->ne[1]; - //const int64_t ne2 = dst->ne[2]; - //const int64_t ne3 = dst->ne[3]; - //const int64_t ne = ne0*ne1*ne2*ne3; - - const int nb00 = src0->nb[0]; - const int nb01 = src0->nb[1]; - const int nb02 = src0->nb[2]; - //const int nb03 = src0->nb[3]; - - const int nb10 = src1->nb[0]; - const int nb11 = src1->nb[1]; - //const int nb12 = src1->nb[2]; - //const int nb13 = src1->nb[3]; - - //const int nb0 = dst->nb[0]; - const int nb1 = dst->nb[1]; - //const int nb2 = dst->nb[2]; - //const int nb3 = dst->nb[3]; + GGML_TENSOR_BINARY_OP_LOCALS; const int ith = params->ith; const int nth = params->nth; @@ -13551,6 +13202,28 @@ static void ggml_compute_forward_conv_1d_s2_ph( } } +// ggml_compute_forward_conv_1d + +static void ggml_compute_forward_conv_1d( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + const struct ggml_tensor * src1, + const struct ggml_tensor * opt0, + struct ggml_tensor * dst) { + const int32_t s0 = ((const int32_t*)(opt0->data))[0]; + const int32_t p0 = ((const int32_t*)(opt0->data))[1]; + const int32_t d0 = ((const int32_t*)(opt0->data))[2]; + GGML_ASSERT(d0 == 1); // dilation not supported + GGML_ASSERT(p0 == src0->ne[0]/2); // only half padding supported + if (s0 == 1) { + ggml_compute_forward_conv_1d_s1_ph(params, src0, src1, dst); + } else if (s0 == 2) { + ggml_compute_forward_conv_1d_s2_ph(params, src0, src1, dst); + } else { + GGML_ASSERT(false); // only stride 1 and 2 supported + }; +} + // ggml_compute_forward_conv_2d_sk_p0 static void ggml_compute_forward_conv_2d_sk_p0_f16_f32( @@ -13565,36 +13238,7 @@ static void ggml_compute_forward_conv_2d_sk_p0_f16_f32( int64_t t0 = ggml_perf_time_us(); UNUSED(t0); - const int ne00 = src0->ne[0]; - const int ne01 = src0->ne[1]; - const int ne02 = src0->ne[2]; - //const int ne03 = src0->ne[3]; - - const int ne10 = src1->ne[0]; - //const int ne11 = src1->ne[1]; - const int ne12 = src1->ne[2]; - //const int ne13 = src1->ne[3]; - - const int ne0 = dst->ne[0]; - const int ne1 = dst->ne[1]; - const int ne2 = dst->ne[2]; - //const int ne3 = dst->ne[3]; - //const int ne = ne0*ne1*ne2*ne3; - - const int nb00 = src0->nb[0]; - //const int nb01 = src0->nb[1]; - //const int nb02 = src0->nb[2]; - const int nb03 = src0->nb[3]; - - const int nb10 = src1->nb[0]; - //const int nb11 = src1->nb[1]; - const int nb12 = src1->nb[2]; - //const int nb13 = src1->nb[3]; - - //const int nb0 = dst->nb[0]; - //const int nb1 = dst->nb[1]; - const int nb2 = dst->nb[2]; - //const int nb3 = dst->nb[3]; + GGML_TENSOR_BINARY_OP_LOCALS; const int ith = params->ith; const int nth = params->nth; @@ -13687,6 +13331,34 @@ static void ggml_compute_forward_conv_2d_sk_p0( } } +// ggml_compute_forward_conv_2d + +static void ggml_compute_forward_conv_2d( + const struct ggml_compute_params* params, + const struct ggml_tensor* src0, + const struct ggml_tensor* src1, + const struct ggml_tensor* opt0, + struct ggml_tensor* dst) { + const int32_t s0 = ((const int32_t*)(opt0->data))[0]; + const int32_t s1 = ((const int32_t*)(opt0->data))[1]; + const int32_t p0 = ((const int32_t*)(opt0->data))[2]; + const int32_t p1 = ((const int32_t*)(opt0->data))[3]; + const int32_t d0 = ((const int32_t*)(opt0->data))[4]; + const int32_t d1 = ((const int32_t*)(opt0->data))[5]; + GGML_ASSERT(d0 == 1); // dilation not supported + GGML_ASSERT(d1 == 1); + GGML_ASSERT(p0 == 0); // padding not supported + GGML_ASSERT(p1 == 0); + + if (s0 == src0->ne[0] && s1 == src0->ne[1]) { + ggml_compute_forward_conv_2d_sk_p0(params, src0, src1, dst); + } + else { + GGML_ASSERT(false); // only stride equal to kernel size is supported + }; +} + + // ggml_compute_forward_flash_attn static void ggml_compute_forward_flash_attn_f32( @@ -13699,45 +13371,14 @@ static void ggml_compute_forward_flash_attn_f32( int64_t t0 = ggml_perf_time_us(); UNUSED(t0); - const int64_t neq0 = q->ne[0]; - const int64_t neq1 = q->ne[1]; - const int64_t neq2 = q->ne[2]; - const int64_t neq3 = q->ne[3]; - - const int64_t nek0 = k->ne[0]; - const int64_t nek1 = k->ne[1]; - //const int64_t nek2 = k->ne[2]; - //const int64_t nek3 = k->ne[3]; - - //const int64_t nev0 = v->ne[0]; - const int64_t nev1 = v->ne[1]; - //const int64_t nev2 = v->ne[2]; - //const int64_t nev3 = v->ne[3]; - - const int64_t ne0 = dst->ne[0]; - const int64_t ne1 = dst->ne[1]; - //const int64_t ne2 = dst->ne[2]; - //const int64_t ne3 = dst->ne[3]; - - const int nbk0 = k->nb[0]; - const int nbk1 = k->nb[1]; - const int nbk2 = k->nb[2]; - const int nbk3 = k->nb[3]; - - const int nbq0 = q->nb[0]; - const int nbq1 = q->nb[1]; - const int nbq2 = q->nb[2]; - const int nbq3 = q->nb[3]; - - const int nbv0 = v->nb[0]; - const int nbv1 = v->nb[1]; - const int nbv2 = v->nb[2]; - const int nbv3 = v->nb[3]; - - const int nb0 = dst->nb[0]; - const int nb1 = dst->nb[1]; - const int nb2 = dst->nb[2]; - const int nb3 = dst->nb[3]; + GGML_TENSOR_LOCALS(int64_t, neq, q, ne); + GGML_TENSOR_LOCALS(size_t, nbq, q, nb); + GGML_TENSOR_LOCALS(int64_t, nek, k, ne); + GGML_TENSOR_LOCALS(size_t, nbk, k, nb); + GGML_TENSOR_LOCALS(int64_t, nev, v, ne); + GGML_TENSOR_LOCALS(size_t, nbv, v, nb); + GGML_TENSOR_LOCALS(int64_t, ne, dst, ne); + GGML_TENSOR_LOCALS(size_t, nb, dst, nb); const int ith = params->ith; const int nth = params->nth; @@ -13908,45 +13549,14 @@ static void ggml_compute_forward_flash_attn_f16( int64_t t0 = ggml_perf_time_us(); UNUSED(t0); - const int64_t neq0 = q->ne[0]; - const int64_t neq1 = q->ne[1]; - const int64_t neq2 = q->ne[2]; - const int64_t neq3 = q->ne[3]; - - const int64_t nek0 = k->ne[0]; - const int64_t nek1 = k->ne[1]; - //const int64_t nek2 = k->ne[2]; - //const int64_t nek3 = k->ne[3]; - - //const int64_t nev0 = v->ne[0]; - const int64_t nev1 = v->ne[1]; - //const int64_t nev2 = v->ne[2]; - //const int64_t nev3 = v->ne[3]; - - const int64_t ne0 = dst->ne[0]; - const int64_t ne1 = dst->ne[1]; - //const int64_t ne2 = dst->ne[2]; - //const int64_t ne3 = dst->ne[3]; - - const int nbk0 = k->nb[0]; - const int nbk1 = k->nb[1]; - const int nbk2 = k->nb[2]; - const int nbk3 = k->nb[3]; - - const int nbq0 = q->nb[0]; - const int nbq1 = q->nb[1]; - const int nbq2 = q->nb[2]; - const int nbq3 = q->nb[3]; - - const int nbv0 = v->nb[0]; - const int nbv1 = v->nb[1]; - const int nbv2 = v->nb[2]; - const int nbv3 = v->nb[3]; - - const int nb0 = dst->nb[0]; - const int nb1 = dst->nb[1]; - const int nb2 = dst->nb[2]; - const int nb3 = dst->nb[3]; + GGML_TENSOR_LOCALS(int64_t, neq, q, ne); + GGML_TENSOR_LOCALS(size_t, nbq, q, nb); + GGML_TENSOR_LOCALS(int64_t, nek, k, ne); + GGML_TENSOR_LOCALS(size_t, nbk, k, nb); + GGML_TENSOR_LOCALS(int64_t, nev, v, ne); + GGML_TENSOR_LOCALS(size_t, nbv, v, nb); + GGML_TENSOR_LOCALS(int64_t, ne, dst, ne); + GGML_TENSOR_LOCALS(size_t, nb, dst, nb); const int ith = params->ith; const int nth = params->nth; @@ -14180,65 +13790,18 @@ static void ggml_compute_forward_flash_ff_f16( int64_t t0 = ggml_perf_time_us(); UNUSED(t0); - const int64_t nea0 = a->ne[0]; - const int64_t nea1 = a->ne[1]; - const int64_t nea2 = a->ne[2]; - const int64_t nea3 = a->ne[3]; - - const int64_t neb00 = b0->ne[0]; - const int64_t neb01 = b0->ne[1]; - //const int64_t neb02 = b0->ne[2]; - //const int64_t neb03 = b0->ne[3]; - - const int64_t neb10 = b1->ne[0]; - const int64_t neb11 = b1->ne[1]; - //const int64_t neb12 = b1->ne[2]; - //const int64_t neb13 = b1->ne[3]; - - const int64_t nec00 = c0->ne[0]; - const int64_t nec01 = c0->ne[1]; - //const int64_t nec02 = c0->ne[2]; - //const int64_t nec03 = c0->ne[3]; - - const int64_t nec10 = c1->ne[0]; - const int64_t nec11 = c1->ne[1]; - //const int64_t nec12 = c1->ne[2]; - //const int64_t nec13 = c1->ne[3]; - - const int64_t ne0 = dst->ne[0]; - const int64_t ne1 = dst->ne[1]; - const int64_t ne2 = dst->ne[2]; - //const int64_t ne3 = dst->ne[3]; - - const int nba0 = a->nb[0]; - const int nba1 = a->nb[1]; - const int nba2 = a->nb[2]; - const int nba3 = a->nb[3]; - - const int nbb00 = b0->nb[0]; - const int nbb01 = b0->nb[1]; - const int nbb02 = b0->nb[2]; - const int nbb03 = b0->nb[3]; - - const int nbb10 = b1->nb[0]; - //const int nbb11 = b1->nb[1]; - //const int nbb12 = b1->nb[2]; - //const int nbb13 = b1->nb[3]; - - const int nbc00 = c0->nb[0]; - const int nbc01 = c0->nb[1]; - const int nbc02 = c0->nb[2]; - const int nbc03 = c0->nb[3]; - - const int nbc10 = c1->nb[0]; - //const int nbc11 = c1->nb[1]; - //const int nbc12 = c1->nb[2]; - //const int nbc13 = c1->nb[3]; - - const int nb0 = dst->nb[0]; - const int nb1 = dst->nb[1]; - const int nb2 = dst->nb[2]; - const int nb3 = dst->nb[3]; + GGML_TENSOR_LOCALS(int64_t, nea, a, ne); + GGML_TENSOR_LOCALS(size_t, nba, a, nb); + GGML_TENSOR_LOCALS(int64_t, neb0, b0, ne); + GGML_TENSOR_LOCALS(size_t, nbb0, b0, nb); + GGML_TENSOR_LOCALS(int64_t, neb1, b1, ne); + GGML_TENSOR_LOCALS(size_t, nbb1, b1, nb); + GGML_TENSOR_LOCALS(int64_t, nec0, c0, ne); + GGML_TENSOR_LOCALS(size_t, nbc0, c0, nb); + GGML_TENSOR_LOCALS(int64_t, nec1, c1, ne); + GGML_TENSOR_LOCALS(size_t, nbc1, c1, nb); + GGML_TENSOR_LOCALS(int64_t, ne, dst, ne); + GGML_TENSOR_LOCALS(size_t, nb, dst, nb); const int ith = params->ith; const int nth = params->nth; @@ -14386,55 +13949,16 @@ static void ggml_compute_forward_flash_attn_back_f32( int64_t t0 = ggml_perf_time_us(); UNUSED(t0); - const int64_t neq0 = q->ne[0]; - const int64_t neq1 = q->ne[1]; - const int64_t neq2 = q->ne[2]; - const int64_t neq3 = q->ne[3]; - - const int64_t nek0 = k->ne[0]; - const int64_t nek1 = k->ne[1]; - //const int64_t nek2 = k->ne[2]; - //const int64_t nek3 = k->ne[3]; - - const int64_t nev0 = v->ne[0]; - const int64_t nev1 = v->ne[1]; - //const int64_t nev2 = v->ne[2]; - //const int64_t nev3 = v->ne[3]; - - const int64_t ned0 = d->ne[0]; - const int64_t ned1 = d->ne[1]; - //const int64_t ned2 = d->ne[2]; - //const int64_t ned3 = d->ne[3]; - - const int64_t ne0 = dst->ne[0]; - const int64_t ne1 = dst->ne[1]; - const int64_t ne2 = dst->ne[2]; - const int64_t ne3 = dst->ne[3]; - - const int nbk0 = k->nb[0]; - const int nbk1 = k->nb[1]; - const int nbk2 = k->nb[2]; - const int nbk3 = k->nb[3]; - - const int nbq0 = q->nb[0]; - const int nbq1 = q->nb[1]; - const int nbq2 = q->nb[2]; - const int nbq3 = q->nb[3]; - - const int nbv0 = v->nb[0]; - const int nbv1 = v->nb[1]; - const int nbv2 = v->nb[2]; - const int nbv3 = v->nb[3]; - - const int nbd0 = d->nb[0]; - const int nbd1 = d->nb[1]; - const int nbd2 = d->nb[2]; - const int nbd3 = d->nb[3]; - - const int nb0 = dst->nb[0]; - const int nb1 = dst->nb[1]; - const int nb2 = dst->nb[2]; - const int nb3 = dst->nb[3]; + GGML_TENSOR_LOCALS(int64_t, neq, q, ne); + GGML_TENSOR_LOCALS(size_t, nbq, q, nb); + GGML_TENSOR_LOCALS(int64_t, nek, k, ne); + GGML_TENSOR_LOCALS(size_t, nbk, k, nb); + GGML_TENSOR_LOCALS(int64_t, nev, v, ne); + GGML_TENSOR_LOCALS(size_t, nbv, v, nb); + GGML_TENSOR_LOCALS(int64_t, ned, d, ne); + GGML_TENSOR_LOCALS(size_t, nbd, d, nb); + GGML_TENSOR_LOCALS(int64_t, ne, dst, ne); + GGML_TENSOR_LOCALS(size_t, nb, dst, nb); const int ith = params->ith; const int nth = params->nth; @@ -14792,15 +14316,8 @@ static void ggml_compute_forward_win_part_f32( return; } - const int64_t ne00 = src0->ne[0]; UNUSED(ne00); - const int64_t ne01 = src0->ne[1]; - const int64_t ne02 = src0->ne[2]; - const int64_t ne03 = src0->ne[3]; UNUSED(ne03); - - const int64_t ne0 = dst->ne[0]; - const int64_t ne1 = dst->ne[1]; - const int64_t ne2 = dst->ne[2]; - const int64_t ne3 = dst->ne[3]; UNUSED(ne3); + GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne); + GGML_TENSOR_LOCALS(int64_t, ne, dst, ne); const int32_t nep0 = ((const int32_t *)(opt0->data))[0]; const int32_t nep1 = ((const int32_t *)(opt0->data))[1]; @@ -14863,14 +14380,8 @@ static void ggml_compute_forward_win_unpart_f32( return; } - const int64_t ne00 = src0->ne[0]; - const int64_t ne01 = src0->ne[1]; - const int64_t ne02 = src0->ne[2]; - //const int64_t ne03 = src0->ne[3]; - - const int64_t ne0 = dst->ne[0]; - const int64_t ne1 = dst->ne[1]; - const int64_t ne2 = dst->ne[2]; + GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne); + GGML_TENSOR_LOCALS(int64_t, ne, dst, ne); const int32_t w = ((const int32_t *)(opt0->data))[0]; @@ -15468,6 +14979,10 @@ static void ggml_compute_forward(struct ggml_compute_params * params, struct ggm { ggml_compute_forward_mean(params, tensor->src0, tensor); } break; + case GGML_OP_ARGMAX: + { + ggml_compute_forward_argmax(params, tensor->src0, tensor); + } break; case GGML_OP_REPEAT: { ggml_compute_forward_repeat(params, tensor->src0, tensor); @@ -15492,6 +15007,14 @@ static void ggml_compute_forward(struct ggml_compute_params * params, struct ggm { ggml_compute_forward_step(params, tensor->src0, tensor); } break; + case GGML_OP_TANH: + { + ggml_compute_forward_tanh(params, tensor->src0, tensor); + } break; + case GGML_OP_ELU: + { + ggml_compute_forward_elu(params, tensor->src0, tensor); + } break; case GGML_OP_RELU: { ggml_compute_forward_relu(params, tensor->src0, tensor); @@ -15608,17 +15131,13 @@ static void ggml_compute_forward(struct ggml_compute_params * params, struct ggm { ggml_compute_forward_clamp(params, tensor->src0, tensor->src1, tensor); } break; - case GGML_OP_CONV_1D_S1_PH: + case GGML_OP_CONV_1D: { - ggml_compute_forward_conv_1d_s1_ph(params, tensor->src0, tensor->src1, tensor); + ggml_compute_forward_conv_1d(params, tensor->src0, tensor->src1, tensor->opt[0], tensor); } break; - case GGML_OP_CONV_1D_S2_PH: + case GGML_OP_CONV_2D: { - ggml_compute_forward_conv_1d_s2_ph(params, tensor->src0, tensor->src1, tensor); - } break; - case GGML_OP_CONV_2D_SK_P0: - { - ggml_compute_forward_conv_2d_sk_p0(params, tensor->src0, tensor->src1, tensor); + ggml_compute_forward_conv_2d(params, tensor->src0, tensor->src1, tensor->opt[0], tensor); } break; case GGML_OP_FLASH_ATTN: { @@ -15867,6 +15386,7 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor } } break; case GGML_OP_MEAN: + case GGML_OP_ARGMAX: { GGML_ASSERT(false); // TODO: implement } break; @@ -15920,6 +15440,14 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor // noop } } break; + case GGML_OP_TANH: + { + GGML_ASSERT(false); // TODO: not implemented + } break; + case GGML_OP_ELU: + { + GGML_ASSERT(false); // TODO: not implemented + } break; case GGML_OP_RELU: { if (src0->grad) { @@ -15939,14 +15467,6 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor { GGML_ASSERT(false); // TODO: not implemented } break; - case GGML_OP_ALIBI: - { - GGML_ASSERT(false); // TODO: not implemented - } break; - case GGML_OP_CLAMP: - { - GGML_ASSERT(false); // TODO: not implemented - } break; case GGML_OP_SILU: { // necessary for llama @@ -16263,7 +15783,7 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor // necessary for llama if (src0->grad) { assert(src1->type == GGML_TYPE_I32); - assert(ggml_nelements(src1) == 3); + assert(ggml_nelements(src1) == 4); const int n_past = ((int32_t *) src1->data)[0]; const int n_dims = ((int32_t *) src1->data)[1]; const int mode = ((int32_t *) src1->data)[2]; @@ -16303,15 +15823,19 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor // noop } } break; - case GGML_OP_CONV_1D_S1_PH: + case GGML_OP_ALIBI: { GGML_ASSERT(false); // TODO: not implemented } break; - case GGML_OP_CONV_1D_S2_PH: + case GGML_OP_CLAMP: { GGML_ASSERT(false); // TODO: not implemented } break; - case GGML_OP_CONV_2D_SK_P0: + case GGML_OP_CONV_1D: + { + GGML_ASSERT(false); // TODO: not implemented + } break; + case GGML_OP_CONV_2D: { GGML_ASSERT(false); // TODO: not implemented } break; @@ -16968,12 +16492,15 @@ void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph) case GGML_OP_SUM: case GGML_OP_SUM_ROWS: case GGML_OP_MEAN: + case GGML_OP_ARGMAX: case GGML_OP_REPEAT: case GGML_OP_REPEAT_BACK: case GGML_OP_ABS: case GGML_OP_SGN: case GGML_OP_NEG: case GGML_OP_STEP: + case GGML_OP_TANH: + case GGML_OP_ELU: case GGML_OP_RELU: { node->n_tasks = 1; @@ -17087,8 +16614,7 @@ void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph) { node->n_tasks = 1; //TODO } break; - case GGML_OP_CONV_1D_S1_PH: - case GGML_OP_CONV_1D_S2_PH: + case GGML_OP_CONV_1D: { node->n_tasks = n_threads; @@ -17117,7 +16643,7 @@ void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph) work_size = MAX(work_size, cur); } break; - case GGML_OP_CONV_2D_SK_P0: + case GGML_OP_CONV_2D: { node->n_tasks = n_threads; @@ -17479,13 +17005,6 @@ void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname) { fwrite(&nb, sizeof(uint64_t), 1, fout); } - // store the pointer address - { - const uint64_t ptr = (uint64_t) tensor->data; - - fwrite(&ptr, sizeof(uint64_t), 1, fout); - } - fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout); // dump the data @@ -17519,13 +17038,6 @@ void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname) { fwrite(&nb, sizeof(uint64_t), 1, fout); } - // store the pointer address - { - const uint64_t ptr = (uint64_t) tensor->data; - - fwrite(&ptr, sizeof(uint64_t), 1, fout); - } - fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout); // output the op arguments @@ -17710,8 +17222,6 @@ struct ggml_cgraph ggml_graph_import(const char * fname, struct ggml_context ** tensor->op = (enum ggml_op) op; - uint64_t ptr_cur = *(const uint64_t *) ptr; ptr += sizeof(ptr_cur); - memcpy(tensor->name, ptr, GGML_MAX_NAME); ptr += GGML_MAX_NAME; tensor->data = (void *) ptr; @@ -17757,8 +17267,6 @@ struct ggml_cgraph ggml_graph_import(const char * fname, struct ggml_context ** nb[j] = nb_cur; } - uint64_t ptr_cur = *(const uint64_t *) ptr; ptr += sizeof(ptr_cur); // TODO: not yet used - const char * ptr_name = ptr; ptr += GGML_MAX_NAME; const int32_t * ptr_arg_idx = (const int32_t *) ptr; ptr += (2 + GGML_MAX_OPT)*sizeof(int32_t); diff --git a/ggml.h b/ggml.h index 11b51f8..0af96c7 100644 --- a/ggml.h +++ b/ggml.h @@ -201,6 +201,8 @@ #define GGML_MAX_NAME 48 #define GGML_DEFAULT_N_THREADS 4 +#define GGML_UNUSED(x) (void)(x) + #define GGML_ASSERT(x) \ do { \ if (!(x)) { \ @@ -209,6 +211,30 @@ } \ } while (0) +// used to copy the number of elements and stride in bytes of tensors into local variables. +// main purpose is to reduce code duplication and improve readability. +// +// example: +// +// GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne); +// GGML_TENSOR_LOCALS(size_t, nb1, src1, nb); +// +#define GGML_TENSOR_LOCALS_1(type, prefix, pointer, array) \ + const type prefix##0 = (pointer)->array[0]; \ + GGML_UNUSED(prefix##0); +#define GGML_TENSOR_LOCALS_2(type, prefix, pointer, array) \ + GGML_TENSOR_LOCALS_1 (type, prefix, pointer, array) \ + const type prefix##1 = (pointer)->array[1]; \ + GGML_UNUSED(prefix##1); +#define GGML_TENSOR_LOCALS_3(type, prefix, pointer, array) \ + GGML_TENSOR_LOCALS_2 (type, prefix, pointer, array) \ + const type prefix##2 = (pointer)->array[2]; \ + GGML_UNUSED(prefix##2); +#define GGML_TENSOR_LOCALS(type, prefix, pointer, array) \ + GGML_TENSOR_LOCALS_3 (type, prefix, pointer, array) \ + const type prefix##3 = (pointer)->array[3]; \ + GGML_UNUSED(prefix##3); + #ifdef __cplusplus extern "C" { #endif @@ -295,12 +321,15 @@ extern "C" { GGML_OP_SUM, GGML_OP_SUM_ROWS, GGML_OP_MEAN, + GGML_OP_ARGMAX, GGML_OP_REPEAT, GGML_OP_REPEAT_BACK, GGML_OP_ABS, GGML_OP_SGN, GGML_OP_NEG, GGML_OP_STEP, + GGML_OP_TANH, + GGML_OP_ELU, GGML_OP_RELU, GGML_OP_GELU, GGML_OP_GELU_QUICK, @@ -332,9 +361,8 @@ extern "C" { GGML_OP_ROPE_BACK, GGML_OP_ALIBI, GGML_OP_CLAMP, - GGML_OP_CONV_1D_S1_PH, - GGML_OP_CONV_1D_S2_PH, - GGML_OP_CONV_2D_SK_P0, + GGML_OP_CONV_1D, + GGML_OP_CONV_2D, GGML_OP_FLASH_ATTN, GGML_OP_FLASH_FF, @@ -690,6 +718,11 @@ extern "C" { struct ggml_context * ctx, struct ggml_tensor * a); + // argmax along rows + GGML_API struct ggml_tensor * ggml_argmax( + struct ggml_context * ctx, + struct ggml_tensor * a); + // if a is the same shape as b, and a is not parameter, return a // otherwise, return a new tensor: repeat(a) to fit in b GGML_API struct ggml_tensor * ggml_repeat( @@ -734,6 +767,22 @@ extern "C" { struct ggml_context * ctx, struct ggml_tensor * a); + GGML_API struct ggml_tensor * ggml_tanh( + struct ggml_context * ctx, + struct ggml_tensor * a); + + GGML_API struct ggml_tensor * ggml_tanh_inplace( + struct ggml_context * ctx, + struct ggml_tensor * a); + + GGML_API struct ggml_tensor * ggml_elu( + struct ggml_context * ctx, + struct ggml_tensor * a); + + GGML_API struct ggml_tensor * ggml_elu_inplace( + struct ggml_context * ctx, + struct ggml_tensor * a); + GGML_API struct ggml_tensor * ggml_relu( struct ggml_context * ctx, struct ggml_tensor * a); @@ -1084,58 +1133,33 @@ extern "C" { float min, float max); - // TODO: implement general-purpose convolutions - // GGML_API struct ggml_tensor * ggml_conv_1d( - // struct ggml_context * ctx, - // struct ggml_tensor * a, - // struct ggml_tensor * b, - // int s0 - // int p0, - // int d0); - // - // GGML_API struct ggml_tensor * ggml_conv_2d( - // struct ggml_context * ctx, - // struct ggml_tensor * a, - // struct ggml_tensor * b, - // int s0, - // int s1, - // int p0, - // int p1, - // int d0, - // int d1); - - // padding = half - // TODO: we don't support extra parameters for now - // that's why we are hard-coding the stride, padding, and dilation - // not great .. - // example: - // a: 3 80 768 1 - // b: 3000 80 1 1 - // res: 3000 768 1 1 - // used in whisper - GGML_API struct ggml_tensor * ggml_conv_1d_s1_ph( + GGML_API struct ggml_tensor * ggml_conv_1d( struct ggml_context * ctx, struct ggml_tensor * a, - struct ggml_tensor * b); + struct ggml_tensor * b, + int s0, // stride + int p0, // padding + int d0); // dilation - // used in whisper - GGML_API struct ggml_tensor * ggml_conv_1d_s2_ph( + GGML_API struct ggml_tensor * ggml_conv_2d( struct ggml_context * ctx, struct ggml_tensor * a, - struct ggml_tensor * b); + struct ggml_tensor * b, + int s0, + int s1, + int p0, + int p1, + int d0, + int d1); - // kernel size is a->ne[0] x a->ne[1] - // stride is equal to kernel size - // padding is zero - // example: - // a: 16 16 3 768 - // b: 1024 1024 3 1 - // res: 64 64 768 1 - // used in sam - GGML_API struct ggml_tensor * ggml_conv_2d_sk_p0( + // conv_1d with padding = half + // alias for ggml_conv_1d(a, b, s, a->ne[0]/2, d) + GGML_API struct ggml_tensor* ggml_conv_1d_ph( struct ggml_context * ctx, struct ggml_tensor * a, - struct ggml_tensor * b); + struct ggml_tensor * b, + int s, + int d); GGML_API struct ggml_tensor * ggml_flash_attn( struct ggml_context * ctx, diff --git a/scripts/sync-ggml.sh b/scripts/sync-ggml.sh index e6e39ff..574e518 100755 --- a/scripts/sync-ggml.sh +++ b/scripts/sync-ggml.sh @@ -1,6 +1,11 @@ #!/bin/bash -cp -rpv ../ggml/src/ggml.c ./ggml.c -cp -rpv ../ggml/src/ggml-cuda.cu ./ggml-cuda.cu -cp -rpv ../ggml/src/ggml-cuda.h ./ggml-cuda.h +cp -rpv ../ggml/src/ggml.c ./ggml.c +cp -rpv ../ggml/src/ggml-cuda.h ./ggml-cuda.h +cp -rpv ../ggml/src/ggml-cuda.cu ./ggml-cuda.cu +cp -rpv ../ggml/src/ggml-opencl.h ./ggml-opencl.h +cp -rpv ../ggml/src/ggml-opencl.cpp ./ggml-opencl.cpp +cp -rpv ../ggml/src/ggml-metal.h ./ggml-metal.h +cp -rpv ../ggml/src/ggml-metal.m ./ggml-metal.m +cp -rpv ../ggml/src/ggml-metal.metal ./ggml-metal.metal cp -rpv ../ggml/include/ggml/ggml.h ./ggml.h -- cgit v1.2.3