#include "llama.h" #include "ggml.h" #include #include #include #include #include #include #include #include #include // headers for POSIX mmap #if defined (__unix__) || defined (__APPLE__) # include # include # include #endif #define LLAMA_USE_SCRATCH #define LLAMA_MAX_SCRATCH_BUFFERS 16 #define LLAMA_ASSERT(x) \ do { \ if (!(x)) { \ fprintf(stderr, "LLAMA_ASSERT: %s:%d: %s\n", __FILE__, __LINE__, #x); \ abort(); \ } \ } while (0) // determine number of model parts based on the dimension static const std::unordered_map LLAMA_N_PARTS = { { 4096, 1 }, { 5120, 2 }, { 6656, 4 }, { 8192, 8 }, }; // available llama models enum e_model { MODEL_UNKNOWN, MODEL_7B, MODEL_13B, MODEL_30B, MODEL_65B, }; static const size_t MB = 1024*1024; // computed for n_ctx == 2048 // TODO: dynamically determine these sizes // needs modifications in ggml static const std::map MEM_REQ_SCRATCH0 = { { MODEL_7B, 512ull*MB }, { MODEL_13B, 512ull*MB }, { MODEL_30B, 512ull*MB }, { MODEL_65B, 512ull*MB }, }; static const std::map MEM_REQ_SCRATCH1 = { { MODEL_7B, 512ull*MB }, { MODEL_13B, 512ull*MB }, { MODEL_30B, 512ull*MB }, { MODEL_65B, 512ull*MB }, }; // 2*n_embd*n_ctx*n_layer*sizeof(float16) static const std::map MEM_REQ_KV_SELF = { { MODEL_7B, 1026ull*MB }, { MODEL_13B, 1608ull*MB }, { MODEL_30B, 3124ull*MB }, { MODEL_65B, 5120ull*MB }, }; // this is mostly needed for temporary mul_mat buffers to dequantize the data // not actually needed if BLAS is disabled static const std::map MEM_REQ_EVAL = { { MODEL_7B, 768ull*MB }, { MODEL_13B, 1024ull*MB }, { MODEL_30B, 1280ull*MB }, { MODEL_65B, 1536ull*MB }, }; // default hparams (LLaMA 7B) struct llama_hparams { int32_t n_vocab = 32000; int32_t n_ctx = 512; // this is provided as user input? int32_t n_embd = 4096; int32_t n_mult = 256; int32_t n_head = 32; int32_t n_layer = 32; int32_t n_rot = 64; int32_t f16 = 1; }; struct llama_layer { // normalization struct ggml_tensor * attention_norm; // attention struct ggml_tensor * wq; struct ggml_tensor * wk; struct ggml_tensor * wv; struct ggml_tensor * wo; // normalization struct ggml_tensor * ffn_norm; // ff struct ggml_tensor * w1; struct ggml_tensor * w2; struct ggml_tensor * w3; }; struct llama_kv_cache { struct ggml_tensor * k; struct ggml_tensor * v; struct ggml_context * ctx; std::vector buf; int n; // number of tokens currently in the cache }; struct llama_model { e_model type = MODEL_UNKNOWN; llama_hparams hparams; struct ggml_tensor * tok_embeddings; struct ggml_tensor * norm; struct ggml_tensor * output; std::vector layers; // context struct ggml_context * ctx; // key + value cache for the self attention // TODO: move to llama_state struct llama_kv_cache kv_self; // the model memory buffer std::vector buf; // tensors int n_loaded; std::unordered_map tensors; }; struct llama_vocab { using id = int32_t; using token = std::string; struct token_score { token tok; float score; }; std::unordered_map token_to_id; std::vector id_to_token; }; struct llama_context { std::mt19937 rng; int64_t t_load_us = 0; int64_t t_start_us = 0; int64_t t_sample_us = 0; int64_t t_eval_us = 0; int64_t t_p_eval_us = 0; int32_t n_sample = 0; // number of tokens sampled int32_t n_eval = 0; // number of eval calls int32_t n_p_eval = 0; // number of tokens in eval calls for the prompt (with batch size > 1) llama_model model; llama_vocab vocab; size_t mem_per_token = 0; // decode output (2-dimensional array: [n_tokens][n_vocab]) std::vector logits; bool logits_all = false; // input embedding (1-dimensional array: [n_embd]) std::vector embedding; // memory buffers used to evaluate the model // TODO: move in llama_state std::vector buf_compute; std::vector buf_scratch[LLAMA_MAX_SCRATCH_BUFFERS]; int buf_last = 0; size_t buf_max_size[LLAMA_MAX_SCRATCH_BUFFERS] = { 0 }; void use_buf(struct ggml_context * ctx, int i) { #if defined(LLAMA_USE_SCRATCH) size_t last_size = 0; if (i == -1) { last_size = ggml_set_scratch(ctx, { 0, 0, nullptr, }); } else { auto & buf = buf_scratch[i]; last_size = ggml_set_scratch(ctx, { 0, buf.size(), buf.data(), }); } if (buf_last >= 0) { buf_max_size[buf_last] = std::max(buf_max_size[buf_last], last_size); } buf_last = i; #else (void) i; (void) ctx; #endif } size_t get_buf_max_mem(int i) const { #if defined(LLAMA_USE_SCRATCH) return buf_max_size[i]; #else (void) i; return 0; #endif } }; // // kv cache // static bool kv_cache_init( const struct llama_hparams & hparams, struct llama_kv_cache & cache, ggml_type wtype, int n_ctx) { const int n_embd = hparams.n_embd; const int n_layer = hparams.n_layer; const int n_mem = n_layer*n_ctx; const int n_elements = n_embd*n_mem; cache.buf.resize(2u*n_elements*ggml_type_size(wtype) + 2u*MB); struct ggml_init_params params; params.mem_size = cache.buf.size(); params.mem_buffer = cache.buf.data(); params.no_alloc = false; cache.ctx = ggml_init(params); if (!cache.ctx) { fprintf(stderr, "%s: failed to allocate memory for kv cache\n", __func__); return false; } cache.k = ggml_new_tensor_1d(cache.ctx, wtype, n_elements); cache.v = ggml_new_tensor_1d(cache.ctx, wtype, n_elements); return true; } static void kv_cache_free(struct llama_kv_cache & cache) { if (cache.ctx) { ggml_free(cache.ctx); cache.ctx = nullptr; } } struct llama_context_params llama_context_default_params() { struct llama_context_params result = { /*.n_ctx =*/ 512, /*.n_parts =*/ -1, /*.seed =*/ 0, /*.f16_kv =*/ false, /*.logits_all =*/ false, /*.vocab_only =*/ false, /*.use_mlock =*/ false, /*.embedding =*/ false, /*.progress_callback =*/ nullptr, /*.progress_callback_user_data =*/ nullptr, }; return result; } // // model loading // void * mmap_file(const char* fname) { #if defined(MAP_FAILED) // POSIX mmap int fd = open(fname, O_RDONLY); size_t len = lseek(fd, 0, SEEK_END); void * mm_addr = mmap(NULL, len, PROT_READ, MAP_SHARED, fd, 0); if (mm_addr == MAP_FAILED) { perror("mmap failed"); mm_addr = NULL; } close(fd); return mm_addr; #else // TODO: windows support (void)(fname); // suppress warnings return NULL; #endif } static bool llama_model_load( const std::string & fname, llama_context & lctx, int n_ctx, int n_parts, ggml_type memory_type, bool vocab_only, llama_progress_callback progress_callback, void *progress_callback_user_data) { fprintf(stderr, "%s: loading model from '%s' - please wait ...\n", __func__, fname.c_str()); const int64_t t_start_us = ggml_time_us(); lctx.t_start_us = t_start_us; // TODO: this could probably be smaller when using mmap std::vector f_buf(1024*1024); auto & model = lctx.model; auto & vocab = lctx.vocab; auto fin = std::ifstream(fname, std::ios::binary); fin.rdbuf()->pubsetbuf(f_buf.data(), f_buf.size()); if (!fin) { fprintf(stderr, "%s: failed to open '%s'\n", __func__, fname.c_str()); return false; } // verify magic { uint32_t magic; fin.read((char *) &magic, sizeof(magic)); if (magic == LLAMA_FILE_MAGIC_UNVERSIONED) { fprintf(stderr, "%s: invalid model file '%s' (too old, regenerate your model files or convert them with convert-unversioned-ggml-to-ggml.py!)\n", __func__, fname.c_str()); return false; } if (magic != LLAMA_FILE_MAGIC) { fprintf(stderr, "%s: invalid model file '%s' (bad magic)\n", __func__, fname.c_str()); return false; } uint32_t format_version; fin.read((char *) &format_version, sizeof(format_version)); if (format_version != LLAMA_FILE_VERSION) { fprintf(stderr, "%s: invalid model file '%s' (unsupported format version %" PRIu32 ", expected %d)\n", __func__, fname.c_str(), format_version, LLAMA_FILE_VERSION); return false; } } int n_ff = 0; // load hparams { auto & hparams = model.hparams; fin.read((char *) &hparams.n_vocab, sizeof(hparams.n_vocab)); //fin.read((char *) &hparams.n_ctx, sizeof(hparams.n_ctx)); fin.read((char *) &hparams.n_embd, sizeof(hparams.n_embd)); fin.read((char *) &hparams.n_mult, sizeof(hparams.n_mult)); fin.read((char *) &hparams.n_head, sizeof(hparams.n_head)); fin.read((char *) &hparams.n_layer, sizeof(hparams.n_layer)); fin.read((char *) &hparams.n_rot, sizeof(hparams.n_rot)); fin.read((char *) &hparams.f16, sizeof(hparams.f16)); hparams.n_ctx = n_ctx; n_ff = ((2*(4*hparams.n_embd)/3 + hparams.n_mult - 1)/hparams.n_mult)*hparams.n_mult; if (n_parts < 1) { n_parts = LLAMA_N_PARTS.at(hparams.n_embd); } // temp warning to tell the user to use "--n_parts" if (hparams.f16 == 4 && n_parts != 1) { fprintf(stderr, "%s: GPTQ model detected - are you sure n_parts should be %d? we normally expect it to be 1\n", __func__, n_parts); fprintf(stderr, "%s: use '--n_parts 1' if necessary\n", __func__); } if (hparams.n_layer == 32) { model.type = e_model::MODEL_7B; } if (hparams.n_layer == 40) { model.type = e_model::MODEL_13B; } if (hparams.n_layer == 60) { model.type = e_model::MODEL_30B; } if (hparams.n_layer == 80) { model.type = e_model::MODEL_65B; } fprintf(stderr, "%s: n_vocab = %d\n", __func__, hparams.n_vocab); fprintf(stderr, "%s: n_ctx = %d\n", __func__, hparams.n_ctx); fprintf(stderr, "%s: n_embd = %d\n", __func__, hparams.n_embd); fprintf(stderr, "%s: n_mult = %d\n", __func__, hparams.n_mult); fprintf(stderr, "%s: n_head = %d\n", __func__, hparams.n_head); fprintf(stderr, "%s: n_layer = %d\n", __func__, hparams.n_layer); fprintf(stderr, "%s: n_rot = %d\n", __func__, hparams.n_rot); fprintf(stderr, "%s: f16 = %d\n", __func__, hparams.f16); fprintf(stderr, "%s: n_ff = %d\n", __func__, n_ff); fprintf(stderr, "%s: n_parts = %d\n", __func__, n_parts); fprintf(stderr, "%s: type = %d\n", __func__, model.type); } // load vocab { std::string word; vocab.id_to_token.resize(model.hparams.n_vocab); std::vector tmp(64); for (int i = 0; i < model.hparams.n_vocab; i++) { uint32_t len; fin.read((char *) &len, sizeof(len)); word.resize(len); if (len > 0) { tmp.resize(len); fin.read(tmp.data(), len); word.assign(tmp.data(), len); } else { word.clear(); } float score; fin.read((char *) &score, sizeof(score)); vocab.token_to_id[word] = i; auto &tok_score = vocab.id_to_token[i]; tok_score.tok = word; tok_score.score = score; } } if (vocab_only) { return true; } // for the big tensors, we have the option to store the data in 16-bit floats or quantized // in order to save memory and also to speed up the computation // wtype is for per-layer weights, while vtype is for other weights ggml_type wtype, vtype; switch (model.hparams.f16) { case 0: wtype = vtype = GGML_TYPE_F32; break; case 1: wtype = vtype = GGML_TYPE_F16; break; case 2: wtype = vtype = GGML_TYPE_Q4_0; break; case 3: wtype = vtype = GGML_TYPE_Q4_1; break; case 4: wtype = GGML_TYPE_Q4_1; vtype = GGML_TYPE_F16; break; default: { fprintf(stderr, "%s: invalid model file '%s' (bad f16 value %d)\n", __func__, fname.c_str(), model.hparams.f16); return false; } } bool use_mmap = (n_parts == 1); // try to memory map the model file void* mm_addr = NULL; if (use_mmap) { mm_addr = mmap_file(fname.c_str()); if (mm_addr == NULL) { use_mmap = false; } } auto & ctx = model.ctx; size_t ctx_size = 0; { const auto & hparams = model.hparams; const int n_embd = hparams.n_embd; const int n_layer = hparams.n_layer; const int n_vocab = hparams.n_vocab; if (!use_mmap) { ctx_size += n_embd*n_vocab*ggml_type_sizef(vtype); // tok_embeddings ctx_size += n_embd*ggml_type_sizef(GGML_TYPE_F32); // norm ctx_size += n_embd*n_vocab*ggml_type_sizef(vtype); // output ctx_size += n_layer*(n_embd*ggml_type_sizef(GGML_TYPE_F32)); // attention_norm ctx_size += n_layer*(n_embd*n_embd*ggml_type_sizef(wtype)); // wq ctx_size += n_layer*(n_embd*n_embd*ggml_type_sizef(wtype)); // wk ctx_size += n_layer*(n_embd*n_embd*ggml_type_sizef(wtype)); // wv ctx_size += n_layer*(n_embd*n_embd*ggml_type_sizef(wtype)); // wo ctx_size += n_layer*(n_embd*ggml_type_sizef(GGML_TYPE_F32)); // ffn_norm ctx_size += n_layer*(n_ff*n_embd*ggml_type_sizef(wtype)); // w1 ctx_size += n_layer*(n_ff*n_embd*ggml_type_sizef(wtype)); // w2 ctx_size += n_layer*(n_ff*n_embd*ggml_type_sizef(wtype)); // w3 } ctx_size += (5 + 10*n_layer)*256; // object overhead fprintf(stderr, "%s: ggml ctx size = %6.2f MB\n", __func__, ctx_size/(1024.0*1024.0)); } // print memory requirements { const size_t scale = memory_type == GGML_TYPE_F32 ? 2 : 1; // this is the total memory required to run the inference const size_t mem_required = ctx_size + MEM_REQ_SCRATCH0.at(model.type) + MEM_REQ_SCRATCH1.at(model.type) + MEM_REQ_EVAL.at (model.type); // this is the memory required by one llama_state const size_t mem_required_state = scale*MEM_REQ_KV_SELF.at(model.type); fprintf(stderr, "%s: mem required = %7.2f MB (+ %7.2f MB per state)\n", __func__, mem_required / 1024.0 / 1024.0, mem_required_state / 1024.0 / 1024.0); } // create the ggml context { lctx.model.buf.resize(ctx_size); struct ggml_init_params params = { /*.mem_size =*/ lctx.model.buf.size(), /*.mem_buffer =*/ lctx.model.buf.data(), /*.no_alloc =*/ use_mmap, }; model.ctx = ggml_init(params); if (!model.ctx) { fprintf(stderr, "%s: ggml_init() failed\n", __func__); return false; } } // prepare memory for the weights { const auto & hparams = model.hparams; const int n_embd = hparams.n_embd; const int n_layer = hparams.n_layer; const int n_vocab = hparams.n_vocab; model.layers.resize(n_layer); model.tok_embeddings = ggml_new_tensor_2d(ctx, vtype, n_embd, n_vocab); model.norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); model.output = ggml_new_tensor_2d(ctx, vtype, n_embd, n_vocab); // map by name model.tensors["tok_embeddings.weight"] = model.tok_embeddings; model.tensors["norm.weight"] = model.norm; model.tensors["output.weight"] = model.output; for (int i = 0; i < n_layer; ++i) { auto & layer = model.layers[i]; layer.attention_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); layer.wq = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd); layer.wk = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd); layer.wv = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd); layer.wo = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd); layer.ffn_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); layer.w1 = ggml_new_tensor_2d(ctx, wtype, n_embd, n_ff); layer.w2 = ggml_new_tensor_2d(ctx, wtype, n_ff, n_embd); layer.w3 = ggml_new_tensor_2d(ctx, wtype, n_embd, n_ff); // map by name model.tensors["layers." + std::to_string(i) + ".attention_norm.weight"] = layer.attention_norm; model.tensors["layers." + std::to_string(i) + ".attention.wq.weight"] = layer.wq; model.tensors["layers." + std::to_string(i) + ".attention.wk.weight"] = layer.wk; model.tensors["layers." + std::to_string(i) + ".attention.wv.weight"] = layer.wv; model.tensors["layers." + std::to_string(i) + ".attention.wo.weight"] = layer.wo; model.tensors["layers." + std::to_string(i) + ".ffn_norm.weight"] = layer.ffn_norm; model.tensors["layers." + std::to_string(i) + ".feed_forward.w1.weight"] = layer.w1; model.tensors["layers." + std::to_string(i) + ".feed_forward.w2.weight"] = layer.w2; model.tensors["layers." + std::to_string(i) + ".feed_forward.w3.weight"] = layer.w3; } } const size_t file_offset = fin.tellg(); fin.close(); std::vector tmp; if (progress_callback) { progress_callback(0.0, progress_callback_user_data); } for (int i = 0; i < n_parts; ++i) { const int part_id = i; //const int part_id = n_parts - i - 1; std::string fname_part = fname; if (i > 0) { fname_part += "." + std::to_string(i); } fprintf(stderr, "%s: loading model part %d/%d from '%s'%s\n", __func__, i+1, n_parts, fname_part.c_str(), use_mmap ? " (memory mapped)" : ""); fin = std::ifstream(fname_part, std::ios::binary); fin.rdbuf()->pubsetbuf(f_buf.data(), f_buf.size()); fin.seekg(0, fin.end); const size_t file_size = fin.tellg(); fin.seekg(file_offset); // load weights { size_t total_size = 0; model.n_loaded = 0; fprintf(stderr, "%s: ", __func__); while (true) { int32_t n_dims; int32_t length; int32_t ftype; fin.read(reinterpret_cast(&n_dims), sizeof(n_dims)); fin.read(reinterpret_cast(&length), sizeof(length)); fin.read(reinterpret_cast(&ftype), sizeof(ftype)); if (fin.eof()) { break; } int32_t nelements = 1; int32_t ne[2] = { 1, 1 }; for (int i = 0; i < n_dims; ++i) { fin.read(reinterpret_cast(&ne[i]), sizeof(ne[i])); nelements *= ne[i]; } std::string name(length, 0); fin.read(&name[0], length); if (model.tensors.find(name.data()) == model.tensors.end()) { fprintf(stderr, "%s: unknown tensor '%s' in model file\n", __func__, name.data()); return false; } // split_type = 0: split by columns // split_type = 1: split by rows int split_type = 0; // split_type = 0: // regex: // - tok_embeddings.* // - layers.*.attention.wo.weight // - layers.*.feed_forward.w2.weight // split_type = 1: // regex: // - output.* // - layers.*.attention.wq.weight // - layers.*.attention.wk.weight // - layers.*.attention.wv.weight // - layers.*.feed_forward.w1.weight // - layers.*.feed_forward.w3.weight if (name.find("tok_embeddings") != std::string::npos) { split_type = 0; } else if (name.find("layers") != std::string::npos) { if (name.find("attention.wo.weight") != std::string::npos) { split_type = 0; } else if (name.find("feed_forward.w2.weight") != std::string::npos) { split_type = 0; } else { split_type = 1; } } else if (name.find("output") != std::string::npos) { split_type = 1; } auto tensor = model.tensors[name.data()]; if (n_dims == 1) { if (ggml_nelements(tensor) != nelements) { fprintf(stderr, "%s: tensor '%s' has wrong size in model file\n", __func__, name.data()); return false; } } else { if (ggml_nelements(tensor)/n_parts != nelements) { fprintf(stderr, "%s: tensor '%s' has wrong size in model file\n", __func__, name.data()); return false; } } if (n_dims == 1) { if (tensor->ne[0] != ne[0] || tensor->ne[1] != ne[1]) { fprintf(stderr, "%s: tensor '%s' has wrong shape in model file: got [%d, %d], expected [%d, %d]\n", __func__, name.data(), tensor->ne[0], tensor->ne[1], ne[0], ne[1]); return false; } } else { if (split_type == 0) { if (tensor->ne[0]/n_parts != ne[0] || tensor->ne[1] != ne[1]) { fprintf(stderr, "%s: tensor '%s' has wrong shape in model file: got [%d, %d], expected [%d, %d]\n", __func__, name.data(), tensor->ne[0]/n_parts, tensor->ne[1], ne[0], ne[1]); return false; } } else { if (tensor->ne[0] != ne[0] || tensor->ne[1]/n_parts != ne[1]) { fprintf(stderr, "%s: tensor '%s' has wrong shape in model file: got [%d, %d], expected [%d, %d]\n", __func__, name.data(), tensor->ne[0], tensor->ne[1]/n_parts, ne[0], ne[1]); return false; } } } if (0) { static const char * ftype_str[] = { "f32", "f16", "q4_0", "q4_1", }; fprintf(stderr, "%24s - [%5d, %5d], type = %6s, split = %d\n", name.data(), ne[0], ne[1], ftype_str[ftype], split_type); } size_t bpe = 0; switch (ftype) { case 0: bpe = ggml_type_size(GGML_TYPE_F32); break; case 1: bpe = ggml_type_size(GGML_TYPE_F16); break; case 2: bpe = ggml_type_size(GGML_TYPE_Q4_0); assert(ne[0] % 64 == 0); break; case 3: bpe = ggml_type_size(GGML_TYPE_Q4_1); assert(ne[0] % 64 == 0); break; default: { fprintf(stderr, "%s: unknown ftype %d in model file\n", __func__, ftype); return false; } }; if (n_dims == 1 || n_parts == 1) { if ((nelements*bpe)/ggml_blck_size(tensor->type) != ggml_nbytes(tensor)) { fprintf(stderr, "%s: tensor '%s' has wrong size in model file: got %zu, expected %zu\n", __func__, name.data(), ggml_nbytes(tensor), nelements*bpe); return false; } if (part_id == 0) { if (mm_addr) { off_t offset = fin.tellg(); tensor->data = (char *) mm_addr + offset; fin.seekg(ggml_nbytes(tensor), std::ios::cur); } else { fin.read(reinterpret_cast(tensor->data), ggml_nbytes(tensor)); } } else { fin.seekg(ggml_nbytes(tensor), std::ios::cur); } total_size += ggml_nbytes(tensor); } else { if ((nelements*bpe)/ggml_blck_size(tensor->type) != ggml_nbytes(tensor)/n_parts) { fprintf(stderr, "%s: tensor '%s' has wrong size in model file: got %zu, expected %zu\n", __func__, name.data(), ggml_nbytes(tensor)/n_parts, nelements*bpe); return false; } if (split_type == 0) { const int np0 = ne[0]; const size_t row_size = (tensor->ne[0]/ggml_blck_size(tensor->type))*ggml_type_size(tensor->type); assert(row_size == tensor->nb[1]); for (int i1 = 0; i1 < ne[1]; ++i1) { const size_t offset_row = i1*row_size; const size_t offset = offset_row + ((part_id*np0)/ggml_blck_size(tensor->type))*ggml_type_size(tensor->type); fin.read(reinterpret_cast(tensor->data) + offset, row_size/n_parts); } } else { const int np1 = ne[1]; const size_t row_size = (tensor->ne[0]/ggml_blck_size(tensor->type))*ggml_type_size(tensor->type); for (int i1 = 0; i1 < ne[1]; ++i1) { const size_t offset_row = (i1 + part_id*np1)*row_size; fin.read(reinterpret_cast(tensor->data) + offset_row, row_size); } } total_size += ggml_nbytes(tensor)/n_parts; } //fprintf(stderr, "%42s - [%5d, %5d], type = %6s, %6.2f MB\n", name.data(), ne[0], ne[1], ftype == 0 ? "float" : "f16", ggml_nbytes(tensor)/1024.0/1024.0); model.n_loaded++; // progress if (progress_callback) { float current_file_progress = float(size_t(fin.tellg()) - file_offset) / float(file_size - file_offset); float current_progress = (float(i) + current_file_progress) / float(n_parts); progress_callback(current_progress, progress_callback_user_data); } if (model.n_loaded % 8 == 0) { fprintf(stderr, "."); fflush(stderr); } } fprintf(stderr, " done\n"); fprintf(stderr, "%s: model size = %8.2f MB / num tensors = %d\n", __func__, total_size/1024.0/1024.0, model.n_loaded); if (model.n_loaded == 0) { fprintf(stderr, "%s: WARN no tensors loaded from model file - assuming empty model for testing\n", __func__); } else if (model.n_loaded != (int) model.tensors.size()) { fprintf(stderr, "%s: ERROR not all tensors loaded from model file - expected %zu, got %d\n", __func__, model.tensors.size(), model.n_loaded); return false; } } fin.close(); } lctx.t_load_us = ggml_time_us() - t_start_us; if (progress_callback) { progress_callback(1.0, progress_callback_user_data); } return true; } // evaluate the transformer // // - lctx: llama context // - tokens: new batch of tokens to process // - n_past: the context size so far // - n_threads: number of threads to use // static bool llama_eval_internal( llama_context & lctx, const llama_token * tokens, const int n_tokens, const int n_past, const int n_threads) { const int64_t t_start_us = ggml_time_us(); const int N = n_tokens; const auto & model = lctx.model; const auto & hparams = model.hparams; auto & kv_self = model.kv_self; LLAMA_ASSERT(!!kv_self.ctx); const int n_embd = hparams.n_embd; const int n_layer = hparams.n_layer; const int n_ctx = hparams.n_ctx; const int n_head = hparams.n_head; const int n_vocab = hparams.n_vocab; const int n_rot = hparams.n_embd/hparams.n_head; auto & mem_per_token = lctx.mem_per_token; auto & buf_compute = lctx.buf_compute; struct ggml_init_params params = { /*.mem_size =*/ buf_compute.size(), /*.mem_buffer =*/ buf_compute.data(), /*.no_alloc =*/ false, }; struct ggml_context * ctx0 = ggml_init(params); // for big prompts, if BLAS is enabled, it is better to use only one thread // otherwise, the threads are spin-lock waiting for the BLAS calls and are degrading the performance ggml_cgraph gf = {}; gf.n_threads = N >= 32 && ggml_cpu_has_blas() ? 1 : n_threads; struct ggml_tensor * embd = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N); memcpy(embd->data, tokens, N*ggml_element_size(embd)); struct ggml_tensor * inpL = ggml_get_rows(ctx0, model.tok_embeddings, embd); for (int il = 0; il < n_layer; ++il) { struct ggml_tensor * inpSA = inpL; struct ggml_tensor * cur; lctx.use_buf(ctx0, 0); // norm { cur = ggml_rms_norm(ctx0, inpL); // cur = attention_norm*cur cur = ggml_mul(ctx0, ggml_repeat(ctx0, model.layers[il].attention_norm, cur), cur); } // self-attention { struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur); struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur); struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur); // store key and value to memory if (N >= 1) { struct ggml_tensor * k = ggml_view_1d(ctx0, kv_self.k, N*n_embd, (ggml_element_size(kv_self.k)*n_embd)*(il*n_ctx + n_past)); struct ggml_tensor * v = ggml_view_1d(ctx0, kv_self.v, N*n_embd, (ggml_element_size(kv_self.v)*n_embd)*(il*n_ctx + n_past)); ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Kcur, k)); ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Vcur, v)); } // Q = Qcur.contiguous().view(n_embd/n_head, n_head, N).permute(0, 2, 1, 3) struct ggml_tensor * Q = ggml_permute(ctx0, ggml_rope(ctx0, ggml_cpy(ctx0, Qcur, ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_embd/n_head, n_head, N)), n_past, n_rot, 0), 0, 2, 1, 3); // K = Kmem.view(n_embd/n_head, n_head, n_past + N).permute(0, 2, 1, 3) struct ggml_tensor * K = ggml_permute(ctx0, ggml_rope(ctx0, ggml_reshape_3d(ctx0, ggml_view_1d(ctx0, kv_self.k, (n_past + N)*n_embd, il*n_ctx*ggml_element_size(kv_self.k)*n_embd), n_embd/n_head, n_head, n_past + N), n_past, n_rot, 1), 0, 2, 1, 3); // K * Q struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q); // KQ_scaled = KQ / sqrt(n_embd/n_head) struct ggml_tensor * KQ_scaled = ggml_scale(ctx0, KQ, ggml_new_f32(ctx0, 1.0f/sqrtf(float(n_embd)/n_head))); // KQ_masked = mask_past(KQ_scaled) struct ggml_tensor * KQ_masked = ggml_diag_mask_inf(ctx0, KQ_scaled, n_past); // KQ = soft_max(KQ_masked) struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctx0, KQ_masked); // V_trans = Vmem.view(n_embd/n_head, n_head, n_past + N).permute(1, 2, 0, 3).contiguous() struct ggml_tensor * V_trans = ggml_cpy(ctx0, ggml_permute(ctx0, ggml_reshape_3d(ctx0, ggml_view_1d(ctx0, kv_self.v, (n_past + N)*n_embd, il*n_ctx*ggml_element_size(kv_self.v)*n_embd), n_embd/n_head, n_head, n_past + N), 1, 2, 0, 3), ggml_new_tensor_3d(ctx0, kv_self.v->type, n_past + N, n_embd/n_head, n_head)); // KQV = transpose(V) * KQ_soft_max struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V_trans, KQ_soft_max); // KQV_merged = KQV.permute(0, 2, 1, 3) struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3); // cur = KQV_merged.contiguous().view(n_embd, N) cur = ggml_cpy(ctx0, KQV_merged, ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N)); // projection (no bias) cur = ggml_mul_mat(ctx0, model.layers[il].wo, cur); } lctx.use_buf(ctx0, 1); struct ggml_tensor * inpFF = ggml_add(ctx0, cur, inpSA); // feed-forward network { // norm { cur = ggml_rms_norm(ctx0, inpFF); // cur = ffn_norm*cur cur = ggml_mul(ctx0, ggml_repeat(ctx0, model.layers[il].ffn_norm, cur), cur); } struct ggml_tensor * tmp = ggml_mul_mat(ctx0, model.layers[il].w3, cur); cur = ggml_mul_mat(ctx0, model.layers[il].w1, cur); // SILU activation cur = ggml_silu(ctx0, cur); cur = ggml_mul(ctx0, cur, tmp); cur = ggml_mul_mat(ctx0, model.layers[il].w2, cur); } cur = ggml_add(ctx0, cur, inpFF); // input for next layer inpL = cur; } lctx.use_buf(ctx0, 0); // used at the end to optionally extract the embeddings struct ggml_tensor * embeddings = NULL; // norm { inpL = ggml_rms_norm(ctx0, inpL); // inpL = norm*inpL inpL = ggml_mul(ctx0, ggml_repeat(ctx0, model.norm, inpL), inpL); embeddings = inpL; } // lm_head inpL = ggml_mul_mat(ctx0, model.output, inpL); lctx.use_buf(ctx0, -1); // logits -> probs //inpL = ggml_soft_max(ctx0, inpL); // run the computation ggml_build_forward_expand(&gf, inpL); ggml_graph_compute (ctx0, &gf); //if (n_past%100 == 0) { // ggml_graph_print (&gf); // ggml_graph_dump_dot(&gf, NULL, "gpt-2.dot"); //} //embd_w.resize(n_vocab*N); //memcpy(embd_w.data(), ggml_get_data(inpL), sizeof(float)*n_vocab*N); // extract logits { auto & logits_out = lctx.logits; if (lctx.logits_all) { logits_out.resize(n_vocab * N); memcpy(logits_out.data(), (float *) ggml_get_data(inpL), sizeof(float)*n_vocab*N); } else { // return result for just the last token logits_out.resize(n_vocab); memcpy(logits_out.data(), (float *) ggml_get_data(inpL) + (n_vocab*(N-1)), sizeof(float)*n_vocab); } } // extract embeddings if (lctx.embedding.size()) { auto & embedding_out = lctx.embedding; embedding_out.resize(n_embd); memcpy(embedding_out.data(), (float *) ggml_get_data(embeddings) + (n_embd*(N - 1)), sizeof(float)*n_embd); } if (mem_per_token == 0) { mem_per_token = ggml_used_mem(ctx0)/N; } #if 0 printf("\n%s: used_mem = %.3f MB, scratch -- %.3f MB %.3f MB\n", __func__, ggml_used_mem(ctx0)/1024.0/1024.0, lctx.get_buf_max_mem(0)/1024.0/1024.0, lctx.get_buf_max_mem(1)/1024.0/1024.0); #endif ggml_free(ctx0); // measure the performance only for the single-token evals if (N == 1) { lctx.t_eval_us += ggml_time_us() - t_start_us; lctx.n_eval++; } else if (N > 1) { lctx.t_p_eval_us += ggml_time_us() - t_start_us; lctx.n_p_eval += N; } return true; } // // tokenizer // static size_t utf8_len(char src) { const size_t lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4 }; uint8_t highbits = static_cast(src) >> 4; return lookup[highbits]; } struct llama_sp_symbol { using index = int; index prev; index next; const char * text; size_t n; }; struct llama_sp_bigram { struct comparator { bool operator()(llama_sp_bigram & l, llama_sp_bigram & r) { return (l.score < r.score) || (l.score == r.score && l.left > r.left); } }; using queue_storage = std::vector; using queue = std::priority_queue; llama_sp_symbol::index left; llama_sp_symbol::index right; float score; size_t size; }; // original implementation: // https://github.com/ggerganov/llama.cpp/commit/074bea2eb1f1349a0118239c4152914aecaa1be4 struct llama_tokenizer { llama_tokenizer(const llama_vocab & vocab): vocab_(vocab) {} void tokenize(const std::string & text, std::vector & output) { // split string into utf8 chars int index = 0; size_t offs = 0; while (offs < text.size()) { llama_sp_symbol sym; size_t char_len = std::min(text.size() - offs, utf8_len(text[offs])); sym.text = text.c_str() + offs; sym.n = char_len; offs += char_len; sym.prev = index - 1; sym.next = offs == text.size() ? -1 : index + 1; index++; symbols_.emplace_back(std::move(sym)); } // seed the work queue with all possible 2-character tokens. for (size_t i = 1; i < symbols_.size(); ++i) { try_add_bigram(i - 1, i); } // keep substituting the highest frequency pairs for as long as we can. while (!work_queue_.empty()) { auto bigram = work_queue_.top(); work_queue_.pop(); auto & left_sym = symbols_[bigram.left]; auto & right_sym = symbols_[bigram.right]; // if one of the symbols already got merged, skip it. if (left_sym.n == 0 || right_sym.n == 0 || left_sym.n + right_sym.n != bigram.size) { continue; } // merge the right sym into the left one left_sym.n += right_sym.n; right_sym.n = 0; //printf("left = '%*s' size = %zu\n", (int) left_sym.n, left_sym.text, bigram.size); // remove the right sym from the chain left_sym.next = right_sym.next; if (right_sym.next >= 0) { symbols_[right_sym.next].prev = bigram.left; } // find more substitutions try_add_bigram(left_sym.prev, bigram.left); try_add_bigram(bigram.left, left_sym.next); } for (int i = 0; i != -1; i = symbols_[i].next) { auto & symbol = symbols_[i]; auto token = vocab_.token_to_id.find(std::string(symbol.text, symbol.n)); if (token == vocab_.token_to_id.end()) { // output any symbols that did not form tokens as bytes. for (int j = 0; j < (int) symbol.n; ++j) { llama_vocab::id token_id = static_cast(symbol.text[j]) + 3; output.push_back(token_id); } } else { output.push_back((*token).second); } } } private: void try_add_bigram(int left, int right) { if (left == -1 || right == -1) { return; } const std::string text = std::string(symbols_[left].text, symbols_[left].n + symbols_[right].n); auto token = vocab_.token_to_id.find(text); if (token == vocab_.token_to_id.end()) { return; } if (static_cast((*token).second) >= vocab_.id_to_token.size()) { return; } const auto &tok_score = vocab_.id_to_token[(*token).second]; llama_sp_bigram bigram; bigram.left = left; bigram.right = right; bigram.score = tok_score.score; bigram.size = text.size(); work_queue_.push(bigram); } const llama_vocab & vocab_; std::vector symbols_; llama_sp_bigram::queue work_queue_; }; static std::vector llama_tokenize(const llama_vocab & vocab, const std::string & text, bool bos) { llama_tokenizer tokenizer(vocab); std::vector output; if (text.size() == 0) { return output; } if (bos) { output.push_back(1); } tokenizer.tokenize(text, output); return output; } // // sampling // static void sample_top_k(std::vector> & logits_id, int top_k) { // find the top k tokens std::partial_sort( logits_id.begin(), logits_id.begin() + top_k, logits_id.end(), [](const std::pair & a, const std::pair & b) { return a.first > b.first; }); logits_id.resize(top_k); } static llama_vocab::id llama_sample_top_p_top_k( llama_context & lctx, const std::vector & last_n_tokens, int top_k, float top_p, float temp, float repeat_penalty) { auto & rng = lctx.rng; const int n_logits = lctx.model.hparams.n_vocab; const auto & logits = lctx.logits; const auto * plogits = logits.data() + logits.size() - n_logits; std::vector> logits_id; logits_id.reserve(n_logits); { const float scale = 1.0f/temp; for (int i = 0; i < n_logits; ++i) { // repetition penalty from ctrl paper (https://arxiv.org/abs/1909.05858) // credit https://github.com/facebookresearch/llama/compare/main...shawwn:llama:main if (std::find(last_n_tokens.begin(), last_n_tokens.end(), i) != last_n_tokens.end()) { // if score < 0 then repetition penalty has to multiplied to reduce the previous token probability if (plogits[i] < 0.0f) { logits_id.push_back(std::make_pair(plogits[i]*scale*repeat_penalty, i)); } else { logits_id.push_back(std::make_pair(plogits[i]*scale/repeat_penalty, i)); } } else { logits_id.push_back(std::make_pair(plogits[i]*scale, i)); } } } sample_top_k(logits_id, top_k); float maxl = -std::numeric_limits::infinity(); for (const auto & kv : logits_id) { maxl = std::max(maxl, kv.first); } // compute probs for the top k tokens std::vector probs; probs.reserve(logits_id.size()); double sum = 0.0; for (const auto & kv : logits_id) { const float p = expf(kv.first - maxl); probs.push_back(p); sum += p; } // normalize the probs for (auto & p : probs) { p /= sum; } if (top_p < 1.0) { double cumsum = 0.0; for (int i = 0; i < (int) probs.size(); i++) { cumsum += probs[i]; if (cumsum >= top_p) { probs.resize(i + 1); logits_id.resize(i + 1); break; } } cumsum = 1.0/cumsum; for (int i = 0; i < (int) probs.size(); i++) { probs[i] *= cumsum; } } //printf("\n"); //for (int i = 0; i < (int) 10; i++) { // printf("%d: '%s' %f\n", i, vocab.id_to_token.at(logits_id[i].second).c_str(), probs[i]); //} //printf("\n\n"); //exit(0); std::discrete_distribution<> dist(probs.begin(), probs.end()); int idx = dist(rng); return logits_id[idx].second; } // // quantization // // TODO: reuse code from the llama_model_load() somehow static bool llama_model_quantize_internal(const std::string & fname_inp, const std::string & fname_out, int itype) { ggml_type type = GGML_TYPE_Q4_1; switch (itype) { case 2: type = GGML_TYPE_Q4_0; break; case 3: type = GGML_TYPE_Q4_1; break; default: fprintf(stderr, "%s: invalid quantization type %d\n", __func__, itype); return 1; }; if (type != GGML_TYPE_Q4_0 && type != GGML_TYPE_Q4_1) { fprintf(stderr, "%s: invalid quantization type %d\n", __func__, type); return false; } llama_vocab vocab; printf("%s: loading model from '%s'\n", __func__, fname_inp.c_str()); auto finp = std::ifstream(fname_inp, std::ios::binary); if (!finp) { fprintf(stderr, "%s: failed to open '%s' for reading\n", __func__, fname_inp.c_str()); return false; } auto fout = std::ofstream(fname_out, std::ios::binary); if (!fout) { fprintf(stderr, "%s: failed to open '%s' for writing\n", __func__, fname_out.c_str()); return false; } // verify magic { uint32_t magic; finp.read((char *) &magic, sizeof(magic)); if (magic == LLAMA_FILE_MAGIC_UNVERSIONED) { fprintf(stderr, "%s: invalid model file '%s' (too old, regenerate your model files!)\n", __func__, fname_inp.c_str()); return false; } if (magic != LLAMA_FILE_MAGIC) { fprintf(stderr, "%s: invalid model file '%s' (bad magic)\n", __func__, fname_inp.c_str()); return false; } fout.write((char *) &magic, sizeof(magic)); uint32_t format_version; finp.read((char *) &format_version, sizeof(format_version)); if (format_version != LLAMA_FILE_VERSION) { fprintf(stderr, "%s: invalid model file '%s' (unsupported format version %" PRIu32 ", expected %d)\n", __func__, fname_inp.c_str(), format_version, LLAMA_FILE_VERSION); return false; } fout.write((char *) &format_version, sizeof(format_version)); } llama_hparams hparams; // load hparams { finp.read((char *) &hparams.n_vocab, sizeof(hparams.n_vocab)); //finp.read((char *) &hparams.n_ctx, sizeof(hparams.n_ctx)); finp.read((char *) &hparams.n_embd, sizeof(hparams.n_embd)); finp.read((char *) &hparams.n_mult, sizeof(hparams.n_mult)); finp.read((char *) &hparams.n_head, sizeof(hparams.n_head)); finp.read((char *) &hparams.n_layer, sizeof(hparams.n_layer)); finp.read((char *) &hparams.n_rot, sizeof(hparams.n_rot)); finp.read((char *) &hparams.f16, sizeof(hparams.f16)); printf("%s: n_vocab = %d\n", __func__, hparams.n_vocab); printf("%s: n_ctx = %d\n", __func__, hparams.n_ctx); printf("%s: n_embd = %d\n", __func__, hparams.n_embd); printf("%s: n_mult = %d\n", __func__, hparams.n_mult); printf("%s: n_head = %d\n", __func__, hparams.n_head); printf("%s: n_layer = %d\n", __func__, hparams.n_layer); printf("%s: f16 = %d\n", __func__, hparams.f16); fout.write((char *) &hparams.n_vocab, sizeof(hparams.n_vocab)); //fout.write((char *) &hparams.n_ctx, sizeof(hparams.n_ctx)); fout.write((char *) &hparams.n_embd, sizeof(hparams.n_embd)); fout.write((char *) &hparams.n_mult, sizeof(hparams.n_mult)); fout.write((char *) &hparams.n_head, sizeof(hparams.n_head)); fout.write((char *) &hparams.n_layer, sizeof(hparams.n_layer)); fout.write((char *) &hparams.n_rot, sizeof(hparams.n_rot)); fout.write((char *) &itype, sizeof(hparams.f16)); } // load vocab { const int32_t n_vocab = hparams.n_vocab; if (n_vocab != hparams.n_vocab) { fprintf(stderr, "%s: invalid model file '%s' (bad vocab size %d != %d)\n", __func__, fname_inp.c_str(), n_vocab, hparams.n_vocab); return false; } std::vector word(32); vocab.id_to_token.resize(n_vocab); for (int i = 0; i < n_vocab; i++) { uint32_t len; finp.read ((char *) &len, sizeof(len)); fout.write((char *) &len, sizeof(len)); word.resize(len); finp.read ((char *) word.data(), len); fout.write((char *) word.data(), len); float score; finp.read ((char *) &score, sizeof(score)); fout.write((char *) &score, sizeof(score)); vocab.token_to_id[word.data()] = i; auto &tok_score = vocab.id_to_token[i]; tok_score.tok = word.data(); tok_score.score = score; } } // load weights { size_t total_size_org = 0; size_t total_size_new = 0; std::vector work; std::vector data_u8; std::vector data_f16; std::vector data_f32; std::vector hist_all(1 << 4, 0); while (true) { int32_t n_dims; int32_t length; int32_t ftype; finp.read(reinterpret_cast(&n_dims), sizeof(n_dims)); finp.read(reinterpret_cast(&length), sizeof(length)); finp.read(reinterpret_cast(&ftype), sizeof(ftype)); if (finp.eof()) { break; } int32_t nelements = 1; int32_t ne[2] = { 1, 1 }; for (int i = 0; i < n_dims; ++i) { finp.read (reinterpret_cast(&ne[i]), sizeof(ne[i])); nelements *= ne[i]; } std::string name(length, 0); finp.read (&name[0], length); { static const char * ftype_str[] = { "f32", "f16", "q4_0", "q4_1", }; printf("%48s - [%5d, %5d], type = %6s ", name.data(), ne[0], ne[1], ftype_str[ftype]); } // regexes of tensor names to be quantized const std::vector k_names = { ".*weight", }; bool quantize = false; for (const auto & s : k_names) { if (std::regex_match(name, std::regex(s))) { quantize = true; break; } } // quantize only 2D tensors quantize &= (n_dims == 2); if (quantize) { if (ftype != 0 && ftype != 1) { fprintf(stderr, "%s: unsupported ftype %d for integer quantization\n", __func__, ftype); return false; } if (ftype == 1) { data_f16.resize(nelements); finp.read(reinterpret_cast(data_f16.data()), nelements * sizeof(ggml_fp16_t)); data_f32.resize(nelements); for (int i = 0; i < nelements; ++i) { data_f32[i] = ggml_fp16_to_fp32(data_f16[i]); } } else { data_f32.resize(nelements); finp.read(reinterpret_cast(data_f32.data()), nelements * sizeof(float)); } ftype = itype; } else { const int bpe = (ftype == 0) ? sizeof(float) : sizeof(uint16_t); data_u8.resize(nelements*bpe); finp.read(reinterpret_cast(data_u8.data()), nelements * bpe); } fout.write(reinterpret_cast(&n_dims), sizeof(n_dims)); fout.write(reinterpret_cast(&length), sizeof(length)); fout.write(reinterpret_cast(&ftype), sizeof(ftype)); for (int i = 0; i < n_dims; ++i) { fout.write(reinterpret_cast(&ne[i]), sizeof(ne[i])); } fout.write(&name[0], length); if (quantize) { printf("quantizing .. "); work.resize(nelements); // for quantization size_t cur_size = 0; std::vector hist_cur(1 << 4, 0); switch (type) { case GGML_TYPE_Q4_0: { cur_size = ggml_quantize_q4_0(data_f32.data(), work.data(), nelements, ne[0], hist_cur.data()); } break; case GGML_TYPE_Q4_1: { cur_size = ggml_quantize_q4_1(data_f32.data(), work.data(), nelements, ne[0], hist_cur.data()); } break; default: { fprintf(stderr, "%s: unsupported quantization type %d\n", __func__, type); return false; } } fout.write(reinterpret_cast(work.data()), cur_size); total_size_new += cur_size; printf("size = %8.2f MB -> %8.2f MB | hist: ", nelements * sizeof(float)/1024.0/1024.0, cur_size/1024.0/1024.0); for (int i = 0; i < (int) hist_cur.size(); ++i) { hist_all[i] += hist_cur[i]; } for (int i = 0; i < (int) hist_cur.size(); ++i) { printf("%5.3f ", hist_cur[i] / float(nelements)); } printf("\n"); } else { printf("size = %8.3f MB\n", data_u8.size()/1024.0/1024.0); fout.write(reinterpret_cast(data_u8.data()), data_u8.size()); total_size_new += data_u8.size(); } total_size_org += nelements * sizeof(float); } printf("%s: model size = %8.2f MB\n", __func__, total_size_org/1024.0/1024.0); printf("%s: quant size = %8.2f MB\n", __func__, total_size_new/1024.0/1024.0); { int64_t sum_all = 0; for (int i = 0; i < (int) hist_all.size(); ++i) { sum_all += hist_all[i]; } printf("%s: hist: ", __func__); for (int i = 0; i < (int) hist_all.size(); ++i) { printf("%5.3f ", hist_all[i] / float(sum_all)); } printf("\n"); } } finp.close(); fout.close(); return true; } // // interface implementation // struct llama_context * llama_init_from_file( const char * path_model, struct llama_context_params params) { ggml_time_init(); llama_context * ctx = new llama_context; if (params.seed <= 0) { params.seed = time(NULL); } ctx->rng = std::mt19937(params.seed); ctx->logits_all = params.logits_all; ggml_type memory_type = params.f16_kv ? GGML_TYPE_F16 : GGML_TYPE_F32; if (!llama_model_load(path_model, *ctx, params.n_ctx, params.n_parts, memory_type, params.vocab_only, params.progress_callback, params.progress_callback_user_data)) { fprintf(stderr, "%s: failed to load model\n", __func__); llama_free(ctx); return nullptr; } if (params.use_mlock) { char *err; if (!ggml_mlock(ctx->model.ctx, &err)) { fprintf(stderr, "%s\n", err); free(err); llama_free(ctx); return nullptr; } } // reserve memory for context buffers { if (!kv_cache_init(ctx->model.hparams, ctx->model.kv_self, memory_type, ctx->model.hparams.n_ctx)) { fprintf(stderr, "%s: kv_cache_init() failed for self-attention cache\n", __func__); llama_free(ctx); return nullptr; } { const size_t memory_size = ggml_nbytes(ctx->model.kv_self.k) + ggml_nbytes(ctx->model.kv_self.v); fprintf(stderr, "%s: kv self size = %7.2f MB\n", __func__, memory_size / 1024.0 / 1024.0); } const auto & hparams = ctx->model.hparams; // resized during inference if (params.logits_all) { ctx->logits.reserve(hparams.n_ctx*hparams.n_vocab); } else { ctx->logits.reserve(hparams.n_ctx); } if (params.embedding){ ctx->embedding.resize(hparams.n_embd); } ctx->buf_compute.resize(MEM_REQ_EVAL.at(ctx->model.type)); ctx->buf_scratch[0].resize(MEM_REQ_SCRATCH0.at(ctx->model.type)); ctx->buf_scratch[1].resize(MEM_REQ_SCRATCH1.at(ctx->model.type)); } return ctx; } void llama_free(struct llama_context * ctx) { kv_cache_free(ctx->model.kv_self); if (ctx->model.ctx) { ggml_free(ctx->model.ctx); } delete ctx; } int llama_model_quantize( const char * fname_inp, const char * fname_out, int itype) { if (!llama_model_quantize_internal(fname_inp, fname_out, itype)) { fprintf(stderr, "%s: failed to quantize\n", __func__); return 1; } return 0; } int llama_eval( struct llama_context * ctx, const llama_token * tokens, int n_tokens, int n_past, int n_threads) { if (!llama_eval_internal(*ctx, tokens, n_tokens, n_past, n_threads)) { fprintf(stderr, "%s: failed to eval\n", __func__); return 1; } return 0; } int llama_tokenize( struct llama_context * ctx, const char * text, llama_token * tokens, int n_max_tokens, bool add_bos) { auto res = llama_tokenize(ctx->vocab, text, add_bos); if (n_max_tokens < (int) res.size()) { fprintf(stderr, "%s: too many tokens\n", __func__); return -((int) res.size()); } for (size_t i = 0; i < res.size(); i++) { tokens[i] = res[i]; } return res.size(); } int llama_n_vocab(struct llama_context * ctx) { return ctx->vocab.id_to_token.size(); } int llama_n_ctx(struct llama_context * ctx) { return ctx->model.hparams.n_ctx; } int llama_n_embd(struct llama_context * ctx) { return ctx->model.hparams.n_embd; } float * llama_get_logits(struct llama_context * ctx) { return ctx->logits.data(); } float * llama_get_embeddings(struct llama_context * ctx) { return ctx->embedding.data(); } const char * llama_token_to_str(struct llama_context * ctx, llama_token token) { if (token >= llama_n_vocab(ctx)) { return nullptr; } return ctx->vocab.id_to_token[token].tok.c_str(); } llama_token llama_token_bos() { return 1; } llama_token llama_token_eos() { return 2; } llama_token llama_sample_top_p_top_k( llama_context * ctx, const llama_token * last_n_tokens_data, int last_n_tokens_size, int top_k, float top_p, float temp, float repeat_penalty) { const int64_t t_start_sample_us = ggml_time_us(); llama_token result = 0; // TODO: avoid this ... const auto last_n_tokens = std::vector(last_n_tokens_data, last_n_tokens_data + last_n_tokens_size); result = llama_sample_top_p_top_k( *ctx, last_n_tokens, top_k, top_p, temp, repeat_penalty); ctx->t_sample_us += ggml_time_us() - t_start_sample_us; ctx->n_sample++; return result; } void llama_print_timings(struct llama_context * ctx) { const int64_t t_end_us = ggml_time_us(); const int32_t n_sample = std::max(1, ctx->n_sample); const int32_t n_eval = std::max(1, ctx->n_eval); const int32_t n_p_eval = std::max(1, ctx->n_p_eval); fprintf(stderr, "\n"); fprintf(stderr, "%s: load time = %8.2f ms\n", __func__, ctx->t_load_us / 1000.0); fprintf(stderr, "%s: sample time = %8.2f ms / %5d runs (%8.2f ms per run)\n", __func__, 1e-3 * ctx->t_sample_us, n_sample, 1e-3 * ctx->t_sample_us / n_sample); fprintf(stderr, "%s: prompt eval time = %8.2f ms / %5d tokens (%8.2f ms per token)\n", __func__, 1e-3 * ctx->t_p_eval_us, n_p_eval, 1e-3 * ctx->t_p_eval_us / n_p_eval); fprintf(stderr, "%s: eval time = %8.2f ms / %5d runs (%8.2f ms per run)\n", __func__, 1e-3 * ctx->t_eval_us, n_eval, 1e-3 * ctx->t_eval_us / n_eval); fprintf(stderr, "%s: total time = %8.2f ms\n", __func__, (t_end_us - ctx->t_start_us)/1000.0); } void llama_reset_timings(struct llama_context * ctx) { ctx->t_start_us = ggml_time_us(); ctx->t_sample_us = ctx->n_sample = 0; ctx->t_eval_us = ctx->n_eval = 0; ctx->t_p_eval_us = ctx->n_p_eval = 0; } const char * llama_print_system_info(void) { static std::string s; s = ""; s += "AVX = " + std::to_string(ggml_cpu_has_avx()) + " | "; s += "AVX2 = " + std::to_string(ggml_cpu_has_avx2()) + " | "; s += "AVX512 = " + std::to_string(ggml_cpu_has_avx512()) + " | "; s += "FMA = " + std::to_string(ggml_cpu_has_fma()) + " | "; s += "NEON = " + std::to_string(ggml_cpu_has_neon()) + " | "; s += "ARM_FMA = " + std::to_string(ggml_cpu_has_arm_fma()) + " | "; s += "F16C = " + std::to_string(ggml_cpu_has_f16c()) + " | "; s += "FP16_VA = " + std::to_string(ggml_cpu_has_fp16_va()) + " | "; s += "WASM_SIMD = " + std::to_string(ggml_cpu_has_wasm_simd()) + " | "; s += "BLAS = " + std::to_string(ggml_cpu_has_blas()) + " | "; s += "SSE3 = " + std::to_string(ggml_cpu_has_sse3()) + " | "; s += "VSX = " + std::to_string(ggml_cpu_has_vsx()) + " | "; return s.c_str(); }