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ABSTRACT
We present a framework for information retrieval that com-
bines document models and query models using a proba-
bilistic ranking function based on Bayesian decision theory.
The framework suggests an operational retrieval model that
extends recent developments in the language modeling ap-
proach to information retrieval. A language model for each
document is estimated, as well as a language model for each
query, and the retrieval problem is cast in terms of risk min-
imization. The query language model can be exploited to
model user preferences, the context of a query, synonomy
and word senses. While recent work has incorporated word
translation models for this purpose, we introduce a new
method using Markov chains defined on a set of documents
to estimate the query models. The Markov chain method
has connections to algorithms from link analysis and social
networks. The new approach is evaluated on TREC col-
lections and compared to the basic language modeling ap-
proach and vector space models together with query expan-
sion using Rocchio. Significant improvements are obtained
over standard query expansion methods for strong baseline
TF-IDF systems, with the greatest improvements attained
for short queries on Web data.

1. INTRODUCTION
The language modeling approach to information retrieval

has recently been proposed as a new alternative to tradi-
tional vector space models and other probabilistic models.
In the use of language modeling by Ponte and Croft [17],
a unigram language model is estimated for each document,
and the likelihood of the query according to this model is
used to score the document for ranking. Miller et al. [15]
smooth the document language model with a background
model using hidden Markov model techniques, and demon-
strate good performance on TREC benchmarks. Berger and
Lafferty [1] use methods from statistical machine transla-
tion to incorporate synonomy into the document language
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model, achieving effects similar to query expansion in more
standard approaches to IR. The relative simplicity and effec-
tiveness of the language modeling approach, together with
the fact that it leverages statistical methods that have been
developed in speech recognition and other areas, makes it an
attractive framework in which to develop new text retrieval
methodology.

In this paper we motivate the language modeling approach
from a general probabilistic retrieval framework based on
risk minimization. This framework not only covers the clas-
sical probabilistic retrieval models as special cases, but also
suggests an extension of the existing language modeling ap-
proach to retrieval that involves estimating both document
language models and query language models and compar-
ing the models using the Kullback-Leibler divergence. In
the case where the query language model is concentrated on
the actual query terms, this reduces to the ranking method
employed by Ponte and Croft [17] and others. We also intro-
duce a novel method for estimating an expanded query lan-
guage model, which may assign probability to words that are
not in the original query. The essence of the new method is a
Markov chain word translation model that can be computed
based on a set of documents. The Markov chain method is
a very general method for expanding either a query model
or a document model. As a translation model, it addresses
several basic shortcomings of the translation models used
by Berger and Lafferty [1], as described in Section 4. The
query models explored in this paper are quite simple, but in
general, the role of the query model is to incorporate knowl-
edge of the user and the context of an information need into
the retrieval model.

The paper is organized as follows. In Section 2 we dis-
cuss the language modeling approach to IR, and briefly re-
view previous work in this direction. In Section 3 we present
the risk minimization retrieval framework and our extension
to the language modeling approach that incorporates both
query and document language models. Section 4 presents
the idea of using Markov chains on a documents and words
to expand document and query models, and gives several
examples. This technique requires various collection statis-
tics to be calculated, and we explain in Section 5 how these
can be calculated at index time. A series of experiments
to evaluate these methods is presented in Section 6, where
we attempt to compare directly to state-of-the art ranking
functions and weighting schemes. Conclusions and the con-
tributions of this work are summarized in Section 8.
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2. THE LANGUAGE MODELING
APPROACH

In the language modeling approach to information re-
trieval, a multinomial model p(w |d) over terms is estimated
for each document d in the collection C to be indexed and
searched. This model is used to assign a likelihood to a
user’s query q = (q1, q2, . . . , qm). In the simplest case, each
query term is assumed to be independent of the other query
terms, so that the query likelihood is given by p(q |d) =Qm

i=1 p(qi |d). After the specification of a document prior
p(d), the a posteriori probability of a document is given by

p(d |q) ∝ p(q |d) p(d)

and is used to rank the documents in the collection C.
Just as in the use of language models for speech recog-

nition, language models for information retrieval must be
“smoothed,” so that non-zero probability can be assigned to
query terms that do not appear in a given document. One of
the simplest ways in which a document language model can
be smoothed is by linear interpolation with a background
collection model p(w | C):

pλ(w |d) = λ p(w |d) + (1− λ) p(w | C) (1)

Miller et al. [15] view this smoothed model as coming from a
simple 2-state hidden Markov model, and train the param-
eter λ using maximum likelihood estimation. One of the
main effects of this type of smoothing is robust estimation
of common, content-free words that are typically treated as
“stop words” in many IR systems.

A potentially more significant and effective kind of smooth-
ing is what may be referred to as semantic smoothing, where
synonyms and word sense information is incorporated into
the models. With proper semantic smoothing, a document
that contains the term w = automobile may be retrieved
to answer a query that includes the term q = car, even if
this query term is not present in the document. Seman-
tic smoothing effects are achieved in more standard ap-
proaches to IR using query expansion and relevance and
pseudo-relevance feedback techniques. The development of
a well-motivated framework for semantic smoothing is one
of the important unresolved problems in the language mod-
eling approach.

In order to incorporate a kind of semantic smoothing into
the language modeling approach, Berger and Lafferty [1]
estimate translation models t (q |w) for mapping a document
term w to a query term q. Using translation models, the
document-to-query model becomes

p(q |d) =

mY
i=1

X
w

t (qi |w) p(w |d)

Berger and Lafferty [1] report significant improvements over
the baseline language modeling approach through the use of
translation models.

One of the primary motivations of the present paper is to
address what we view as several difficulties with the transla-
tion model approach to semantic smoothing in the language
modeling framework. First, the translation models t (q |w)
must be estimated from training data. As the models are
highly lexical, it is unlikely that a sufficiently large collection

of relevance judgments will be available to estimate them on
actual user data. Because of this, Berger and Lafferty gen-
erate an artificial collection of “synthetic” data for training.
Second, the application of translation models to ranking is
inefficient, as the model involves a sum over all terms in the
document. Third, the translation probabilities are context-
independent, and are therefore unable to directly incorpo-
rate word-sense information and context into the language
models.

In the following section we present a formal retrieval frame-
work based on risk minimization and derive an extension of
the language modeling approach just described, which may
ultimately be better suited to semantic smoothing to model
the user’s information need. In Section 4 we then present
a technique for expanding document and query models that
addresses some of the shortcomings of the translation mod-
els as used in [1].

3. A RISK MINIMIZATION RETRIEVAL
FRAMEWORK

In an interactive retrieval system, the basic action of the
system can be regarded as presenting a document or a se-
quence of documents to the user. Intuitively, the choice of
which documents to present should be based on some no-
tion of utility . In this section we formalize this intuition by
presenting a framework for the retrieval process based on
Bayesian decision theory.

We view a query as being the output of some probabilistic
process associated with the user U , and similarly, we view
a document as being the output of some probabilistic pro-
cess associated with an author or document source S . A
query (document) is the result of choosing a model, and
then generating the query (document) using that model. A
set of documents is the result of generating each document
independently, possibly from a different model. (The in-
dependence assumption is not essential, and is made here
only to simplify the presentation.) The query model could,
in principle, encode detailed knowledge about a user’s infor-
mation need and the context in which they make their query.
Similarly, the document model could encode complex infor-
mation about a document and its source or author.

More formally, let θQ denote the parameters of a query
model, and let θD denote the parameters of a document
model. A user U generates a query by first selecting θQ,
according to a distribution p(θQ | U). Using this model, a
query q is then generated with probability p(q | θQ). Simi-
larly, the source selects a document model θD according to a
distribution p(θD | S), and then uses this model to generate
a document d according to p(d | θD). Thus, we have Markov
chains U → θQ → q and S → θD → d.

If C = {d1,d2, . . . ,dk} is a collection of documents ob-
tained from source S , we denote by θi the model that gener-
ates document di. Assume now that for each document di,
there is a hidden binary relevance variable Ri that depends
on θQ and θi according to p(Ri | θQ, θi), which is interpreted
as representing the true relevance status of di with respect
to q (1 for relevant and 0 for non-relevant). The random
variable Ri is observed when we have the user’s relevance
judgment on di, and is unobserved otherwise. In the fol-
lowing presentation, we will assume that Ri is not observed.
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p(R | θQ, θD)

Figure 1: Generative models for queries, documents,
and relevance.

Note that because the query model θQ can encode detailed
knowledge about the user U , the distribution of this rele-
vance variable is in general user-specific.

A possible action of the system corresponds to a list of
documents to return to the user who has issued query q. In
the general framework of Bayesian decision theory, to each
such action a there is associated a loss L(a, θ), which in
general depends upon all of the parameters of our model,
θ ≡ (θQ, {θi}

k
i=1, {Ri}

k
i=1). In this framework, the expected

risk of action a is given by

R(a | U ,q,S ,C) =

Z
Θ

L(a, θ) p(θ | U ,q,S ,C) dθ

where the posterior distribution is given by

p(θ | U ,q,S ,C) ∝ p(θQ |q,U)

kY
i=1

p(θi | di,S) p(Ri | θQ, θi)

The Bayesian decision rule is then to present the document
list a∗ having the least expected risk:

a
∗ = argmin

a

R(a | U ,q,S ,C)

Now, if we assume that a possible action is to return a
single document a = di, and that the loss function only
depends on θQ, θi, and Ri, the risk can be simplified to

R(di;q)
def

= R(a = di | U ,q,S ,C) = (2)X
R∈{0,1}

Z
ΘQ

Z
ΘD

L(θQ, θD, R) ×

p(θQ |q,U) p(θD | di,S) p(R | θQ, θD) dθD dθQ

Clearly, if the whole collection C is presented by making
k sequential decisions, the result will be a list of documents
ranked in ascending order of R(di,q). Equation 2 is our
basic retrieval formula based on risk minimization.

Note that the independence assumption on the loss func-
tion does not usually hold in practice. Indeed, if we want
to account for the similarity or dissimilarity between the
documents in the returned list (consider, for example, the
maximum marginal relevance ranking criterion proposed in
[6]), such a loss function will not be appropriate. Here we
make this assumption mainly for mathematical convenience.

We have deliberately left the loss function unspecified in
order to achieve generality. We will be able to show that
many existing operational retrieval models are special cases
of the risk minimization framework when a specific loss func-
tion is used. A complete specification of the loss function

will generally force us to make explicit the assumed ranking
criterion and notion of relevance.

3.1 Relevance-based Loss Functions
We now consider the special case where the loss function

L depends only on the relevance variable R; in this case we
can simplify the risk formula and obtain a general ranking
criterion based on the “probability of relevance.”

Let L be defined

L(θQ, θD, R) =

(
c0 if R = 0

c1 if R = 1

where, c0 and c1 are two cost constants. Then we have

R(d;q) = c0 p(R = 0 |q,d) + c1 p(R = 1 |q,d)

= c0 + (c1 − c0) p(R = 1 |q,d)

This means that the risk minimization ranking criterion is
now equivalent to ranking based on p(R = 1 |q,d), i.e., the
probability of relevance given q and d. This is the basis of
all the classical probabilistic retrieval models. For example,
the derivation of the binary independent model based on
p(R = 1 |q,d) can be found in [18].

Interestingly, the model implicitly used in the language
modeling approach can also be derived based on the proba-
bility of relevance p(R = 1 |q,d). See [14] for details of this
derivation. This shows that both the classical probabilistic
retrieval model and the language modeling approach to re-
trieval are special cases of the risk minimization framework.

3.2 Distance-based Loss Functions
We now consider another special case, where the loss func-

tion L is assumed to depend only on θQ and θD; thus, given
θQ and θD, it does not depend on R. We will see that this al-
lows us to derive a general probabilistic distance/similarity
retrieval model.

Formally, let L be proportional to a distance or similarity
measure ∆ between θQ and θD, i.e.,

L(θQ, θD, R) = c∆(θQ, θD)

where c is a cost constant. Intuitively, if the models θ, θ′ are
closer/similar, then ∆(θ, θ′) should be small. With this loss
function, we have

R(d;q) ∝

Z
θQ

Z
θD

∆(θQ, θD) p(θQ |q,U) p(θD |d,S)dθD dθQ

This means that the risk minimization ranking criterion
is now equivalent to ranking based on the expected model
distance. Rather than explicitly computing this distance,
we can approximate it by its value at the posterior mode:

R(d;q) ∝ ∆(bθq, bθd) p(θd |d,S)p(θq |q,U)

∝ ∆(bθq, bθd) p(θd |d,S)

where bθq = argmax
θQ

p(θQ |q,U)

bθd = argmax
θD

p(θD |d,S)

Note that the factor p(bθd |d,S) includes prior information
about the document, and in general must be included when
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comparing the risk for different documents. This is criti-
cal when incorporating query-independent link analysis, or
other extrinsic knowledge about a document. But, if we fur-
ther assume that p(bθd |d,S) is the same for all d, so does
not affect ranking, we will have the following very general
distance-based (or equivalently, similarity-based) probabilis-
tic model:

R(d;q) ∝ ∆(bθd, bθq)
We can view the vector space model as a special case of

this general similarity model, where bθq and bθd are simply
term vector parameters estimated heuristically and the dis-
tance function is the cosine or inner product measure.

We now consider a specific similarity model as an inter-
esting special case, where θQ and θD are the parameters of
unigram language models (i.e., p(· | θ) is a distribution over
a fixed word vocabulary), and the similarity measure is the
Kullback-Leibler divergence

∆(θQ, θD) =
X
w

p(w | θQ) log
p(w | θQ)

p(w | θD)

In this case

R(d;q) ∝ −
X
w

p(w | bθq) log p(w | bθd) + cq (3)

where cq is a constant that doesn’t depend on the document,
and so doesn’t affect the retrieval performance.

According to this risk formula, the retrieval problem is
essentially that of estimating bθq and bθd. If bθq is just the
empirical distribution of the query q = q1q2...qm; that is,

p(w | bθq) = −
1

m

mX
i=1

δ(w, qi)

where, δ is the indicator function, then we obtain

R(d;q) ∝ −
1

m

mX
i=1

log p(qi | bθd) + cq

This is precisely the log-likelihood criterion that has been in
used in all work on the language modeling approach to date.
In the remainder of this paper we will develop new query
expansion methods to estimate a model bθq, and demonstrate
that this model performs significantly better than using the
empirical distribution for bθq when we use (3) as the risk.

4. MARKOV CHAINS FOR EXPANDING
LANGUAGE MODELS

In this section we describe a Markov chain method for
expanding language models for queries and documents, to
be used in the formal framework just described. We begin by
motivating the method in the context of translation models.
We then explain the basic method and provide examples. In
Section 7 we discuss the relationship between the Markov
chain method and other techniques such as link analysis.

4.1 Markov chains on words and documents
As noted in Section 2, the translation models of Berger

and Lafferty [1] can significantly improve retrieval perfor-
mance, but must be estimated from training data. Since
the parameters are highly lexical, an enormous amount of

w0 w1 w2

❆
❆
❆
❆
❆
❆ ✁

✁
✁
✁
✁
✁✕ ❆

❆
❆
❆
❆
❆ ✁

✁
✁
✁
✁
✁✕

d0 d1

p(d0 |w0) p(d1 |w1)

p(w1 |d0) p(w2 |d1)

Figure 2: The Markov chain alternates between
words and documents. For a given document, a
word is selected according to the document language
model. For a given word, a document is selected ac-
cording to the posterior probability.

training data would be required to estimate them. Because
the translation models are context-independent their ability
to handle word sense ambiguity is limited. Moreover, the use
of translation models for documents incurs a severe price in
the time to score documents. The Markov chain method
helps to overcome these limitations of the translation model
paradigm.

Our goal is to estimate a query model bθq. For this pur-
pose, we will estimate a probability t (q |w) that a word w

“translates” to the query term q. Imagine a user looking
to formulate a query for an information need, and suppose,
fancifully, that the user has an index available for the text
collection to be searched. The user “surfs” the index in the
following random manner. First, a word w0 is chosen. Next,
the index is consulted, and a document d0 containing that
word is chosen. This choice will be influenced by the number
of times the word appears in d0, and might be also affected
by extrinsic data about the document, such as information
about its author. From that document, a new word w1 is
sampled, a new document containing w1 is chosen, and the
process continues in this manner. After each step, there is
some chance the user will stop browsing, as the topics of the
documents drift further from the information need.

We now describe the random walk more precisely. The
walk begins by choosing a word w0 with probability p(w0 | U).
At the i-th step, the user has selected word wi. The user
continues the random walk with probability α, generating a
new document and word. With probability 1− α, the walk
stops with word wi. If the walk continues, then a document
di is sampled from the inverse list for wi, according to the
posterior probability

p(di |wi) =
p(wi |di) p(di)P
d
p(wi |d) p(d)

(4)

where p(· |d) is the document language model, and where
p(d) is a prior distribution on documents. For example, with
hypertext, p(d) might be the distribution calculated using
the “PageRank” scheme [4]. Having chosen a document di,
a new word wi+1 is sampled from it according to p(· |di).

4.2 Matrix formulation
The algorithm can be cleanly described and related to

other techniques using matrix notation. Let N be the num-
ber of terms in the word vocabulary, and M the number of
documents in the collection. Let A be the N×M stochastic
matrix with entries Aw,d = p(d |w), where the probability

ACM SIGIR Forum 254 Vol. 51 No. 2, July 2017



is calculated as in equation (4). Also, let B be the M ×N

stochastic matrix with entries Bd,w = p(w |d) given by the
document language models. Finally, let C be the N × N

stochastic matrix C = AB.
The probability that the chain stops after k steps with

word wk = q is given by

(1− α)αk
C

k
w,q

where Ck
w,q is the (w, q)-entry of the matrix Ck. Therefore,

the overall probability of generating a word q is given by

tα(q |w) = (1− α)
�
I + αC + · · ·αk

C
k + · · ·

�
w,q

= (1− α) (I − αC)−1
w,q

Note that the matrix inverse (I − αC)−1 exists since, as a
stochastic matrix, α−1 > 1 cannot be an eigenvalue of C.
We define this to be the translation probability of mapping
w to q.

In the same way, we can calculate the probability that the
user stops with document d as

tα(d |w) = (1− α)
h�

I + αC + · · ·αk
C

k + · · ·
�
A
i
w,d

= (1− α)
�
(I − αC)−1

A
�
w,d

While the matrices A and B are sparse, so that the matrix
product C = AB can be computed efficiently, Ck quickly
becomes dense as k increases, and the powers cannot be
computed efficiently. However, as k increases, the “topic”
wanders from the initial term w0, as the probability quickly
spreads out over all terms. Thus, intuitively, the first few
steps of the chain are most important for retrieval purposes.

4.3 Expanding query and document models
Suppose that q = (q1, q2, . . . , qm) is a query that we wish

to expand. In our framework, this means that we esti-
mate a language model p(w | bθq). Using the Markov chain
method, this is done by calculating the posterior probability
of words, according to the translation model for generating
the query and a prior distribution on initial terms selected
by the user. Thus, assuming the query terms are generated
independently,

p(w | bθq) ∝
mX
i=1

tα(qi |w) p(w | U)

A document d can be expanded using the Markov chain in
a similar way:

p(w | bθd) ∝ tα(d |w) p(w | U)

To understand how this method should be expected to work,
it helps to consider running the chain for only one step. The
probability of generating a query term qi starting from an
initial word w is equal to p(w | U)

P
d
p(qi |d) p(d |w) in

this case. The effect of the probability p(d |w) is similar to
IDF in traditional retrieval methods, since this probability
will be high if the word w appears in only a few documents.
In particular, function words will typically appear in a very
large number of documents, so p(d |w) will tend to be very
small for such words. At the other end of the spectrum, if
w appears only in the document d, this probability will be

one. Words with very high p(d |w) tend to be rare and spe-
cialized, and not sufficiently general to be useful to improve
the language models. However, the prior p(w | U) acts to
select the more useful and frequent words having high IDF.
At the same time, this prior gives a probabilistic mechanism
for incorporating stop-word lists, or other extrinsic knowl-
edge about the retrieval and query generation process. Thus,
even the one-step chain captures many of the desirable fea-
tures of term weighting schemes in a probabilistic model.

4.4 Incorporating feedback
Because the Markov chain translation probabilities t(q |w)

generate the query, the resulting expansion model p(w |q)
is fairly general. If query terms have multiple senses, a mix-
ture of these senses may be present in the expanded model
(See Figure 3). For semantic smoothing, a more context-
dependent model that takes into account the relationship
between query terms may be desirable. One way to accom-
plish this is through a pseudo-feedback mechanism. Suppose
that a set of documents D(q) is known (or assumed) to be
relevant to a query q. We can condition the Markov chain to
pass through this set. For example, in the one-step version
of the random walk, we compute

p(w | q,D(q)) ∝ p(w)
X

d∈D(q)

p(d |w) p(q |d)

In this way the expanded language model may be more “se-
mantically coherent,” capturing the topic implicit in the set
of documents D(q) rather than representing words related
to the query terms qi in general. An example of this is
shown in Figure 3. In Section 6 we report on experiments
on TREC data that clearly demonstrate how this method
can improve retrieval performance.

5. INDEXING SCHEMES
Calculation of the Markov chain probabilities on inverted

indices manipulates document language models p(w |d) and
their posterior probabilities p(d |w). Computing these prob-
abilities at retrieval time can be very expensive, but can be
made more efficient by calculation of various statistics at
index time, as discussed briefly in this section. This sheds
further light on the role of document priors.

Standard indexing schemes store, for each index term w,
a list of document indices in which the term appears, d1 �→
d2 �→ . . . �→ dn(w). For information retrieval based on lan-
guage modeling, we require in addition the number of times
the term appears in the document, and thus store a list
(d1, c(w,d1)) �→ (d2, c(w,d2)) �→ · · · �→ (dn(w), c(w,dn(w))).
To normalize the language probabilities, at index time we
compute the total document count c(d) =

P
w
c(w,d), and

store this in a document array, together with a document
prior p(d).

In our implementation, we make two passes through the
corpus. In the first pass a term vocabulary, document vo-
cabulary, and document counts c(d) are tabulated. In the
second pass, the inverted lists and word marginals p(w) are
computed. Both the word-document and document-word
lists are compressed using the γ-method [20].

To normalize the posterior probabilities, we must calcu-
late

P
d p(w |d) p(d). Using the maximum likelihood lan-
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w p(w |q)

virus 0.275
ebola 0.197
hoax 0.051

viruses 0.034
outbreak 0.034
fever 0.033
disease 0.024

haemorrhagic 0.023
gabon 0.022

infected 0.019
aids 0.016

security 0.014
monkeys 0.013
hiv 0.011
zaire 0.011

q = ebola virus (Web)

w p(w |q)

star 0.361
wars 0.217
rpg 0.058
trek 0.033

starwars 0.032
movie 0.023
episode 0.020
movies 0.015
war 0.014

character 0.013
tv 0.013
film 0.012
fan 0.012

reviews 0.012
jedi 0.008

q = star wars (Web)

w p(w |q)

star 0.192
wars 0.137
soviet 0.025
weapons 0.023
photo 0.020
army 0.020
armed 0.020
film 0.018
show 0.018

nations 0.017
strategic 0.017

tv 0.017
sunday 0.016
bush 0.014
series 0.013

q = star wars (TREC)

w p(w |q)

star 0.170
wars 0.161
senate 0.069

strategic 0.050
spending 0.045

initiative 0.039
funding 0.036
vote 0.036

missile 0.033
billion 0.033
weapons 0.031
cheney 0.030
space 0.028
voted 0.021

missiles 0.020

q = star wars (TREC)
with feedback

Figure 3: Sample query model probabilities using the Markov chain method. As seen in the third table, the
probabilities can be fairly general and include a mixture of topics. Using the feedback approach, conditioning
the chain on a document set obtained in a first pass, the query probabilities become more specialized, as seen
in the fourth table.

guage model, this is given by p(w) =
P

d

c(w,d)
c(d)

p(d).
The choice of prior affects the indexing. With a uniform
document prior p(d) = 1

|C|
, where |C| is the number of doc-

uments, we store

p(w) =
1

|C|

X
d

c(w,d)

c(d)

If one chooses a (rather unmotivated) prior where a docu-
ment’s probability is proportional to its total count c(d) (so
a user browses by favoring long documents), then this leads

to p(w) = c(w)P
w c(w)

, which is simply the corpus unigram

model.
Note that in our framework the prior information about a

document enters in two places—in the Markov chain anal-
ysis of translation models, and in calculating the risk. We
expect that significant improvements in query models can be
obtained by basing the document prior on link-analysis or
higher-level knowledge about the document collection; this
remains an interesting topic for further research.

6. EXPERIMENTAL RESULTS
We evaluated the query model estimation methods de-

scribed in the previous sections using three different TREC
testing collections: the AP collection on disk 1 (topics 1–50),
the TREC8 ad hoc task collection (topics 401–450 on disks
4&5 – CR), and the TREC8 web track collection (topics
401–450 on Web data). These data sets are representative
of different aspects of TREC. The first is one of the ear-
liest collections used in TREC and has relatively complete
relevance judgments. The last two were selected because
they represent relatively large collections and several pub-
lished results on them are available. The Web data was also
selected because of its unique document style.

When selecting queries, we set up our evaluation as an
approximation of real world retrieval. Since queries are typ-
ically short, we only used the titles of each TREC topic
description. The titles have an average length of 2.5 words,
and typically contain one to four words each. The document
collections were pre-indexed using the approach described in
Section 5. All documents and queries were tokenized using

the Porter stemmer. However, no stopword list was used, in
order to test the robustness of our modeling techniques.

6.1 Effect of the query model
The query model obtained using the Markov chain for

expansion is expected to perform better than the simple
language model predicting the query, as in the Ponte-Croft
work. In order to test this, we compared the retrieval per-
formance of the original maximum likelihood query model
with that of the query translation model on all three col-
lections. The results are shown in Table 1. The figures for
each model use the best choice of the document smoothing
parameter λ in equation (1), as determined by a simple line
search. In addition to non-interpolated average precision,
which we consider to be the main performance measure, we
include recall at 1,000 documents and initial precision, i.e.,
interpolated precision at 0% recall.

Compared with the simple query model, the basic query
translation model improves average precision and recall sig-
nificantly and consistently across all three collections. How-
ever, using the Markov chain with a seed set of 50 doc-
uments, similar to pseudo-feedback, as described in Sec-
tion 4.4, gives a much greater improvement. For these ex-
periments we use α = 1

2
and run the Markov chain for only

two steps. The precision-recall curves are shown in Figure 4
for all six runs. In Figure 5, we compare the precision/recall
of the basic query model and the expanded model at differ-
ent settings of the document smoothing parameter λ. The
figures clearly show that the query translation model is bet-
ter than the simple query model for all settings of λ, and
that the improvement is fairly insensitive to the choice of
this parameter.

6.2 Query translation models vs. TF-IDF
The effect of query expansion using the Markov chain

translation model should be compared with query expan-
sion in more traditional retrieval models, such as the vec-
tor space model. For this purpose, we implemented a vec-
tor space model where the similarity is computed using the
dot product and the TF formula is the well-known Okapi
TF [19]. While the Okapi TF is designed to be used in the
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Collection Simple LM Query Model Improv. QM w/ Pseudo Improv.
AP89 AvgPr 0.188 0.201 +7% 0.232 +23%

InitPr 0.515 0.500 −3% 0.534 +4%
Recall 1510/3261 1745/3261 +16% 2019/3261 +34%

TREC8 AvgPr 0.241 0.266 +10% 0.294 +22%
InitPr 0.620 0.723 +17% 0.676 +9%
Recall 2791/4728 2913/4728 +4% 3368/4728 +21%

WEB AvgPr 0.244 0.275 +13% 0.304 +25%
InitPr 0.607 0.664 +9% 0.663 +9%
Recall 1760/2279 1848/2279 +5% 1910/2279 +9%

Table 1: Comparison of the basic language modeling method with expanded query models. Column three
gives the performance using the Markov chain query translation model; column 5 shows the effect of including
an initial document set (pseudo-feedback) to condition the Markov chain.

Collection TF-IDF+Rocchio Query Model Improv. QM w/ Pseudo Improv.
AP89 AvgPr 0.230 0.201 −13% 0.232 +1%

InitPr 0.492 0.500 +2% 0.534 +9%
Recall 2082/3261 1745/3261 −16% 2019/3261 −3%

TREC8 AvgPr 0.256 0.266 +4% 0.294 +15%
InitPr 0.637 0.723 +14% 0.676 +6%
Recall 3154/4728 2913/4728 −8% 3368/4728 +7%

WEB AvgPr 0.226 0.275 +22% 0.304 +35%
InitPr 0.559 0.664 +19% 0.663 +19%
Recall 1729/2279 1848/2279 +7% 1910/2279 +10%

Table 2: Comparison of TF-IDF with Rocchio to Markov chain query expansion in the language modeling
framework.
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Figure 4: Precision-recall curves for all three collec-
tions, comparing the simple language model to the
query translation model.

BM25 retrieval function, in practice, we have found that
using it in the vector space model also tends to give very
good performance. For query expansion, we implemented
a simplified Rocchio, where we add only positive terms to
the query, controlled by three parameters: (1) the number
of documents for blind feedback, (2) the number of terms to
add, and (3) the relative coefficient of the added terms. We
varied these parameters among several values and chose the
best performing parameters for comparison.

It is interesting to see that the relative performance of

the query translation model and the TF-IDF model varies
from collection to collection. Constraining the Markov chain
to use a selected set of documents, obtained during a first
retrieval pass, as described in Section 4, generally gives the
best performance. However, on AP89, the performance of
Rocchio and the query translation model are virtually the
same. The greatest gain from the query translation model
comes on the Web data, where the query models achieve a
35% improvement over Rocchio. We note that, although we
use only the title queries, which are very short, our results
on both the TREC8 and Web data using query models are
quite comparable to the official TREC submissions, which
use the full queries.

7. RELATED WORK
There is a large and rich literature on probabilistic models

in information retrieval, and it would not be possible to sur-
vey it here. The work presented in this paper is most closely
related to recent developments in the language modeling ap-
proach [17, 11, 15, 1]. Important precursors to the language
modeling approach include [3, 18, 8, 10, 21]. The frame-
work based on risk minimization that we have introduced
is very natural and general. We are not aware of any di-
rectly comparable framework in the IR literature, although
several early papers discuss indexing schemes designed to
optimize utility measures [16, 7, 2]. The approach that we
present differs significantly from this work in that the cen-
tral components are probabilistic models of documents and
queries, combined using an explicit loss function according
to Bayesian decision theory. The formal model is meant to
explicitly represent the uncertainty inherent in our model of
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Figure 5: Effect of λ, the document smoothing pa-
rameter for linear interpolation. The results indi-
cate that the improvement of the query translation
model over the simple query model is fairly insensi-
tive to the choice of λ.

the user and collection, and is an attractive way in which
to think about query and document language models. An
interesting direction for future work will be to go beyond
the use of a single document and query model (as in MAP
estimation).

The practical implementation of our new query expansion
technique involves using only a small number of steps of a
Markov chain on inverted indices. However, to compare this
technique to previous work, it is best to imagine using the
full matrix analysis, which involves computing the matrix
inverse (I−αC)−1, as described in Section 4. When viewed
in this way, there are interesting connections between the
Markov chain approach to building query models, link anal-
ysis methods, theory of social networks, and latent semantic
indexing.

Methods based on latent semantic analysis (LSA) [9] work
with the singular value decomposition of the word-document
matrix bA having entries bAw,d = c(w,d). Let bB denote
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Figure 6: Precision-recall curves comparing TF-IDF
with Rocchio to the query translation models. The
curves for the two methods on AP89 are nearly the
same, and so are not shown.

the transpose bA⊤, so that bBd,w = c(w,d). LSA computes

projections onto eigenspaces of the matrices bA bB and bB bA,
building a low-dimensional subspace to represent terms and
documents. In our method, we work with the closely re-
lated matrices A and B. The matrix B is obtained frombB by normalizing the rows. However, the matrix of poste-
rior probabilities A is obtained from bA by normalizing the
rows only in the case of the rather unnatural document prior
p(d) ∝ c(d). But the essential difference is that our method
interprets the matrix (I − αAB)−1 probabilistically, rather
than using a vector space approach that projects onto sub-
spaces generated by the top eigenvectors of bA bB.

There is a closer connection to methods from link and
citation analysis. For example, Kleinberg’s “hubs and au-
thorities” technique [13] uses an initial document set D(q)

for a query, defines the matrix bB encoding all outgoing links
from D, and the matrix bA encoding all incoming links to D.
The “hub score” of a document is then defined in terms of
the principal eigenvector of the matrix bA bB (ignoring some

ACM SIGIR Forum 258 Vol. 51 No. 2, July 2017



details involving normalization). To cast this in terms of
our query expansion method, forward links are replaced by
document word indices, with language model probabilities
p(w |d) = Bd,w, and incoming links are replaced by inverted
file indices, with posterior probabilities p(d |w) = Aw,d.
Use of the principal eigenvector of the matrix AB could
give an excellent method for query expansion.

Instead, we have chosen to use the Markov chain leading
to the matrix (I − αAB)−1, which we believe gives greater
flexibility, as well as numerical stability through smooth-
ing. Intuitively, the first iterations of the walk are most
important, and they are emphasized using the parameter α.
The use of this matrix is related to research on social net-
works carried out nearly 50 years ago; an excellent discussion
of these methods is given by Kleinberg [13]. To estimate
the “standing” of an individual in a social network, Katz
[12] uses a matrix C where Ci,j is the strength of an “en-
dorsement” of individual j by individual i, and defines the
standing of an individual j as the j-th column of the ma-
trix (I − αC)−1 − I . Very similar measures are defined by
Hubbel [5].

8. SUMMARY AND CONCLUSIONS
We have presented a new framework for information re-

trieval based on Bayesian decision theory. In this framework
we assume a probabilistic model for the parameters of doc-
ument and query language models, and cast the retrieval
problem in terms of risk minimization. The framework is
very general and expressive, and by choosing specific models
and loss functions it is possible to recover many previously
developed frameworks. In particular, previous approaches
based on language modeling and query-likelihood ranking
are obtained as a natural special case. In this paper we
focus on the use of Kullback-Leibler divergence as loss func-
tion, and the estimation of query language models. We in-
troduce a novel method for estimating query models that
uses Markov chains on the inverted indices of a document
collection. This random walk has a natural interpretation
in terms of document language models, and results in prac-
tical and effective translation models and query language
models. Experiments on standard TREC methods indicate
the usefulness of both the framework and the Markov chain
method, as we obtain significant improvements over stan-
dard query expansion methods for strong baseline TF-IDF
methods, with the greatest improvements attained for short
queries on Web data.
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