aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorStephan Walter <stephan@walter.name>2023-07-05 16:13:06 +0000
committerGitHub <noreply@github.com>2023-07-05 19:13:06 +0300
commit1b107b8550dced48dc5f41184640061354226b96 (patch)
treea09a4c33c865828cd753c19af71c580f98735be5
parent8567c76b5326e862be0755a8dc1dd988223fcae3 (diff)
ggml : generalize `quantize_fns` for simpler FP16 handling (#1237)
* Generalize quantize_fns for simpler FP16 handling * Remove call to ggml_cuda_mul_mat_get_wsize * ci : disable FMA for mac os actions --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
-rw-r--r--.github/workflows/build.yml3
-rw-r--r--examples/quantize-stats/quantize-stats.cpp14
-rw-r--r--ggml.c590
-rw-r--r--ggml.h33
-rw-r--r--llama.cpp10
-rw-r--r--pocs/vdot/q8dot.cpp6
-rw-r--r--pocs/vdot/vdot.cpp13
-rw-r--r--tests/test-quantize-fns.cpp30
-rw-r--r--tests/test-quantize-perf.cpp25
9 files changed, 174 insertions, 550 deletions
diff --git a/.github/workflows/build.yml b/.github/workflows/build.yml
index aec43bd..12481e8 100644
--- a/.github/workflows/build.yml
+++ b/.github/workflows/build.yml
@@ -137,9 +137,10 @@ jobs:
- name: Build
id: cmake_build
run: |
+ sysctl -a
mkdir build
cd build
- cmake -DLLAMA_AVX2=OFF ..
+ cmake -DLLAMA_AVX2=OFF -DLLAMA_FMA=OFF ..
cmake --build . --config Release
- name: Test
diff --git a/examples/quantize-stats/quantize-stats.cpp b/examples/quantize-stats/quantize-stats.cpp
index 9cea472..6aa06ec 100644
--- a/examples/quantize-stats/quantize-stats.cpp
+++ b/examples/quantize-stats/quantize-stats.cpp
@@ -147,7 +147,7 @@ void test_roundtrip_on_chunk(
const ggml_tensor * layer,
int64_t offset,
int64_t chunk_size,
- const quantize_fns_t & qfns,
+ const ggml_type_traits_t & qfns,
bool use_reference,
float * input_scratch,
char * quantized_scratch,
@@ -163,11 +163,11 @@ void test_roundtrip_on_chunk(
}
if (use_reference) {
- qfns.quantize_row_q_reference(input_scratch, quantized_scratch, chunk_size);
+ qfns.from_float_reference(input_scratch, quantized_scratch, chunk_size);
} else {
- qfns.quantize_row_q(input_scratch, quantized_scratch, chunk_size);
+ qfns.from_float(input_scratch, quantized_scratch, chunk_size);
}
- qfns.dequantize_row_q(quantized_scratch, output_scratch, chunk_size);
+ qfns.to_float(quantized_scratch, output_scratch, chunk_size);
update_error_stats(chunk_size, input_scratch, output_scratch, stats);
}
@@ -177,7 +177,7 @@ void test_roundtrip_on_chunk(
void test_roundtrip_on_layer(
std::string & name,
bool print_layer_stats,
- const quantize_fns_t & qfns,
+ const ggml_type_traits_t & qfns,
bool use_reference,
const ggml_tensor * layer,
std::vector<float> & input_scratch,
@@ -388,8 +388,8 @@ int main(int argc, char ** argv) {
if (!params.include_types.empty() && std::find(params.include_types.begin(), params.include_types.end(), i) == params.include_types.end()) {
continue;
}
- quantize_fns_t qfns = ggml_internal_get_quantize_fn(i);
- if (qfns.quantize_row_q && qfns.dequantize_row_q) {
+ ggml_type_traits_t qfns = ggml_internal_get_type_traits(type);
+ if (qfns.from_float && qfns.to_float) {
if (params.verbose) {
printf("testing %s ...\n", ggml_type_name(type));
}
diff --git a/ggml.c b/ggml.c
index 88cbed7..635c32e 100644
--- a/ggml.c
+++ b/ggml.c
@@ -481,14 +481,14 @@ ggml_fp16_t ggml_fp32_to_fp16(float x) {
return GGML_FP32_TO_FP16(x);
}
-void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, size_t n) {
- for (size_t i = 0; i < n; i++) {
+void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, int n) {
+ for (int i = 0; i < n; i++) {
y[i] = GGML_FP16_TO_FP32(x[i]);
}
}
-void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, size_t n) {
- size_t i = 0;
+void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int n) {
+ int i = 0;
#if defined(__F16C__)
for (; i + 7 < n; i += 8) {
__m256 x_vec = _mm256_loadu_ps(x + i);
@@ -1627,109 +1627,112 @@ static void dequantize_row_q8_0(const void * restrict vx, float * restrict y, in
}
}
+static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y);
+static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y);
static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
-static const quantize_fns_t quantize_fns[GGML_TYPE_COUNT] = {
+static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
+ [GGML_TYPE_F32] = {
+ .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f32,
+ .vec_dot_type = GGML_TYPE_F32,
+ },
+ [GGML_TYPE_F16] = {
+ .to_float = (ggml_to_float_t) ggml_fp16_to_fp32_row,
+ .from_float = (ggml_from_float_t) ggml_fp32_to_fp16_row,
+ .from_float_reference = (ggml_from_float_t) ggml_fp32_to_fp16_row,
+ .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f16,
+ .vec_dot_type = GGML_TYPE_F16,
+ },
[GGML_TYPE_Q4_0] = {
- .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q4_0,
- .quantize_row_q = quantize_row_q4_0,
- .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_0_reference,
- .quantize_row_q_dot = quantize_row_q8_0,
- .vec_dot_q = ggml_vec_dot_q4_0_q8_0,
+ .to_float = (ggml_to_float_t) dequantize_row_q4_0,
+ .from_float = quantize_row_q4_0,
+ .from_float_reference = (ggml_from_float_t) quantize_row_q4_0_reference,
+ .vec_dot = ggml_vec_dot_q4_0_q8_0,
.vec_dot_type = GGML_TYPE_Q8_0,
},
[GGML_TYPE_Q4_1] = {
- .dequantize_row_q = (dequantize_row_q_t)dequantize_row_q4_1,
- .quantize_row_q = quantize_row_q4_1,
- .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_1_reference,
- .quantize_row_q_dot = quantize_row_q8_1,
- .vec_dot_q = ggml_vec_dot_q4_1_q8_1,
+ .to_float = (ggml_to_float_t) dequantize_row_q4_1,
+ .from_float = quantize_row_q4_1,
+ .from_float_reference = (ggml_from_float_t) quantize_row_q4_1_reference,
+ .vec_dot = ggml_vec_dot_q4_1_q8_1,
.vec_dot_type = GGML_TYPE_Q8_1,
},
[GGML_TYPE_Q5_0] = {
- .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q5_0,
- .quantize_row_q = quantize_row_q5_0,
- .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q5_0_reference,
- .quantize_row_q_dot = quantize_row_q8_0,
- .vec_dot_q = ggml_vec_dot_q5_0_q8_0,
+ .to_float = (ggml_to_float_t) dequantize_row_q5_0,
+ .from_float = quantize_row_q5_0,
+ .from_float_reference = (ggml_from_float_t) quantize_row_q5_0_reference,
+ .vec_dot = ggml_vec_dot_q5_0_q8_0,
.vec_dot_type = GGML_TYPE_Q8_0,
},
[GGML_TYPE_Q5_1] = {
- .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q5_1,
- .quantize_row_q = quantize_row_q5_1,
- .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q5_1_reference,
- .quantize_row_q_dot = quantize_row_q8_1,
- .vec_dot_q = ggml_vec_dot_q5_1_q8_1,
+ .to_float = (ggml_to_float_t) dequantize_row_q5_1,
+ .from_float = quantize_row_q5_1,
+ .from_float_reference = (ggml_from_float_t) quantize_row_q5_1_reference,
+ .vec_dot = ggml_vec_dot_q5_1_q8_1,
.vec_dot_type = GGML_TYPE_Q8_1,
},
[GGML_TYPE_Q8_0] = {
- .dequantize_row_q = dequantize_row_q8_0,
- .quantize_row_q = quantize_row_q8_0,
- .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q8_0_reference,
- .quantize_row_q_dot = quantize_row_q8_0,
- .vec_dot_q = ggml_vec_dot_q8_0_q8_0,
+ .to_float = dequantize_row_q8_0,
+ .from_float = quantize_row_q8_0,
+ .from_float_reference = (ggml_from_float_t) quantize_row_q8_0_reference,
+ .vec_dot = ggml_vec_dot_q8_0_q8_0,
.vec_dot_type = GGML_TYPE_Q8_0,
},
[GGML_TYPE_Q8_1] = {
- .dequantize_row_q = NULL, // TODO
- .quantize_row_q = quantize_row_q8_1,
- .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q8_1_reference,
- .quantize_row_q_dot = quantize_row_q8_1,
- .vec_dot_q = NULL, // TODO
+ .from_float = quantize_row_q8_1,
+ .from_float_reference = (ggml_from_float_t) quantize_row_q8_1_reference,
.vec_dot_type = GGML_TYPE_Q8_1,
},
#ifdef GGML_USE_K_QUANTS
[GGML_TYPE_Q2_K] = {
- .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q2_K,
- .quantize_row_q = quantize_row_q2_K,
- .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q2_K_reference,
- .quantize_row_q_dot = quantize_row_q8_K,
- .vec_dot_q = ggml_vec_dot_q2_K_q8_K,
+ .to_float = (ggml_to_float_t) dequantize_row_q2_K,
+ .from_float = quantize_row_q2_K,
+ .from_float_reference = (ggml_from_float_t) quantize_row_q2_K_reference,
+ .vec_dot = ggml_vec_dot_q2_K_q8_K,
.vec_dot_type = GGML_TYPE_Q8_K,
},
[GGML_TYPE_Q3_K] = {
- .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q3_K,
- .quantize_row_q = quantize_row_q3_K,
- .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q3_K_reference,
- .quantize_row_q_dot = quantize_row_q8_K,
- .vec_dot_q = ggml_vec_dot_q3_K_q8_K,
+ .to_float = (ggml_to_float_t) dequantize_row_q3_K,
+ .from_float = quantize_row_q3_K,
+ .from_float_reference = (ggml_from_float_t) quantize_row_q3_K_reference,
+ .vec_dot = ggml_vec_dot_q3_K_q8_K,
.vec_dot_type = GGML_TYPE_Q8_K,
},
[GGML_TYPE_Q4_K] = {
- .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q4_K,
- .quantize_row_q = quantize_row_q4_K,
- .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_K_reference,
- .quantize_row_q_dot = quantize_row_q8_K,
- .vec_dot_q = ggml_vec_dot_q4_K_q8_K,
+ .to_float = (ggml_to_float_t) dequantize_row_q4_K,
+ .from_float = quantize_row_q4_K,
+ .from_float_reference = (ggml_from_float_t) quantize_row_q4_K_reference,
+ .vec_dot = ggml_vec_dot_q4_K_q8_K,
.vec_dot_type = GGML_TYPE_Q8_K,
},
[GGML_TYPE_Q5_K] = {
- .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q5_K,
- .quantize_row_q = quantize_row_q5_K,
- .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q5_K_reference,
- .quantize_row_q_dot = quantize_row_q8_K,
- .vec_dot_q = ggml_vec_dot_q5_K_q8_K,
+ .to_float = (ggml_to_float_t) dequantize_row_q5_K,
+ .from_float = quantize_row_q5_K,
+ .from_float_reference = (ggml_from_float_t) quantize_row_q5_K_reference,
+ .vec_dot = ggml_vec_dot_q5_K_q8_K,
.vec_dot_type = GGML_TYPE_Q8_K,
},
[GGML_TYPE_Q6_K] = {
- .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q6_K,
- .quantize_row_q = quantize_row_q6_K,
- .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q6_K_reference,
- .quantize_row_q_dot = quantize_row_q8_K,
- .vec_dot_q = ggml_vec_dot_q6_K_q8_K,
+ .to_float = (ggml_to_float_t) dequantize_row_q6_K,
+ .from_float = quantize_row_q6_K,
+ .from_float_reference = (ggml_from_float_t) quantize_row_q6_K_reference,
+ .vec_dot = ggml_vec_dot_q6_K_q8_K,
.vec_dot_type = GGML_TYPE_Q8_K,
},
+ [GGML_TYPE_Q8_K] = {
+ .from_float = quantize_row_q8_K,
+ }
#endif
};
// For internal test use
-quantize_fns_t ggml_internal_get_quantize_fn(size_t i) {
+ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type i) {
GGML_ASSERT(i < GGML_TYPE_COUNT);
- return quantize_fns[i];
+ return type_traits[i];
}
@@ -2275,7 +2278,7 @@ inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x)
inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
-inline static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
+static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
#ifdef GGML_SIMD
float sumf = 0.0f;
const int np = (n & ~(GGML_F32_STEP - 1));
@@ -2312,7 +2315,7 @@ inline static void ggml_vec_dot_f32(const int n, float * restrict s, const float
*s = sumf;
}
-inline static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
+static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
ggml_float sumf = 0.0;
#if defined(GGML_SIMD)
@@ -7825,8 +7828,8 @@ static void ggml_compute_forward_dup_f16(
id += ne00 * (ne01 - ir1);
}
}
- } else if (ggml_is_quantized(dst->type)) {
- quantize_row_q_t const quantize_row_q = quantize_fns[dst->type].quantize_row_q;
+ } else if (type_traits[dst->type].from_float) {
+ ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
size_t id = 0;
@@ -8078,26 +8081,8 @@ static void ggml_compute_forward_dup_f32(
id += rs * (ne01 - ir1);
}
}
- } else if (dst->type == GGML_TYPE_F16) {
- size_t id = 0;
- ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
-
- for (int i03 = 0; i03 < ne03; i03++) {
- for (int i02 = 0; i02 < ne02; i02++) {
- id += ne00 * ir0;
- for (int i01 = ir0; i01 < ir1; i01++) {
- for (int i00 = 0; i00 < ne00; i00++) {
- const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
-
- dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
- id++;
- }
- }
- id += ne00 * (ne01 - ir1);
- }
- }
- } else if (ggml_is_quantized(dst->type)) {
- quantize_row_q_t const quantize_row_q = quantize_fns[dst->type].quantize_row_q;
+ } else if (type_traits[dst->type].from_float) {
+ ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
size_t id = 0;
size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]);
@@ -8503,8 +8488,8 @@ static void ggml_compute_forward_add_q_f32(
const int nth = params->nth;
const enum ggml_type type = src0->type;
- dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
- quantize_row_q_t const quantize_row_q = quantize_fns[type].quantize_row_q;
+ ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
+ ggml_from_float_t const quantize_row_q = type_traits[type].from_float;
// we don't support permuted src0 or src1
GGML_ASSERT(nb00 == GGML_TYPE_SIZE[type]);
@@ -8777,8 +8762,8 @@ static void ggml_compute_forward_add1_q_f32(
GGML_TENSOR_UNARY_OP_LOCALS;
const enum ggml_type type = src0->type;
- dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
- quantize_row_q_t const quantize_row_q = quantize_fns[type].quantize_row_q;
+ ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
+ ggml_from_float_t const quantize_row_q = type_traits[type].from_float;
// we don't support permuted src0
GGML_ASSERT(nb00 == GGML_TYPE_SIZE[type]);
@@ -10578,317 +10563,7 @@ static bool ggml_compute_forward_mul_mat_use_blas(
}
#endif
-static void ggml_compute_forward_mul_mat_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- int64_t t0 = ggml_perf_time_us();
- UNUSED(t0);
-
- GGML_TENSOR_BINARY_OP_LOCALS;
-
- const int ith = params->ith;
- const int nth = params->nth;
-
- assert(ne02 == ne12);
- assert(ne03 == ne13);
- assert(ne2 == ne12);
- assert(ne3 == ne13);
-
- // we don't support permuted src0 or src1
- assert(nb00 == sizeof(float));
- assert(nb10 == sizeof(float));
-
- // dst cannot be transposed or permuted
- assert(nb0 == sizeof(float));
- assert(nb0 <= nb1);
- assert(nb1 <= nb2);
- assert(nb2 <= nb3);
-
- assert(ne0 == ne01);
- assert(ne1 == ne11);
- assert(ne2 == ne02);
- assert(ne3 == ne03);
-
- // nb01 >= nb00 - src0 is not transposed
- // compute by src0 rows
-
-#if defined(GGML_USE_CLBLAST)
- if (ggml_cl_can_mul_mat(src0, src1, dst)) {
- if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
- ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
- }
- return;
- }
-#endif
-
-#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
- if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
- if (params->ith != 0) {
- return;
- }
-
- if (params->type == GGML_TASK_INIT) {
- return;
- }
-
- if (params->type == GGML_TASK_FINALIZE) {
- return;
- }
-
- for (int64_t i03 = 0; i03 < ne03; i03++) {
- for (int64_t i02 = 0; i02 < ne02; i02++) {
- const float * x = (float *) ((char *) src0->data + i02*nb02 + i03*nb03);
- const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
- float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
-
- cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
- ne11, ne01, ne10,
- 1.0f, y, ne10,
- x, ne00,
- 0.0f, d, ne01);
- }
- }
- //printf("CBLAS F32 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
-
- return;
- }
-#endif
-
- if (params->type == GGML_TASK_INIT) {
- return;
- }
-
- if (params->type == GGML_TASK_FINALIZE) {
- return;
- }
-
- // parallelize by src0 rows using ggml_vec_dot_f32
-
- // total rows in src0
- const int nr = ne01*ne02*ne03;
-
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
-
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
-
- for (int ir = ir0; ir < ir1; ++ir) {
- // src0 indices
- const int i03 = ir/(ne02*ne01);
- const int i02 = (ir - i03*ne02*ne01)/ne01;
- const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
-
- for (int64_t ic = 0; ic < ne11; ++ic) {
- // src1 indices
- const int i13 = i03;
- const int i12 = i02;
- const int i11 = ic;
-
- // dst indices
- const int i0 = i01;
- const int i1 = i11;
- const int i2 = i02;
- const int i3 = i03;
-
- ggml_vec_dot_f32(ne00,
- (float *) ((char *) dst->data + (i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
- (float *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03)),
- (float *) ((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13)));
- }
- }
-
- //int64_t t1 = ggml_perf_time_us();
- //static int64_t acc = 0;
- //acc += t1 - t0;
- //if (t1 - t0 > 10) {
- // printf("\n");
- // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
- // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
- // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
- // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
-
- // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
- //}
-}
-
-static void ggml_compute_forward_mul_mat_f16_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- int64_t t0 = ggml_perf_time_us();
- UNUSED(t0);
-
- GGML_TENSOR_BINARY_OP_LOCALS;
-
- //const int64_t ne = ne0*ne1*ne2*ne3;
-
- const int ith = params->ith;
- const int nth = params->nth;
-
- GGML_ASSERT(ne02 == ne12);
- GGML_ASSERT(ne03 == ne13);
- GGML_ASSERT(ne2 == ne12);
- GGML_ASSERT(ne3 == ne13);
-
- // TODO: we don't support permuted src0
- GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
-
- // dst cannot be transposed or permuted
- GGML_ASSERT(nb0 == sizeof(float));
- GGML_ASSERT(nb0 <= nb1);
- GGML_ASSERT(nb1 <= nb2);
- GGML_ASSERT(nb2 <= nb3);
-
- GGML_ASSERT(ne0 == ne01);
- GGML_ASSERT(ne1 == ne11);
- GGML_ASSERT(ne2 == ne02);
- GGML_ASSERT(ne3 == ne03);
-
- // nb01 >= nb00 - src0 is not transposed
- // compute by src0 rows
-
-#if defined(GGML_USE_CLBLAST)
- if (ggml_cl_can_mul_mat(src0, src1, dst)) {
- if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
- ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
- }
- return;
- }
-#endif
-
-#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
- if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
- GGML_ASSERT(nb10 == sizeof(float));
-
- if (params->ith != 0) {
- return;
- }
-
- if (params->type == GGML_TASK_INIT) {
- return;
- }
-
- if (params->type == GGML_TASK_FINALIZE) {
- return;
- }
-
- for (int64_t i03 = 0; i03 < ne03; i03++) {
- for (int64_t i02 = 0; i02 < ne02; i02++) {
- float * const wdata = params->wdata;
- {
- size_t id = 0;
- for (int64_t i01 = 0; i01 < ne01; ++i01) {
- for (int64_t i00 = 0; i00 < ne00; ++i00) {
- wdata[id++] = GGML_FP16_TO_FP32(*(ggml_fp16_t *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00));
- }
- }
-
- assert(id*sizeof(float) <= params->wsize);
- }
-
- const float * x = wdata;
- const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
-
- float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
-
- // zT = y * xT
- cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
- ne11, ne01, ne10,
- 1.0f, y, ne10,
- x, ne00,
- 0.0f, d, ne01);
- }
- }
-
- /*printf("CBLAS F16 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);*/
-
- return;
- }
-#endif
-
- if (params->type == GGML_TASK_INIT) {
- ggml_fp16_t * const wdata = params->wdata;
-
- size_t id = 0;
- for (int64_t i13 = 0; i13 < ne13; ++i13) {
- for (int64_t i12 = 0; i12 < ne12; ++i12) {
- for (int64_t i11 = 0; i11 < ne11; ++i11) {
- for (int64_t i10 = 0; i10 < ne10; ++i10) {
- wdata[id++] = GGML_FP32_TO_FP16(*(float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10));
- }
- }
- }
- }
-
- GGML_ASSERT(id*sizeof(ggml_fp16_t) <= params->wsize);
-
- return;
- }
-
- if (params->type == GGML_TASK_FINALIZE) {
- return;
- }
-
- // fp16 -> half the size, so divide by 2
- // TODO: do not support transposed src1
- assert(nb10/2 == sizeof(ggml_fp16_t));
-
- // parallelize by src0 rows using ggml_vec_dot_f16
-
- // total rows in src0
- const int nr = ne01*ne02*ne03;
-
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
-
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
-
- ggml_fp16_t * wdata = params->wdata;
-
- for (int ir = ir0; ir < ir1; ++ir) {
- // src0 indices
- const int i03 = ir/(ne02*ne01);
- const int i02 = (ir - i03*ne02*ne01)/ne01;
- const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
-
- const int i13 = i03;
- const int i12 = i02;
-
- const int i0 = i01;
- const int i2 = i02;
- const int i3 = i03;
-
- ggml_fp16_t * src0_row = (ggml_fp16_t *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
- ggml_fp16_t * src1_col = wdata + ( 0 + i12*ne11 + i13*ne12*ne11)*ne00;
-
- float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
-
- for (int64_t ic = 0; ic < ne11; ++ic) {
- ggml_vec_dot_f16(ne00, &dst_col[ic*ne0], src0_row, src1_col + ic*ne00);
- }
- }
-
- //int64_t t1 = ggml_time_us();
- //static int64_t acc = 0;
- //acc += t1 - t0;
- //if (t1 - t0 > 10) {
- // printf("\n");
- // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
- // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
- // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
-
- // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
- //}
-}
-
-static void ggml_compute_forward_mul_mat_q_f32(
+static void ggml_compute_forward_mul_mat(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
const struct ggml_tensor * src1,
@@ -10907,9 +10582,10 @@ static void ggml_compute_forward_mul_mat_q_f32(
GGML_ASSERT(ne3 == ne13);
const enum ggml_type type = src0->type;
- quantize_row_q_t const quantize_row_q_dot = quantize_fns[type].quantize_row_q_dot;
- vec_dot_q_t const vec_dot_q = quantize_fns[type].vec_dot_q;
- enum ggml_type const vec_dot_type = quantize_fns[type].vec_dot_type;
+
+ ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
+ enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
+ ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
// we don't support permuted src0 or src1
GGML_ASSERT(nb00 == GGML_TYPE_SIZE[type]);
@@ -10952,27 +10628,27 @@ static void ggml_compute_forward_mul_mat_q_f32(
return;
}
- float * const wdata = params->wdata;
- dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
-
for (int64_t i03 = 0; i03 < ne03; i03++) {
for (int64_t i02 = 0; i02 < ne02; i02++) {
+ const void * x = (char *) src0->data + i03*nb03 + i02*nb02;
const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
- {
+ if (type != GGML_TYPE_F32) {
+ float * const wdata = params->wdata;
+ ggml_to_float_t const to_float = type_traits[type].to_float;
+
size_t id = 0;
for (int64_t i01 = 0; i01 < ne01; ++i01) {
- dequantize_row_q((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01, wdata + id, ne00);
+ to_float((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01, wdata + id, ne00);
id += ne00;
}
assert(id*sizeof(float) <= params->wsize);
+ x = wdata;
}
- const float * x = wdata;
-
cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
ne11, ne01, ne10,
1.0f, y, ne10,
@@ -10988,14 +10664,16 @@ static void ggml_compute_forward_mul_mat_q_f32(
#endif
if (params->type == GGML_TASK_INIT) {
- char * wdata = params->wdata;
- const size_t row_size = ne10*GGML_TYPE_SIZE[vec_dot_type]/GGML_BLCK_SIZE[vec_dot_type];
-
- for (int64_t i13 = 0; i13 < ne13; ++i13) {
- for (int64_t i12 = 0; i12 < ne12; ++i12) {
- for (int64_t i11 = 0; i11 < ne11; ++i11) {
- quantize_row_q_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
- wdata += row_size;
+ if (src1->type != vec_dot_type) {
+ char * wdata = params->wdata;
+ const size_t row_size = ne10*GGML_TYPE_SIZE[vec_dot_type]/GGML_BLCK_SIZE[vec_dot_type];
+
+ for (int64_t i13 = 0; i13 < ne13; ++i13) {
+ for (int64_t i12 = 0; i12 < ne12; ++i12) {
+ for (int64_t i11 = 0; i11 < ne11; ++i11) {
+ from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
+ wdata += row_size;
+ }
}
}
}
@@ -11019,7 +10697,7 @@ static void ggml_compute_forward_mul_mat_q_f32(
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);
- void * wdata = params->wdata;
+ void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
const size_t row_size = ne00*GGML_TYPE_SIZE[vec_dot_type]/GGML_BLCK_SIZE[vec_dot_type];
for (int ir = ir0; ir < ir1; ++ir) {
@@ -11043,7 +10721,7 @@ static void ggml_compute_forward_mul_mat_q_f32(
assert(ne00 % 32 == 0);
for (int64_t ic = 0; ic < ne11; ++ic) {
- vec_dot_q(ne00, &dst_col[ic*ne0], src0_row, (void *) (src1_col + ic*row_size));
+ vec_dot(ne00, &dst_col[ic*ne0], src0_row, (void *) (src1_col + ic*row_size));
}
}
@@ -11060,40 +10738,6 @@ static void ggml_compute_forward_mul_mat_q_f32(
//}
}
-static void ggml_compute_forward_mul_mat(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_Q4_0:
- case GGML_TYPE_Q4_1:
- case GGML_TYPE_Q5_0:
- case GGML_TYPE_Q5_1:
- case GGML_TYPE_Q8_0:
- case GGML_TYPE_Q8_1:
- case GGML_TYPE_Q2_K:
- case GGML_TYPE_Q3_K:
- case GGML_TYPE_Q4_K:
- case GGML_TYPE_Q5_K:
- case GGML_TYPE_Q6_K:
- {
- ggml_compute_forward_mul_mat_q_f32(params, src0, src1, dst);
- } break;
- case GGML_TYPE_F16:
- {
- ggml_compute_forward_mul_mat_f16_f32(params, src0, src1, dst);
- } break;
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_mul_mat_f32(params, src0, src1, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
-}
// ggml_compute_forward_out_prod
@@ -11483,7 +11127,7 @@ static void ggml_compute_forward_get_rows_q(
const int nc = src0->ne[0];
const int nr = ggml_nelements(src1);
const enum ggml_type type = src0->type;
- dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
+ ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
assert( dst->ne[0] == nc);
assert( dst->ne[1] == nr);
@@ -16529,6 +16173,7 @@ void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph)
//printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks = %d\n", nr0, nr1, nr0*nr1, node->n_tasks);
size_t cur = 0;
+ const enum ggml_type vec_dot_type = type_traits[node->src0->type].vec_dot_type;
#if defined(GGML_USE_CUBLAS)
if (ggml_cuda_can_mul_mat(node->src0, node->src1, node)) {
@@ -16544,37 +16189,18 @@ void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph)
}
else
#endif
- if (node->src0->type == GGML_TYPE_F16 && node->src1->type == GGML_TYPE_F32) {
#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
- if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
- node->n_tasks = 1; // TODO: this actually is doing nothing
- // the threads are still spinning
+ if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
+ node->n_tasks = 1; // TODO: this actually is doing nothing
+ // the threads are still spinning
+ if (node->src0->type != GGML_TYPE_F32) {
// here we need memory just for single 2D matrix from src0
cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
- } else {
- cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
- }
-#else
- cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
-#endif
- } else if (node->src0->type == GGML_TYPE_F32 && node->src1->type == GGML_TYPE_F32) {
- cur = 0;
-#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
- if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
- node->n_tasks = 1;
}
+ } else
#endif
- } else if (ggml_is_quantized(node->src0->type) && node->src1->type == GGML_TYPE_F32) {
-#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
- if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
- node->n_tasks = 1;
- cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
- } else
-#endif
- {
- const enum ggml_type type_q = quantize_fns[node->src0->type].vec_dot_type;
- cur = GGML_TYPE_SIZE[type_q]*ggml_nelements(node->src1)/GGML_BLCK_SIZE[type_q];
- }
+ if (node->src1->type != vec_dot_type) {
+ cur = GGML_TYPE_SIZE[vec_dot_type]*ggml_nelements(node->src1)/GGML_BLCK_SIZE[vec_dot_type];
} else {
GGML_ASSERT(false);
}
diff --git a/ggml.h b/ggml.h
index 0af96c7..24ca8ae 100644
--- a/ggml.h
+++ b/ggml.h
@@ -250,8 +250,8 @@ extern "C" {
GGML_API float ggml_fp16_to_fp32(ggml_fp16_t x);
GGML_API ggml_fp16_t ggml_fp32_to_fp16(float x);
- GGML_API void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, size_t n);
- GGML_API void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, size_t n);
+ GGML_API void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, int n);
+ GGML_API void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int n);
struct ggml_object;
struct ggml_context;
@@ -1514,26 +1514,19 @@ extern "C" {
// Internal types and functions exposed for tests and benchmarks
//
-#ifdef __cplusplus
- // restrict not standard in C++
-#define GGML_RESTRICT
-#else
-#define GGML_RESTRICT restrict
-#endif
- typedef void (*dequantize_row_q_t)(const void * GGML_RESTRICT x, float * GGML_RESTRICT y, int k);
- typedef void (*quantize_row_q_t) (const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int k);
- typedef void (*vec_dot_q_t) (const int n, float * GGML_RESTRICT s, const void * GGML_RESTRICT x, const void * GGML_RESTRICT y);
+ typedef void (*ggml_to_float_t)(const void * x, float * y, int k);
+ typedef void (*ggml_from_float_t)(const float * x, void * y, int k);
+ typedef void (*ggml_vec_dot_t)(const int n, float * s, const void * x, const void * y);
typedef struct {
- dequantize_row_q_t dequantize_row_q;
- quantize_row_q_t quantize_row_q;
- quantize_row_q_t quantize_row_q_reference;
- quantize_row_q_t quantize_row_q_dot;
- vec_dot_q_t vec_dot_q;
- enum ggml_type vec_dot_type;
- } quantize_fns_t;
-
- quantize_fns_t ggml_internal_get_quantize_fn(size_t i);
+ ggml_to_float_t to_float;
+ ggml_from_float_t from_float;
+ ggml_from_float_t from_float_reference;
+ ggml_vec_dot_t vec_dot;
+ enum ggml_type vec_dot_type;
+ } ggml_type_traits_t;
+
+ ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type i);
#ifdef __cplusplus
}
diff --git a/llama.cpp b/llama.cpp
index e04fbfc..7a866cb 100644
--- a/llama.cpp
+++ b/llama.cpp
@@ -2257,10 +2257,10 @@ static void llama_convert_tensor_internal(const llama_load_tensor & tensor, llam
}
float * f32_output = (float *) output.addr;
- quantize_fns_t qtype;
+ ggml_type_traits_t qtype;
if (ggml_is_quantized(tensor.type)) {
- qtype = ggml_internal_get_quantize_fn(tensor.type);
- if (qtype.dequantize_row_q == NULL) {
+ qtype = ggml_internal_get_type_traits(tensor.type);
+ if (qtype.to_float == NULL) {
throw std::runtime_error(format("type %s unsupported for integer quantization: no dequantization available", ggml_type_name(tensor.type)));
}
} else if (tensor.type != GGML_TYPE_F16) {
@@ -2271,7 +2271,7 @@ static void llama_convert_tensor_internal(const llama_load_tensor & tensor, llam
if (tensor.type == GGML_TYPE_F16) {
ggml_fp16_to_fp32_row((ggml_fp16_t *)tensor.data, f32_output, nelements);
} else if (ggml_is_quantized(tensor.type)) {
- qtype.dequantize_row_q(tensor.data, f32_output, nelements);
+ qtype.to_float(tensor.data, f32_output, nelements);
} else {
LLAMA_ASSERT(false); // unreachable
}
@@ -2296,7 +2296,7 @@ static void llama_convert_tensor_internal(const llama_load_tensor & tensor, llam
if (typ == GGML_TYPE_F16) {
ggml_fp16_to_fp32_row((ggml_fp16_t *)inbuf, outbuf, nels);
} else {
- qtype.dequantize_row_q(inbuf, outbuf, nels);
+ qtype.to_float(inbuf, outbuf, nels);
}
};
workers.push_back(std::thread(compute, tensor.type, tensor.data + in_buff_offs, f32_output + out_buff_offs, thr_elems));
diff --git a/pocs/vdot/q8dot.cpp b/pocs/vdot/q8dot.cpp
index 5748c8a..4e0e023 100644
--- a/pocs/vdot/q8dot.cpp
+++ b/pocs/vdot/q8dot.cpp
@@ -136,7 +136,7 @@ int main(int argc, char** argv) {
auto ggml_type = type == 0 ? GGML_TYPE_Q4_0 : GGML_TYPE_Q4_1;
- auto funcs = ggml_internal_get_quantize_fn(ggml_type);
+ auto funcs = ggml_internal_get_type_traits(ggml_type);
Stat simple, ggml;
@@ -156,8 +156,8 @@ int main(int argc, char** argv) {
t1 = std::chrono::high_resolution_clock::now();
float fs;
- if (type == 0) funcs.vec_dot_q(kVecSize * QK4_1, &fs, x40.data(), y.data());
- else funcs.vec_dot_q(kVecSize * QK4_1, &fs, x41.data(), y.data());
+ if (type == 0) funcs.vec_dot(kVecSize * QK4_1, &fs, x40.data(), y.data());
+ else funcs.vec_dot(kVecSize * QK4_1, &fs, x41.data(), y.data());
t2 = std::chrono::high_resolution_clock::now();
t = 1e-3*std::chrono::duration_cast<std::chrono::nanoseconds>(t2-t1).count();
if (iloop > 3) ggml.addResult(fs, t);
diff --git a/pocs/vdot/vdot.cpp b/pocs/vdot/vdot.cpp
index 7b18090..48758cd 100644
--- a/pocs/vdot/vdot.cpp
+++ b/pocs/vdot/vdot.cpp
@@ -235,7 +235,7 @@ int main(int argc, char** argv) {
int n4 = useQ4_1 ? kVecSize / QK4_1 : kVecSize / QK4_0; n4 = 64*((n4 + 63)/64);
int n8 = kVecSize / QK8_0; n8 = 64*((n8 + 63)/64);
- auto funcs = useQ4_1 ? ggml_internal_get_quantize_fn(GGML_TYPE_Q4_1) : ggml_internal_get_quantize_fn(GGML_TYPE_Q4_0);
+ auto funcs = useQ4_1 ? ggml_internal_get_type_traits(GGML_TYPE_Q4_1) : ggml_internal_get_type_traits(GGML_TYPE_Q4_0);
std::vector<block_q4_0> q40;
std::vector<block_q4_1> q41;
@@ -261,9 +261,9 @@ int main(int argc, char** argv) {
// Note, we do not include this in the timing as in practical application
// we already have the quantized model weights.
if (useQ4_1) {
- funcs.quantize_row_q(x1.data(), q41.data(), kVecSize);
+ funcs.from_float(x1.data(), q41.data(), kVecSize);
} else {
- funcs.quantize_row_q(x1.data(), q40.data(), kVecSize);
+ funcs.from_float(x1.data(), q40.data(), kVecSize);
}
// Now measure time the dot product needs using the "scalar" version above
@@ -282,9 +282,10 @@ int main(int argc, char** argv) {
dot_q4_q8(kVecSize, &result, q40.data(), q8.data());
}
else {
- funcs.quantize_row_q_dot(y1.data(), q8.data(), kVecSize);
- if (useQ4_1) funcs.vec_dot_q(kVecSize, &result, q41.data(), q8.data());
- else funcs.vec_dot_q(kVecSize, &result, q40.data(), q8.data());
+ auto vdot = ggml_internal_get_type_traits(funcs.vec_dot_type);
+ vdot.from_float(y1.data(), q8.data(), kVecSize);
+ if (useQ4_1) funcs.vec_dot(kVecSize, &result, q41.data(), q8.data());
+ else funcs.vec_dot(kVecSize, &result, q40.data(), q8.data());
}
sumq += result;
t2 = std::chrono::high_resolution_clock::now();
diff --git a/tests/test-quantize-fns.cpp b/tests/test-quantize-fns.cpp
index c40f1b2..8d3c162 100644
--- a/tests/test-quantize-fns.cpp
+++ b/tests/test-quantize-fns.cpp
@@ -40,26 +40,26 @@ float array_rmse(const float * a1, const float * a2, size_t n) {
}
// Total quantization error on test data
-float total_quantization_error(quantize_fns_t & qfns, size_t test_size, const float * test_data) {
+float total_quantization_error(ggml_type_traits_t & qfns, size_t test_size, const float * test_data) {
std::vector<uint8_t> tmp_q(2*test_size);
std::vector<float> tmp_out(test_size);
- qfns.quantize_row_q(test_data, tmp_q.data(), test_size);
- qfns.dequantize_row_q(tmp_q.data(), tmp_out.data(), test_size);
+ qfns.from_float(test_data, tmp_q.data(), test_size);
+ qfns.to_float(tmp_q.data(), tmp_out.data(), test_size);
return array_rmse(test_data, tmp_out.data(), test_size);
}
// Total quantization error on test data
-float reference_quantization_error(quantize_fns_t & qfns, size_t test_size, const float * test_data) {
+float reference_quantization_error(ggml_type_traits_t & qfns, size_t test_size, const float * test_data) {
std::vector<uint8_t> tmp_q(2*test_size);
std::vector<float> tmp_out(test_size);
std::vector<float> tmp_out_ref(test_size);
- qfns.quantize_row_q(test_data, tmp_q.data(), test_size);
- qfns.dequantize_row_q(tmp_q.data(), tmp_out.data(), test_size);
+ qfns.from_float(test_data, tmp_q.data(), test_size);
+ qfns.to_float(tmp_q.data(), tmp_out.data(), test_size);
- qfns.quantize_row_q_reference(test_data, tmp_q.data(), test_size);
- qfns.dequantize_row_q(tmp_q.data(), tmp_out_ref.data(), test_size);
+ qfns.from_float_reference(test_data, tmp_q.data(), test_size);
+ qfns.to_float(tmp_q.data(), tmp_out_ref.data(), test_size);
return array_rmse(tmp_out.data(), tmp_out_ref.data(), test_size);
}
@@ -73,15 +73,17 @@ float dot_product(const float * a1, const float * a2, size_t test_size) {
}
// Total dot product error
-float dot_product_error(quantize_fns_t & qfns, size_t test_size, const float * test_data1, const float *test_data2) {
+float dot_product_error(ggml_type_traits_t & qfns, size_t test_size, const float * test_data1, const float *test_data2) {
std::vector<uint8_t> tmp_q1(2*test_size);
std::vector<uint8_t> tmp_q2(2*test_size);
- qfns.quantize_row_q (test_data1, tmp_q1.data(), test_size);
- qfns.quantize_row_q_dot(test_data2, tmp_q2.data(), test_size);
+ auto vdot = ggml_internal_get_type_traits(qfns.vec_dot_type);
+
+ qfns.from_float(test_data1, tmp_q1.data(), test_size);
+ vdot.from_float(test_data2, tmp_q2.data(), test_size);
float result = INFINITY;
- qfns.vec_dot_q(test_size, &result, tmp_q1.data(), tmp_q2.data());
+ qfns.vec_dot(test_size, &result, tmp_q1.data(), tmp_q2.data());
const float dot_ref = dot_product(test_data1, test_data2, test_size);
@@ -123,9 +125,9 @@ int main(int argc, char * argv[]) {
for (int i = 0; i < GGML_TYPE_COUNT; i++) {
ggml_type type = (ggml_type) i;
- quantize_fns_t qfns = ggml_internal_get_quantize_fn(i);
+ ggml_type_traits_t qfns = ggml_internal_get_type_traits(type);
- if (qfns.quantize_row_q && qfns.dequantize_row_q) {
+ if (qfns.from_float && qfns.to_float) {
const float total_error = total_quantization_error(qfns, test_size, test_data.data());
const float max_quantization_error =
type == GGML_TYPE_Q2_K ? MAX_QUANTIZATION_TOTAL_ERROR_2BITS :
diff --git a/tests/test-quantize-perf.cpp b/tests/test-quantize-perf.cpp
index c0e361e..0bb9537 100644
--- a/tests/test-quantize-perf.cpp
+++ b/tests/test-quantize-perf.cpp
@@ -123,9 +123,9 @@ void usage(char * argv[]) {
printf(" --type TYPE set test type as");
for (int i = 0; i < GGML_TYPE_COUNT; i++) {
ggml_type type = (ggml_type) i;
- quantize_fns_t qfns = ggml_internal_get_quantize_fn(type);
+ ggml_type_traits_t qfns = ggml_internal_get_type_traits(type);
if (ggml_type_name(type) != NULL) {
- if (qfns.quantize_row_q && qfns.dequantize_row_q) {
+ if (qfns.from_float && qfns.to_float) {
printf(" %s", ggml_type_name(type));
}
}
@@ -271,12 +271,12 @@ int main(int argc, char * argv[]) {
for (int i = 0; i < GGML_TYPE_COUNT; i++) {
ggml_type type = (ggml_type) i;
- quantize_fns_t qfns = ggml_internal_get_quantize_fn(i);
+ ggml_type_traits_t qfns = ggml_internal_get_type_traits(type);
if (!params.include_types.empty() && ggml_type_name(type) && std::find(params.include_types.begin(), params.include_types.end(), ggml_type_name(type)) == params.include_types.end()) {
continue;
}
- if (qfns.quantize_row_q && qfns.dequantize_row_q) {
+ if (qfns.from_float && qfns.to_float) {
printf("%s\n", ggml_type_name(type));
if (params.op_quantize_row_q_reference) {
@@ -284,7 +284,7 @@ int main(int argc, char * argv[]) {
for (size_t size : params.test_sizes) {
printf(" %zu values (%.2f MB)\n", size, 4*size/(float)(1024*1024));
auto quantize_fn = [&](void ) {
- qfns.quantize_row_q_reference(test_data1, test_q1, size);
+ qfns.from_float_reference(test_data1, test_q1, size);
return test_q1[0];
};
size_t quantized_size = size / ggml_blck_size(type) * ggml_type_size(type);
@@ -298,7 +298,7 @@ int main(int argc, char * argv[]) {
for (size_t size : params.test_sizes) {
printf(" %zu values (%.2f MB)\n", size, 4*size/(float)(1024*1024));
auto quantize_fn = [&](void ) {
- qfns.quantize_row_q(test_data1, test_q1, size);
+ qfns.from_float(test_data1, test_q1, size);
return test_q1[0];
};
size_t quantized_size = size / ggml_blck_size(type) * ggml_type_size(type);
@@ -309,11 +309,11 @@ int main(int argc, char * argv[]) {
if (params.op_dequantize_row_q) {
printf(" dequantize_row_q\n");
- qfns.quantize_row_q(test_data1, test_q1, largest);
+ qfns.from_float(test_data1, test_q1, largest);
for (size_t size : params.test_sizes) {
printf(" %zu values (%.2f MB)\n", size, 4*size/(float)(1024*1024));
auto quantize_fn = [&](void ) {
- qfns.dequantize_row_q(test_q1, test_out, size);
+ qfns.to_float(test_q1, test_out, size);
return test_out[0];
};
size_t quantized_size = size / ggml_blck_size(type) * ggml_type_size(type);
@@ -327,7 +327,8 @@ int main(int argc, char * argv[]) {
for (size_t size : params.test_sizes) {
printf(" %zu values (%.2f MB)\n", size, 4*size/(float)(1024*1024));
auto quantize_fn = [&](void ) {
- qfns.quantize_row_q_dot(test_data1, test_q1, size);
+ auto vdot = ggml_internal_get_type_traits(qfns.vec_dot_type);
+ vdot.from_float(test_data1, test_q1, size);
return test_q1[0];
};
size_t quantized_size = size / ggml_blck_size(type) * ggml_type_size(type);
@@ -338,13 +339,13 @@ int main(int argc, char * argv[]) {
if (params.op_vec_dot_q) {
printf(" vec_dot_q\n");
- qfns.quantize_row_q(test_data1, test_q1, largest);
- qfns.quantize_row_q(test_data2, test_q2, largest);
+ qfns.from_float(test_data1, test_q1, largest);
+ qfns.from_float(test_data2, test_q2, largest);
for (size_t size : params.test_sizes) {
printf(" %zu values (%.2f MB)\n", size, 4*size/(float)(1024*1024));
auto quantize_fn = [&](void ) {
float result;
- qfns.vec_dot_q(size, &result, test_q1, test_q2);
+ qfns.vec_dot(size, &result, test_q1, test_q2);
return result;
};
size_t quantized_size = size / ggml_blck_size(type) * ggml_type_size(type);