diff options
author | Qingyou Meng <meng.qingyou@gmail.com> | 2023-07-08 00:24:01 +0800 |
---|---|---|
committer | GitHub <noreply@github.com> | 2023-07-07 19:24:01 +0300 |
commit | 1d656d6360359cfdaaf5d64ed9690047b600dbcb (patch) | |
tree | ea41daf563633ab0552f24fd0bacce51833e04eb | |
parent | 72421402834141df6cbdcf595fe46dbd11874dce (diff) |
ggml : change ggml_graph_compute() API to not require context (#1999)
* ggml_graph_compute: deprecate using ggml_context, try resolve issue #287
* rewrite: no longer consider backward compitability; plan and make_plan
* minor: rename ctx as plan; const
* remove ggml_graph_compute from tests/test-grad0.c, but current change breaks backward
* add static ggml_graph_compute_sugar()
* minor: update comments
* reusable buffers
* ggml : more consistent naming + metal fixes
* ggml : fix docs
* tests : disable grad / opt + minor naming changes
* ggml : add ggml_graph_compute_with_ctx()
- backwards compatible API
- deduplicates a lot of copy-paste
* ci : enable test-grad0
* examples : factor out plan allocation into a helper function
* llama : factor out plan stuff into a helper function
* ci : fix env
* llama : fix duplicate symbols + refactor example benchmark
* ggml : remove obsolete assert + refactor n_tasks section
* ggml : fix indentation in switch
* llama : avoid unnecessary bool
* ggml : remove comments from source file and match order in header
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
-rw-r--r-- | .github/workflows/build.yml | 13 | ||||
-rw-r--r-- | examples/baby-llama/baby-llama.cpp | 24 | ||||
-rw-r--r-- | examples/benchmark/benchmark-matmult.cpp | 29 | ||||
-rw-r--r-- | examples/metal/metal.cpp | 3 | ||||
-rw-r--r-- | examples/train-text-from-scratch/train-text-from-scratch.cpp | 27 | ||||
-rw-r--r-- | ggml-metal.h | 6 | ||||
-rw-r--r-- | ggml-metal.m | 11 | ||||
-rw-r--r-- | ggml.c | 682 | ||||
-rw-r--r-- | ggml.h | 36 | ||||
-rw-r--r-- | llama.cpp | 54 | ||||
-rw-r--r-- | tests/CMakeLists.txt | 2 | ||||
-rw-r--r-- | tests/test-grad0.c | 35 | ||||
-rw-r--r-- | tests/test-opt.c | 18 |
13 files changed, 531 insertions, 409 deletions
diff --git a/.github/workflows/build.yml b/.github/workflows/build.yml index 12481e8..a576139 100644 --- a/.github/workflows/build.yml +++ b/.github/workflows/build.yml @@ -16,7 +16,9 @@ on: paths: ['**/CMakeLists.txt', '**/Makefile', '**/*.h', '**/*.hpp', '**/*.c', '**/*.cpp', '**/*.cu'] env: - BRANCH_NAME: ${{ github.head_ref || github.ref_name }} + BRANCH_NAME: ${{ github.head_ref || github.ref_name }} + GGML_NLOOP: 3 + GGML_NITER: 1 jobs: ubuntu-focal-make: @@ -64,7 +66,7 @@ jobs: id: cmake_test run: | cd build - ctest --verbose + ctest --verbose --timeout 900 ubuntu-latest-cmake-sanitizer: runs-on: ubuntu-latest @@ -99,7 +101,7 @@ jobs: id: cmake_test run: | cd build - ctest --verbose + ctest --verbose --timeout 900 macOS-latest-make: runs-on: macos-latest @@ -147,10 +149,11 @@ jobs: id: cmake_test run: | cd build - ctest --verbose + ctest --verbose --timeout 900 windows-latest-cmake: runs-on: windows-latest + env: OPENBLAS_VERSION: 0.3.23 OPENCL_VERSION: 2023.04.17 @@ -249,7 +252,7 @@ jobs: if: ${{ matrix.build != 'clblast' && (matrix.build != 'avx512' || env.HAS_AVX512F == '1') }} # Test AVX-512 only when possible run: | cd build - ctest -C Release --verbose + ctest -C Release --verbose --timeout 900 - name: Get commit hash id: commit diff --git a/examples/baby-llama/baby-llama.cpp b/examples/baby-llama/baby-llama.cpp index 212f54d..4965881 100644 --- a/examples/baby-llama/baby-llama.cpp +++ b/examples/baby-llama/baby-llama.cpp @@ -31,6 +31,17 @@ float frand_normal(struct random_normal_distribution * rnd) { return ((r < rnd->min) ? (rnd->min) : (r > rnd->max) ? (rnd->max) : r); } +void ggml_graph_compute_helper(std::vector<uint8_t> & buf, ggml_cgraph * graph, int n_threads) { + struct ggml_cplan plan = ggml_graph_plan(graph, n_threads); + + if (plan.work_size > 0) { + buf.resize(plan.work_size); + plan.work_data = buf.data(); + } + + ggml_graph_compute(graph, &plan); +} + struct ggml_tensor * randomize_tensor( struct ggml_tensor * tensor, int ndims, @@ -1569,6 +1580,8 @@ int main(int argc, char ** argv) { int n_tokens = model.hparams.n_ctx; int n_vocab = model.hparams.n_vocab; + std::vector<uint8_t> work_buffer; + for (int ex=0; ex<n_examples; ++ex) { struct ggml_init_params params = { /*.mem_size =*/ compute_size, @@ -1586,7 +1599,6 @@ int main(int argc, char ** argv) { int n_past = 0; ggml_cgraph gf = {}; - gf.n_threads = 1; get_example_targets_batch(ctx0, 64*ex+0, tokens_input, targets); @@ -1595,7 +1607,7 @@ int main(int argc, char ** argv) { struct ggml_tensor * e = square_error_loss(ctx0, targets, logits); ggml_build_forward_expand(&gf, e); - ggml_graph_compute(ctx0, &gf); + ggml_graph_compute_helper(work_buffer, &gf, /*n_threads*/ 1); float error_before_opt = ggml_get_f32_1d(e, 0); @@ -1611,7 +1623,7 @@ int main(int argc, char ** argv) { ggml_opt(ctx0, opt_params_lbfgs, e); // ggml_build_forward_expand(&gf, e); - ggml_graph_compute(ctx0, &gf); + ggml_graph_compute_helper(work_buffer, &gf, /*n_threads*/ 1); float error_after_opt = ggml_get_f32_1d(e, 0); @@ -1659,13 +1671,12 @@ int main(int argc, char ** argv) { struct ggml_context * ctx0 = ggml_init(params); ggml_cgraph gf = {}; - gf.n_threads = 1; int n_past = 0; struct ggml_tensor * logits = forward(&model, &kv_self, ctx0, &gf, tokens_input, sample_ctx, n_past); ggml_build_forward_expand(&gf, logits); - ggml_graph_compute(ctx0, &gf); + ggml_graph_compute_helper(work_buffer, &gf, /*n_threads*/ 1); struct ggml_tensor * best_samples = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, sample_ctx); struct ggml_tensor * probs = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_vocab, sample_ctx); @@ -1687,10 +1698,11 @@ int main(int argc, char ** argv) { } print_matrix(model.tok_embeddings); - printf("done\n"); + // ggml_free(kv_self.ctx); // ggml_free(model_lora.ctx); ggml_free(model.ctx); + return 0; } diff --git a/examples/benchmark/benchmark-matmult.cpp b/examples/benchmark/benchmark-matmult.cpp index 39d15ca..f7215f4 100644 --- a/examples/benchmark/benchmark-matmult.cpp +++ b/examples/benchmark/benchmark-matmult.cpp @@ -20,6 +20,17 @@ #pragma warning(disable: 4244 4267) // possible loss of data #endif +void ggml_graph_compute_helper(std::vector<uint8_t> & buf, ggml_cgraph * graph, int n_threads) { + struct ggml_cplan plan = ggml_graph_plan(graph, n_threads); + + if (plan.work_size > 0) { + buf.resize(plan.work_size); + plan.work_data = buf.data(); + } + + ggml_graph_compute(graph, &plan); +} + float tensor_sum_elements(const ggml_tensor * tensor) { float sum = 0; if (tensor->type==GGML_TYPE_F32) { @@ -159,13 +170,14 @@ int main(int argc, char ** argv) { // printf("Creating compute graph\n"); struct ggml_cgraph gf = ggml_build_forward(m11xm2); - gf.n_threads=benchmark_params.n_threads; - printf("cgraph->n_threads=%i\n",gf.n_threads); + printf("n_threads=%i\n", benchmark_params.n_threads); TENSOR_DUMP(m11); TENSOR_DUMP(m2); - ggml_graph_compute(ctx, &gf); + std::vector<uint8_t> work_buffer; + + ggml_graph_compute_helper(work_buffer, &gf, benchmark_params.n_threads); TENSOR_DUMP(gf.nodes[0]); @@ -187,7 +199,6 @@ int main(int argc, char ** argv) { // printf("Creating compute graph\n"); struct ggml_cgraph gf31 = ggml_build_forward(q31); - gf31.n_threads=benchmark_params.n_threads; // Set up a second graph computation to make sure we override the CPU cache lines // printf("Creating new tensor q12 & Running quantize\n"); @@ -199,8 +210,7 @@ int main(int argc, char ** argv) { //printf("Creating compute graph\n"); struct ggml_cgraph gf32 = ggml_build_forward(q32); - gf32.n_threads=benchmark_params.n_threads; - printf("cgraph->n_threads=%i\n",gf31.n_threads); + printf("n_threads=%i\n", benchmark_params.n_threads); const int dimx = sizex; const int dimy = sizey; @@ -221,14 +231,15 @@ int main(int argc, char ** argv) { long long int start = ggml_time_us(); //printf("Running ggml_graph_compute\n"); - ggml_graph_compute(ctx, &gf31); + ggml_graph_compute_helper(work_buffer, &gf31, benchmark_params.n_threads); + long long int stop = ggml_time_us(); long long int usec = stop-start; double gflops = (double)(flops_per_matrix)/usec/1000.0; gflops_sum += gflops; printf("%9i;%8i;%6i;%6i;%6i;%15lli;%18lli;%10.2f\n", i, - gf31.n_threads, + benchmark_params.n_threads, sizex, sizey, sizez, flops_per_matrix, usec,gflops); @@ -253,7 +264,7 @@ int main(int argc, char ** argv) { } // Running a different graph computation to make sure we override the CPU cache lines - ggml_graph_compute(ctx, &gf32); + ggml_graph_compute_helper(work_buffer, &gf32, benchmark_params.n_threads); } printf("\n"); printf("Average%78.2f\n",gflops_sum/((double)benchmark_params.n_iterations)); diff --git a/examples/metal/metal.cpp b/examples/metal/metal.cpp index cdfe4bf..7438def 100644 --- a/examples/metal/metal.cpp +++ b/examples/metal/metal.cpp @@ -35,10 +35,9 @@ int main(int argc, char ** argv) { struct ggml_context * ctx_eval = NULL; struct ggml_cgraph gf = ggml_graph_import(fname_cgraph, &ctx_data, &ctx_eval); - gf.n_threads = 1; // this allocates all Metal resources and memory buffers - auto * ctx_metal = ggml_metal_init(); + auto * ctx_metal = ggml_metal_init(1); const size_t max_size_data = ggml_get_max_tensor_size(ctx_data); const size_t max_size_eval = ggml_get_max_tensor_size(ctx_eval); diff --git a/examples/train-text-from-scratch/train-text-from-scratch.cpp b/examples/train-text-from-scratch/train-text-from-scratch.cpp index c50eeb3..b96fdcd 100644 --- a/examples/train-text-from-scratch/train-text-from-scratch.cpp +++ b/examples/train-text-from-scratch/train-text-from-scratch.cpp @@ -60,6 +60,17 @@ float frand_uniform(struct random_uniform_distribution * rnd) { return rnd->rd(rnd->gen); } +void ggml_graph_compute_helper(std::vector<uint8_t> & buf, ggml_cgraph * graph, int n_threads) { + struct ggml_cplan plan = ggml_graph_plan(graph, n_threads); + + if (plan.work_size > 0) { + buf.resize(plan.work_size); + plan.work_data = buf.data(); + } + + ggml_graph_compute(graph, &plan); +} + struct ggml_tensor * randomize_tensor_normal(struct ggml_tensor * tensor, struct random_normal_distribution * rnd) { float scale = 1.0f; // xavier switch (tensor->n_dims) { @@ -1426,11 +1437,9 @@ struct ggml_tensor * forward_batch_wo_cache_flash_attn_train( gf->n_nodes = 0; gf->n_leafs = 0; - gf->work_size = 0; gf->perf_runs = 0; gf->perf_cycles = 0; gf->perf_time_us = 0; - gf->work = NULL; const auto & hparams = model->hparams; //const int n_ctx = hparams.n_ctx; @@ -3162,6 +3171,7 @@ int main(int argc, char ** argv) { printf("used_mem model+cache: %zu bytes\n", ggml_used_mem(model.ctx)); // ggml_print_tensor_objects(model.ctx); + // TODO: use std::vector<uint8_t> intead of "new" size_t compute_size = 1024ll*1024ll*1024ll*((size_t) params.mem_compute_gb); uint8_t * compute_addr = new uint8_t[compute_size]; @@ -3183,6 +3193,8 @@ int main(int argc, char ** argv) { GGML_ASSERT(train_samples[i]+n_tokens-1 < (int) train_tokens.size()); } + std::vector<uint8_t> work_buffer; + printf("%s: begin training\n", __func__); for (int ex = 0; ex < params.n_examples; ++ex) { @@ -3217,9 +3229,6 @@ int main(int argc, char ** argv) { struct ggml_cgraph * gf = (struct ggml_cgraph *) gfbuf->data; struct ggml_cgraph * gb = (struct ggml_cgraph *) gbbuf->data; - // ggml_cgraph gf = {}; - gf->n_threads = params.n_threads; - gb->n_threads = params.n_threads; get_example_targets_batch(lctx, train_samples.data(), train_samples.size(), train_tokens.data(), train_tokens.size(), ex, tokens_input, target_logits, target_probs); @@ -3248,7 +3257,7 @@ int main(int argc, char ** argv) { *gb = ggml_build_backward(ctx0, gf, true); } - ggml_graph_compute(ctx0, gf); + ggml_graph_compute_helper(work_buffer, gf, params.n_threads); size_t used_mem_before_opt = ggml_used_mem(ctx0); @@ -3272,7 +3281,7 @@ int main(int argc, char ** argv) { model.train_samples += n_batch; model.train_tokens += n_batch * n_tokens; - ggml_graph_compute(ctx0, gf); + ggml_graph_compute_helper(work_buffer, gf, params.n_threads); float error_after_opt = ggml_get_f32_1d(loss, 0); @@ -3354,13 +3363,12 @@ int main(int argc, char ** argv) { struct ggml_context * ctx0 = ggml_init(cparams); ggml_cgraph gf = {}; - gf.n_threads = params.n_threads; int n_past = 0; struct ggml_tensor * logits = forward(&model, &kv_self, ctx0, &gf, tokens_input, sample_ctx, n_past); ggml_build_forward_expand(&gf, logits); - ggml_graph_compute(ctx0, &gf); + ggml_graph_compute_helper(work_buffer, &gf, params.n_threads); //struct ggml_tensor * best_samples = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, sample_ctx); //struct ggml_tensor * probs = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_vocab, sample_ctx); @@ -3386,6 +3394,7 @@ int main(int argc, char ** argv) { delete[] compute_addr; delete[] compute_buf_0; delete[] compute_buf_1; + llama_free(lctx); llama_free_model(lmodel); ggml_free(model.ctx); diff --git a/ggml-metal.h b/ggml-metal.h index b9e50ac..928f170 100644 --- a/ggml-metal.h +++ b/ggml-metal.h @@ -34,9 +34,13 @@ extern "C" { struct ggml_metal_context; -struct ggml_metal_context * ggml_metal_init(void); +// number of command buffers to use +struct ggml_metal_context * ggml_metal_init(int n_cb); void ggml_metal_free(struct ggml_metal_context * ctx); +// set the number of command buffers to use +void ggml_metal_set_n_cb(struct ggml_metal_context * ctx, int n_cb); + // creates a mapping between a host memory buffer and a device memory buffer // - make sure to map all buffers used in the graph before calling ggml_metal_graph_compute // - the mapping is used during computation to determine the arguments of the compute kernels diff --git a/ggml-metal.m b/ggml-metal.m index fd69c41..3f15f79 100644 --- a/ggml-metal.m +++ b/ggml-metal.m @@ -25,6 +25,8 @@ struct ggml_metal_buffer { }; struct ggml_metal_context { + int n_cb; + float * logits; id<MTLDevice> device; @@ -86,11 +88,12 @@ static NSString * const msl_library_source = @"see metal.metal"; @implementation GGMLMetalClass @end -struct ggml_metal_context * ggml_metal_init(void) { +struct ggml_metal_context * ggml_metal_init(int n_cb) { fprintf(stderr, "%s: allocating\n", __func__); struct ggml_metal_context * ctx = malloc(sizeof(struct ggml_metal_context)); + ctx->n_cb = n_cb; ctx->device = MTLCreateSystemDefaultDevice(); ctx->queue = [ctx->device newCommandQueue]; ctx->n_buffers = 0; @@ -208,6 +211,10 @@ void ggml_metal_free(struct ggml_metal_context * ctx) { free(ctx); } +void ggml_metal_set_n_cb(struct ggml_metal_context * ctx, int n_cb) { + ctx->n_cb = n_cb; +} + // finds the Metal buffer that contains the tensor data on the GPU device // the assumption is that there is 1-to-1 mapping between the host and device memory buffers, so we can find the // Metal buffer based on the host memory pointer @@ -354,7 +361,7 @@ void ggml_metal_graph_compute( // create multiple command buffers and enqueue them // then, we encode the graph into the command buffers in parallel - const int n_cb = gf->n_threads; + const int n_cb = ctx->n_cb; NSMutableArray * command_buffers = [NSMutableArray arrayWithCapacity:n_cb]; @@ -4583,14 +4583,13 @@ struct ggml_tensor * ggml_new_tensor_impl( /*.src0 =*/ NULL, /*.src1 =*/ NULL, /*.opt =*/ { NULL }, - /*.n_tasks =*/ 0, /*.perf_runs =*/ 0, /*.perf_cycles =*/ 0, /*.perf_time_us =*/ 0, /*.data =*/ (data == NULL && !ctx->no_alloc) ? (void *)(result + 1) : data, /*.name =*/ { 0 }, /*.extra =*/ NULL, - /*.pad =*/ { 0 }, + /*.padding =*/ { 0 }, }; // TODO: this should not be needed as long as we don't rely on aligned SIMD loads @@ -10718,8 +10717,6 @@ static void ggml_compute_forward_mul_mat( float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3)); - assert(ne00 % 32 == 0); - for (int64_t ic = 0; ic < ne11; ++ic) { vec_dot(ne00, &dst_col[ic*ne0], src0_row, (void *) (src1_col + ic*row_size)); } @@ -15772,9 +15769,6 @@ struct ggml_cgraph ggml_build_forward(struct ggml_tensor * tensor) { struct ggml_cgraph result = { /*.n_nodes =*/ 0, /*.n_leafs =*/ 0, - /*.n_threads =*/ GGML_DEFAULT_N_THREADS, - /*.work_size =*/ 0, - /*.work =*/ NULL, /*.nodes =*/ { NULL }, /*.grads =*/ { NULL }, /*.leafs =*/ { NULL }, @@ -15945,12 +15939,13 @@ void clear_numa_thread_affinity(void) {} #endif struct ggml_compute_state_shared { - struct ggml_cgraph * cgraph; + const struct ggml_cgraph * cgraph; + const struct ggml_cplan * cplan; int64_t perf_node_start_cycles; int64_t perf_node_start_time_us; - int n_threads; + const int n_threads; // synchronization primitives atomic_int n_active; // num active threads @@ -15974,9 +15969,13 @@ static void ggml_graph_compute_perf_stats_node(struct ggml_tensor * node, const static thread_ret_t ggml_graph_compute_thread(void * data) { struct ggml_compute_state * state = (struct ggml_compute_state *) data; - struct ggml_cgraph * cgraph = state->shared->cgraph; - const int n_threads = state->shared->n_threads; + const struct ggml_cgraph * cgraph = state->shared->cgraph; + const struct ggml_cplan * cplan = state->shared->cplan; + + const int * n_tasks_arr = cplan->n_tasks; + const int n_threads = state->shared->n_threads; + set_numa_thread_affinity(state->ith, n_threads); int node_n = -1; @@ -15989,15 +15988,15 @@ static thread_ret_t ggml_graph_compute_thread(void * data) { /*.type =*/ GGML_TASK_FINALIZE, /*.ith =*/ 0, /*.nth =*/ 0, - /*.wsize =*/ cgraph->work ? ggml_nbytes(cgraph->work) : 0, - /*.wdata =*/ cgraph->work ? cgraph->work->data : NULL, + /*.wsize =*/ cplan->work_size, + /*.wdata =*/ cplan->work_data, }; if (node_n != -1) { /* FINALIZE */ struct ggml_tensor * node = state->shared->cgraph->nodes[node_n]; if (GGML_OP_HAS_FINALIZE[node->op]) { - params.nth = node->n_tasks; + params.nth = n_tasks_arr[node_n]; ggml_compute_forward(¶ms, node); ggml_graph_compute_perf_stats_node(node, state->shared); } @@ -16008,11 +16007,12 @@ static thread_ret_t ggml_graph_compute_thread(void * data) { GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, node_n, cgraph->n_nodes); struct ggml_tensor * node = cgraph->nodes[node_n]; + const int n_tasks = n_tasks_arr[node_n]; state->shared->perf_node_start_cycles = ggml_perf_cycles(); state->shared->perf_node_start_time_us = ggml_perf_time_us(); - params.nth = node->n_tasks; + params.nth = n_tasks; /* INIT */ if (GGML_OP_HAS_INIT[node->op]) { @@ -16020,7 +16020,7 @@ static thread_ret_t ggml_graph_compute_thread(void * data) { ggml_compute_forward(¶ms, node); } - if (node->n_tasks == 1) { + if (n_tasks == 1) { // TODO: maybe push node_n to the atomic but if other threads see n_tasks is 1, // they do something more efficient than spinning (?) params.type = GGML_TASK_COMPUTE; @@ -16052,16 +16052,17 @@ static thread_ret_t ggml_graph_compute_thread(void * data) { /* COMPUTE */ struct ggml_tensor * node = cgraph->nodes[node_n]; + const int n_tasks = n_tasks_arr[node_n]; struct ggml_compute_params params = { /*.type =*/ GGML_TASK_COMPUTE, /*.ith =*/ state->ith, - /*.nth =*/ node->n_tasks, - /*.wsize =*/ cgraph->work ? ggml_nbytes(cgraph->work) : 0, - /*.wdata =*/ cgraph->work ? cgraph->work->data : NULL, + /*.nth =*/ n_tasks, + /*.wsize =*/ cplan->work_size, + /*.wdata =*/ cplan->work_data, }; - if (state->ith < node->n_tasks) { + if (state->ith < n_tasks) { ggml_compute_forward(¶ms, node); } } @@ -16069,349 +16070,372 @@ static thread_ret_t ggml_graph_compute_thread(void * data) { return 0; } -void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph) { - const int n_threads = cgraph->n_threads; +struct ggml_cplan ggml_graph_plan(struct ggml_cgraph * cgraph, int n_threads) { + if (n_threads <= 0) { + n_threads = GGML_DEFAULT_N_THREADS; + } - struct ggml_compute_state_shared state_shared = { - /*.cgraph =*/ cgraph, - /*.perf_node_start_cycles =*/ 0, - /*.perf_node_start_time_us =*/ 0, - /*.n_threads =*/ n_threads, - /*.n_active =*/ n_threads, - /*.node_n =*/ -1, - }; - struct ggml_compute_state * workers = alloca(sizeof(struct ggml_compute_state)*n_threads); + size_t work_size = 0; - // initialize tasks + work buffer - { - size_t work_size = 0; + struct ggml_cplan cplan; + memset(&cplan, 0, sizeof(struct ggml_cplan)); - // thread scheduling for the different operations - for (int i = 0; i < cgraph->n_nodes; i++) { - struct ggml_tensor * node = cgraph->nodes[i]; + // thread scheduling for the different operations + work buffer size estimation + for (int i = 0; i < cgraph->n_nodes; i++) { + int n_tasks = 1; - switch (node->op) { - case GGML_OP_CPY: - case GGML_OP_DUP: - { - node->n_tasks = n_threads; + struct ggml_tensor * node = cgraph->nodes[i]; - size_t cur = 0; - if (ggml_is_quantized(node->type)) { - cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->ne[0] * n_threads; - } + switch (node->op) { + case GGML_OP_CPY: + case GGML_OP_DUP: + { + n_tasks = n_threads; - work_size = MAX(work_size, cur); - } break; - case GGML_OP_ADD: - case GGML_OP_ADD1: - { - node->n_tasks = n_threads; + size_t cur = 0; + if (ggml_is_quantized(node->type)) { + cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->ne[0] * n_tasks; + } - size_t cur = 0; + work_size = MAX(work_size, cur); + } break; + case GGML_OP_ADD: + case GGML_OP_ADD1: + { + n_tasks = n_threads; - if (ggml_is_quantized(node->src0->type)) { - cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->src0->ne[0] * n_threads; - } + size_t cur = 0; - work_size = MAX(work_size, cur); - } break; - case GGML_OP_ACC: - { - node->n_tasks = n_threads; + if (ggml_is_quantized(node->src0->type)) { + cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->src0->ne[0] * n_tasks; + } - size_t cur = 0; + work_size = MAX(work_size, cur); + } break; + case GGML_OP_ACC: + { + n_tasks = n_threads; - if (ggml_is_quantized(node->src0->type)) { - cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->src1->ne[0] * n_threads; - } + size_t cur = 0; + + if (ggml_is_quantized(node->src0->type)) { + cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->src1->ne[0] * n_tasks; + } + + work_size = MAX(work_size, cur); + } break; + case GGML_OP_SUB: + case GGML_OP_DIV: + case GGML_OP_SQR: + case GGML_OP_SQRT: + case GGML_OP_LOG: + case GGML_OP_SUM: + case GGML_OP_SUM_ROWS: + case GGML_OP_MEAN: + case GGML_OP_ARGMAX: + case GGML_OP_REPEAT: + case GGML_OP_REPEAT_BACK: + case GGML_OP_ABS: + case GGML_OP_SGN: + case GGML_OP_NEG: + case GGML_OP_STEP: + case GGML_OP_TANH: + case GGML_OP_ELU: + case GGML_OP_RELU: + { + n_tasks = 1; + } break; + case GGML_OP_MUL: + case GGML_OP_GELU: + case GGML_OP_GELU_QUICK: + case GGML_OP_SILU: + case GGML_OP_SILU_BACK: + case GGML_OP_NORM: + case GGML_OP_RMS_NORM: + case GGML_OP_RMS_NORM_BACK: + { + n_tasks = n_threads; + } break; + case GGML_OP_MUL_MAT: + case GGML_OP_OUT_PROD: + { + n_tasks = n_threads; - work_size = MAX(work_size, cur); - } break; - case GGML_OP_SUB: - case GGML_OP_DIV: - case GGML_OP_SQR: - case GGML_OP_SQRT: - case GGML_OP_LOG: - case GGML_OP_SUM: - case GGML_OP_SUM_ROWS: - case GGML_OP_MEAN: - case GGML_OP_ARGMAX: - case GGML_OP_REPEAT: - case GGML_OP_REPEAT_BACK: - case GGML_OP_ABS: - case GGML_OP_SGN: - case GGML_OP_NEG: - case GGML_OP_STEP: - case GGML_OP_TANH: - case GGML_OP_ELU: - case GGML_OP_RELU: - { - node->n_tasks = 1; - } break; - case GGML_OP_MUL: - case GGML_OP_GELU: - case GGML_OP_GELU_QUICK: - case GGML_OP_SILU: - case GGML_OP_SILU_BACK: - case GGML_OP_NORM: - case GGML_OP_RMS_NORM: - case GGML_OP_RMS_NORM_BACK: - { - node->n_tasks = n_threads; - } break; - case GGML_OP_MUL_MAT: - case GGML_OP_OUT_PROD: - { - node->n_tasks = n_threads; - - // TODO: use different scheduling for different matrix sizes - //const int nr0 = ggml_nrows(node->src0); - //const int nr1 = ggml_nrows(node->src1); - - //node->n_tasks = MIN(n_threads, MAX(1, nr0/128)); - //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks = %d\n", nr0, nr1, nr0*nr1, node->n_tasks); - - size_t cur = 0; - const enum ggml_type vec_dot_type = type_traits[node->src0->type].vec_dot_type; + // TODO: use different scheduling for different matrix sizes + //const int nr0 = ggml_nrows(node->src0); + //const int nr1 = ggml_nrows(node->src1); + + //n_tasks = MIN(n_threads, MAX(1, nr0/128)); + //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks%d\n", nr0, nr1, nr0*nr1, n_tasks); + + size_t cur = 0; + const enum ggml_type vec_dot_type = type_traits[node->src0->type].vec_dot_type; #if defined(GGML_USE_CUBLAS) - if (ggml_cuda_can_mul_mat(node->src0, node->src1, node)) { - node->n_tasks = 1; // TODO: this actually is doing nothing - // the threads are still spinning - } - else + if (ggml_cuda_can_mul_mat(node->src0, node->src1, node)) { + n_tasks = 1; // TODO: this actually is doing nothing + // the threads are still spinning + } else #elif defined(GGML_USE_CLBLAST) - if (ggml_cl_can_mul_mat(node->src0, node->src1, node)) { - node->n_tasks = 1; // TODO: this actually is doing nothing - // the threads are still spinning - cur = ggml_cl_mul_mat_get_wsize(node->src0, node->src1, node); - } - else + if (ggml_cl_can_mul_mat(node->src0, node->src1, node)) { + n_tasks = 1; // TODO: this actually is doing nothing + // the threads are still spinning + cur = ggml_cl_mul_mat_get_wsize(node->src0, node->src1, node); + } else #endif #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) - if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) { - node->n_tasks = 1; // TODO: this actually is doing nothing - // the threads are still spinning - if (node->src0->type != GGML_TYPE_F32) { - // here we need memory just for single 2D matrix from src0 - cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]); - } - } else -#endif - if (node->src1->type != vec_dot_type) { - cur = GGML_TYPE_SIZE[vec_dot_type]*ggml_nelements(node->src1)/GGML_BLCK_SIZE[vec_dot_type]; - } else { - cur = 0; + if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) { + n_tasks = 1; // TODO: this actually is doing nothing + // the threads are still spinning + if (node->src0->type != GGML_TYPE_F32) { + // here we need memory just for single 2D matrix from src0 + cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]); } + } else +#endif + if (node->src1->type != vec_dot_type) { + cur = GGML_TYPE_SIZE[vec_dot_type]*ggml_nelements(node->src1)/GGML_BLCK_SIZE[vec_dot_type]; + } else { + cur = 0; + } - work_size = MAX(work_size, cur); - } break; - case GGML_OP_SCALE: - { - node->n_tasks = 1; - } break; - case GGML_OP_SET: - case GGML_OP_CONT: - case GGML_OP_RESHAPE: - case GGML_OP_VIEW: - case GGML_OP_PERMUTE: - case GGML_OP_TRANSPOSE: - case GGML_OP_GET_ROWS: - case GGML_OP_GET_ROWS_BACK: - case GGML_OP_DIAG: - case GGML_OP_DIAG_MASK_ZERO: - { - node->n_tasks = 1; - } break; - case GGML_OP_DIAG_MASK_INF: - case GGML_OP_SOFT_MAX: - case GGML_OP_SOFT_MAX_BACK: - case GGML_OP_ROPE: - case GGML_OP_ROPE_BACK: - { - node->n_tasks = n_threads; - } break; - case GGML_OP_ALIBI: - { - node->n_tasks = 1; //TODO - } break; - case GGML_OP_CLAMP: - { - node->n_tasks = 1; //TODO - } break; - case GGML_OP_CONV_1D: - { - node->n_tasks = n_threads; - - GGML_ASSERT(node->src0->ne[3] == 1); - GGML_ASSERT(node->src1->ne[2] == 1); - GGML_ASSERT(node->src1->ne[3] == 1); - - size_t cur = 0; - const int nk = node->src0->ne[0]; - - if (node->src0->type == GGML_TYPE_F16 && + work_size = MAX(work_size, cur); + } break; + case GGML_OP_SCALE: + { + n_tasks = 1; + } break; + case GGML_OP_SET: + case GGML_OP_CONT: + case GGML_OP_RESHAPE: + case GGML_OP_VIEW: + case GGML_OP_PERMUTE: + case GGML_OP_TRANSPOSE: + case GGML_OP_GET_ROWS: + case GGML_OP_GET_ROWS_BACK: + case GGML_OP_DIAG: + case GGML_OP_DIAG_MASK_ZERO: + { + n_tasks = 1; + } break; + case GGML_OP_DIAG_MASK_INF: + case GGML_OP_SOFT_MAX: + case GGML_OP_SOFT_MAX_BACK: + case GGML_OP_ROPE: + case GGML_OP_ROPE_BACK: + { + n_tasks = n_threads; + } break; + case GGML_OP_ALIBI: + { + n_tasks = 1; //TODO + } break; + case GGML_OP_CLAMP: + { + n_tasks = 1; //TODO + } break; + case GGML_OP_CONV_1D: + { + n_tasks = n_threads; + + GGML_ASSERT(node->src0->ne[3] == 1); + GGML_ASSERT(node->src1->ne[2] == 1); + GGML_ASSERT(node->src1->ne[3] == 1); + + size_t cur = 0; + const int nk = node->src0->ne[0]; + + if (node->src0->type == GGML_TYPE_F16 && node->src1->type == GGML_TYPE_F32) { - cur = sizeof(ggml_fp16_t)*( - nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] + - ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1] - ); - } else if (node->src0->type == GGML_TYPE_F32 && - node->src1->type == GGML_TYPE_F32) { - cur = sizeof(float)*( - nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] + - ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1] - ); - } else { - GGML_ASSERT(false); - } + cur = sizeof(ggml_fp16_t)*( + nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] + + ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1] + ); + } else if (node->src0->type == GGML_TYPE_F32 && + node->src1->type == GGML_TYPE_F32) { + cur = sizeof(float)*( + nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] + + ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1] + ); + } else { + GGML_ASSERT(false); + } - work_size = MAX(work_size, cur); - } break; - case GGML_OP_CONV_2D: - { - node->n_tasks = n_threads; + work_size = MAX(work_size, cur); + } break; + case GGML_OP_CONV_2D: + { + n_tasks = n_threads; - GGML_ASSERT(node->src1->ne[3] == 1); + GGML_ASSERT(node->src1->ne[3] == 1); - const int64_t ne00 = node->src0->ne[0]; // W - const int64_t ne01 = node->src0->ne[1]; // H - const int64_t ne02 = node->src0->ne[2]; // C - const int64_t ne03 = node->src0->ne[3]; // N + const int64_t ne00 = node->src0->ne[0]; // W + const int64_t ne01 = node->src0->ne[1]; // H + const int64_t ne02 = node->src0->ne[2]; // C + const int64_t ne03 = node->src0->ne[3]; // N - const int64_t ne10 = node->src1->ne[0]; // W - const int64_t ne11 = node->src1->ne[1]; // H - const int64_t ne12 = node->src1->ne[2]; // C + const int64_t ne10 = node->src1->ne[0]; // W + const int64_t ne11 = node->src1->ne[1]; // H + const int64_t ne12 = node->src1->ne[2]; // C - const int64_t nk = ne00*ne01; + const int64_t nk = ne00*ne01; - UNUSED(ne02); - UNUSED(ne03); - UNUSED(nk); + UNUSED(ne02); + UNUSED(ne03); + UNUSED(nk); - size_t cur = 0; + size_t cur = 0; - if (node->src0->type == GGML_TYPE_F16 && + if (node->src0->type == GGML_TYPE_F16 && node->src1->type == GGML_TYPE_F32) { - cur = sizeof(ggml_fp16_t)*(ne10*ne11*ne12); - } else if (node->src0->type == GGML_TYPE_F32 && - node->src1->type == GGML_TYPE_F32) { - cur = sizeof(float)* (ne10*ne11*ne12); - } else { - GGML_ASSERT(false); - } + cur = sizeof(ggml_fp16_t)*(ne10*ne11*ne12); + } else if (node->src0->type == GGML_TYPE_F32 && + node->src1->type == GGML_TYPE_F32) { + cur = sizeof(float)* (ne10*ne11*ne12); + } else { + GGML_ASSERT(false); + } - work_size = MAX(work_size, cur); - } break; - case GGML_OP_FLASH_ATTN: - { - node->n_tasks = n_threads; + work_size = MAX(work_size, cur); + } break; + case GGML_OP_FLASH_ATTN: + { + n_tasks = n_threads; - size_t cur = 0; + size_t cur = 0; - const int64_t ne11 = ggml_up(node->src1->ne[1], GGML_SOFT_MAX_UNROLL); + const int64_t ne11 = ggml_up(node->src1->ne[1], GGML_SOFT_MAX_UNROLL); - if (node->src1->type == GGML_TYPE_F32) { - cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1) - cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2 - } + if (node->src1->type == GGML_TYPE_F32) { + cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1) + cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2 + } - if (node->src1->type == GGML_TYPE_F16) { - cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1) - cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2 - } + if (node->src1->type == GGML_TYPE_F16) { + cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1) + cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2 + } - work_size = MAX(work_size, cur); - } break; - case GGML_OP_FLASH_FF: - { - node->n_tasks = n_threads; + work_size = MAX(work_size, cur); + } break; + case GGML_OP_FLASH_FF: + { + n_tasks = n_threads; - size_t cur = 0; + size_t cur = 0; - if (node->src1->type == GGML_TYPE_F32) { - cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1) - cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2 - } + if (node->src1->type == GGML_TYPE_F32) { + cur = sizeof(float)*node->src1->ne[1]*n_tasks; // TODO: this can become (n_tasks-1) + cur += sizeof(float)*node->src1->ne[1]*n_tasks; // this is overestimated by x2 + } - if (node->src1->type == GGML_TYPE_F16) { - cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1) - cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2 - } + if (node->src1->type == GGML_TYPE_F16) { + cur = sizeof(float)*node->src1->ne[1]*n_tasks; // TODO: this can become (n_tasks-1) + cur += sizeof(float)*node->src1->ne[1]*n_tasks; // this is overestimated by x2 + } - work_size = MAX(work_size, cur); - } break; - case GGML_OP_FLASH_ATTN_BACK: - { - node->n_tasks = n_threads; + work_size = MAX(work_size, cur); + } break; + case GGML_OP_FLASH_ATTN_BACK: + { + n_tasks = n_threads; - size_t cur = 0; + size_t cur = 0; - const int64_t D = node->src0->ne[0]; - const int64_t ne11 = ggml_up(node->src1->ne[1], GGML_SOFT_MAX_UNROLL); - const int64_t mxDn = MAX(D, ne11) * 2; // *2 because of S and SM in ggml_compute_forward_flash_attn_back - if (node->src1->type == GGML_TYPE_F32) { - cur = sizeof(float)*mxDn*node->n_tasks; // TODO: this can become (n_tasks-1) - cur += sizeof(float)*mxDn*node->n_tasks; // this is overestimated by x2 - } + const int64_t D = node->src0->ne[0]; + const int64_t ne11 = ggml_up(node->src1->ne[1], GGML_SOFT_MAX_UNROLL); + const int64_t mxDn = MAX(D, ne11) * 2; // *2 because of S and SM in ggml_compute_forward_flash_attn_back + if (node->src1->type == GGML_TYPE_F32) { + cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1) + cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2 + } - if (node->src1->type == GGML_TYPE_F16) { - cur = sizeof(float)*mxDn*node->n_tasks; // TODO: this can become (n_tasks-1) - cur += sizeof(float)*mxDn*node->n_tasks; // this is overestimated by x2 - } + if (node->src1->type == GGML_TYPE_F16) { + cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1) + cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2 + } - work_size = MAX(work_size, cur); - } break; - case GGML_OP_WIN_PART: - case GGML_OP_WIN_UNPART: - case GGML_OP_MAP_UNARY: - case GGML_OP_MAP_BINARY: - case GGML_OP_MAP_CUSTOM1: - case GGML_OP_MAP_CUSTOM2: - case GGML_OP_MAP_CUSTOM3: - { - node->n_tasks = 1; - } break; - case GGML_OP_CROSS_ENTROPY_LOSS: - { - node->n_tasks = n_threads; - - size_t cur = ggml_type_size(node->type)*(node->n_tasks + node->src0->ne[0]*node->n_tasks); - - work_size = MAX(work_size, cur); - } break; - case GGML_OP_CROSS_ENTROPY_LOSS_BACK: - { - node->n_tasks = n_threads; - - size_t cur = ggml_type_size(node->type)*node->src0->ne[0]*node->n_tasks; - - work_size = MAX(work_size, cur); - } break; - case GGML_OP_NONE: - { - node->n_tasks = 1; - } break; - case GGML_OP_COUNT: - { - GGML_ASSERT(false); - } break; - } - } + work_size = MAX(work_size, cur); + } break; + case GGML_OP_WIN_PART: + case GGML_OP_WIN_UNPART: + case GGML_OP_MAP_UNARY: + case GGML_OP_MAP_BINARY: + case GGML_OP_MAP_CUSTOM1: + case GGML_OP_MAP_CUSTOM2: + case GGML_OP_MAP_CUSTOM3: + { + n_tasks = 1; + } break; + case GGML_OP_CROSS_ENTROPY_LOSS: + { + n_tasks = n_threads; + + size_t cur = ggml_type_size(node->type)*(n_tasks + node->src0->ne[0]*n_tasks); + + work_size = MAX(work_size, cur); + } break; + case GGML_OP_CROSS_ENTROPY_LOSS_BACK: + { + n_tasks = n_threads; - if (cgraph->work != NULL && work_size > cgraph->work_size) { - GGML_ASSERT(false); // TODO: better handling + size_t cur = ggml_type_size(node->type)*node->src0->ne[0]*n_tasks; + + work_size = MAX(work_size, cur); + } break; + case GGML_OP_NONE: + { + n_tasks = 1; + } break; + case GGML_OP_COUNT: + { + GGML_ASSERT(false); + } break; } - if (work_size > 0 && cgraph->work == NULL) { - cgraph->work_size = work_size + CACHE_LINE_SIZE*(n_threads - 1); + cplan.n_tasks[i] = n_tasks; + } + + if (work_size > 0) { + work_size += CACHE_LINE_SIZE*(n_threads - 1); + } + + cplan.n_threads = n_threads; + cplan.work_size = work_size; + cplan.work_data = NULL; + + return cplan; +} + +void ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan) { + { + GGML_ASSERT(cplan); + GGML_ASSERT(cplan->n_threads > 0); + + if (cplan->work_size > 0) { + GGML_ASSERT(cplan->work_data); + } - GGML_PRINT_DEBUG("%s: allocating work buffer for graph (%zu bytes)\n", __func__, cgraph->work_size); - cgraph->work = ggml_new_tensor_1d(ctx, GGML_TYPE_I8, cgraph->work_size); + for (int i = 0; i < cgraph->n_nodes; ++i) { + if (cgraph->nodes[i]->op != GGML_OP_NONE) { + GGML_ASSERT(cplan->n_tasks[i] > 0); + } } } + const int n_threads = cplan->n_threads; + + struct ggml_compute_state_shared state_shared = { + /*.cgraph =*/ cgraph, + /*.cgraph_plan =*/ cplan, + /*.perf_node_start_cycles =*/ 0, + /*.perf_node_start_time_us =*/ 0, + /*.n_threads =*/ n_threads, + /*.n_active =*/ n_threads, + /*.node_n =*/ -1, + }; + struct ggml_compute_state * workers = alloca(sizeof(struct ggml_compute_state)*n_threads); + // create thread pool if (n_threads > 1) { for (int j = 1; j < n_threads; ++j) { @@ -16473,6 +16497,17 @@ void ggml_graph_reset(struct ggml_cgraph * cgraph) { } } +void ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads) { + struct ggml_cplan cplan = ggml_graph_plan(cgraph, n_threads); + + struct ggml_tensor * buf = ggml_new_tensor_1d(ctx, GGML_TYPE_I8, cplan.work_size); + GGML_ASSERT(buf); + + cplan.work_data = buf->data; + + ggml_graph_compute(cgraph, &cplan); +} + struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name) { for (int i = 0; i < cgraph->n_leafs; i++) { struct ggml_tensor * leaf = cgraph->leafs[i]; @@ -16511,14 +16546,13 @@ static void ggml_graph_export_node(const struct ggml_tensor * tensor, const char const int64_t * ne = tensor->ne; const size_t * nb = tensor->nb; - fprintf(fout, "%-6s %-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %8d %16p %32s\n", + fprintf(fout, "%-6s %-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n", arg, ggml_type_name(tensor->type), ggml_op_name (tensor->op), tensor->n_dims, ne[0], ne[1], ne[2], ne[3], nb[0], nb[1], nb[2], nb[3], - tensor->n_tasks, tensor->data, tensor->name); } @@ -17254,9 +17288,6 @@ static enum ggml_opt_result ggml_opt_adam( struct ggml_cgraph * gb) { GGML_ASSERT(ggml_is_scalar(f)); - gf->n_threads = params.n_threads; - gb->n_threads = params.n_threads; - // these will store the parameters we want to optimize struct ggml_tensor * ps[GGML_MAX_PARAMS]; @@ -17303,7 +17334,8 @@ static enum ggml_opt_result ggml_opt_adam( // compute the function value ggml_graph_reset (gf); ggml_set_f32 (f->grad, 1.0f); - ggml_graph_compute(ctx, gb); + + ggml_graph_compute_with_ctx(ctx, gb, params.n_threads); opt->adam.fx_prev = ggml_get_f32_1d(f, 0); opt->adam.fx_best = opt->adam.fx_prev; @@ -17383,7 +17415,8 @@ static enum ggml_opt_result ggml_opt_adam( ggml_graph_reset (gf); ggml_set_f32 (f->grad, 1.0f); - ggml_graph_compute(ctx, gb); + + ggml_graph_compute_with_ctx(ctx, gb, params.n_threads); const float fx = ggml_get_f32_1d(f, 0); @@ -17505,7 +17538,8 @@ static enum ggml_opt_result linesearch_backtracking( ggml_graph_reset (gf); ggml_set_f32 (f->grad, 1.0f); - ggml_graph_compute(ctx, gb); + + ggml_graph_compute_with_ctx(ctx, gb, params->n_threads); ggml_opt_get_grad(np, ps, g); @@ -17573,9 +17607,6 @@ static enum ggml_opt_result ggml_opt_lbfgs( } } - gf->n_threads = params.n_threads; - gb->n_threads = params.n_threads; - const int m = params.lbfgs.m; // these will store the parameters we want to optimize @@ -17627,7 +17658,8 @@ static enum ggml_opt_result ggml_opt_lbfgs( ggml_graph_reset (gf); ggml_set_f32 (f->grad, 1.0f); - ggml_graph_compute(ctx, gb); + + ggml_graph_compute_with_ctx(ctx, gb, params.n_threads); ggml_opt_get_grad(np, ps, g); @@ -65,7 +65,7 @@ // ggml_set_f32(a, 3.0f); // ggml_set_f32(b, 4.0f); // -// ggml_graph_compute(ctx0, &gf); +// ggml_graph_compute_with_ctx(ctx, &gf, n_threads); // // printf("f = %f\n", ggml_get_f32_1d(f, 0)); // @@ -418,9 +418,6 @@ extern "C" { struct ggml_tensor * src1; struct ggml_tensor * opt[GGML_MAX_OPT]; - // thread scheduling - int n_tasks; - // performance int perf_runs; int64_t perf_cycles; @@ -432,19 +429,27 @@ extern "C" { void * extra; // extra things e.g. for ggml-cuda.cu - char padding[4]; + char padding[8]; }; static const size_t GGML_TENSOR_SIZE = sizeof(struct ggml_tensor); + // the compute plan that needs to be prepared for ggml_graph_compute() + // since https://github.com/ggerganov/ggml/issues/287 + struct ggml_cplan { + size_t work_size; // size of work buffer, calculated by `ggml_graph_plan()` + uint8_t * work_data; // work buffer, to be allocated by caller before calling to `ggml_graph_compute()` + + int n_threads; + + // the `n_tasks` of nodes, 1:1 mapping to cgraph nodes + int n_tasks[GGML_MAX_NODES]; + }; + // computation graph struct ggml_cgraph { int n_nodes; int n_leafs; - int n_threads; - - size_t work_size; - struct ggml_tensor * work; struct ggml_tensor * nodes[GGML_MAX_NODES]; struct ggml_tensor * grads[GGML_MAX_NODES]; @@ -1290,15 +1295,22 @@ extern "C" { GGML_API void ggml_set_param( struct ggml_context * ctx, - struct ggml_tensor * tensor); + struct ggml_tensor * tensor); GGML_API void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor); GGML_API struct ggml_cgraph ggml_build_forward (struct ggml_tensor * tensor); GGML_API struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep); - GGML_API void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph); - GGML_API void ggml_graph_reset (struct ggml_cgraph * cgraph); + // ggml_graph_plan() has to be called before ggml_graph_compute() + // when plan.work_size > 0, caller must allocate memory for plan.work_data + GGML_API struct ggml_cplan ggml_graph_plan (struct ggml_cgraph * cgraph, int n_threads /*= GGML_DEFAULT_N_THREADS*/); + GGML_API void ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan); + GGML_API void ggml_graph_reset (struct ggml_cgraph * cgraph); + + // same as ggml_graph_compute() but the work data is allocated as a part of the context + // note: the drawback of this API is that you must have ensured that the context has enough memory for the work data + GGML_API void ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads); GGML_API struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name); @@ -79,6 +79,25 @@ void llama_nop(struct ggml_tensor * tensor) { // don't offload by default (void) tensor; } +// +// ggml helpers +// + +static void ggml_graph_compute_helper(std::vector<uint8_t> & buf, ggml_cgraph * graph, int n_threads) { + struct ggml_cplan plan = ggml_graph_plan(graph, n_threads); + + if (plan.work_size > 0) { + buf.resize(plan.work_size); + plan.work_data = buf.data(); + } + + ggml_graph_compute(graph, &plan); +} + +// +// memory sizes +// + static const std::map<e_model, size_t> & MEM_REQ_SCRATCH0() { static std::map<e_model, size_t> k_sizes = { @@ -321,6 +340,9 @@ struct llama_context { // input embedding (1-dimensional array: [n_embd]) std::vector<float> embedding; + // reusable buffer for `struct ggml_graph_plan.work_data` + std::vector<uint8_t> work_buffer; + // memory buffers used to evaluate the model // TODO: move in llama_state llama_ctx_buffer buf_compute; @@ -758,7 +780,6 @@ struct llama_model_loader { }; - // // kv cache // @@ -1265,7 +1286,7 @@ static bool llama_eval_internal( const float * embd, const int n_tokens, const int n_past, - const int n_threads, + int n_threads, const char * cgraph_fname) { LLAMA_ASSERT((!tokens && embd) || (tokens && !embd)); @@ -1306,10 +1327,11 @@ static bool llama_eval_internal( struct ggml_context * ctx0 = ggml_init(params); + ggml_cgraph gf = {}; + // for big prompts, if BLAS is enabled, it is better to use only one thread // otherwise, the threads are spin-lock waiting for the BLAS calls and are degrading the performance - ggml_cgraph gf = {}; - gf.n_threads = N >= 32 && ggml_cpu_has_blas() && !ggml_cpu_has_gpublas() ? 1 : n_threads; + n_threads = N >= 32 && ggml_cpu_has_blas() && !ggml_cpu_has_gpublas() ? 1 : n_threads; struct ggml_tensor * cur; struct ggml_tensor * inpL; @@ -1593,6 +1615,7 @@ static bool llama_eval_internal( #ifdef GGML_USE_METAL if (lctx.ctx_metal && N == 1) { + ggml_metal_set_n_cb (lctx.ctx_metal, n_threads); ggml_metal_graph_compute(lctx.ctx_metal, &gf); ggml_metal_get_tensor (lctx.ctx_metal, cur); } else { @@ -1612,10 +1635,10 @@ static bool llama_eval_internal( ggml_metal_get_tensor(lctx.ctx_metal, kv_self.v); } - ggml_graph_compute(ctx0, &gf); + ggml_graph_compute_helper(lctx.work_buffer, &gf, n_threads); } #else - ggml_graph_compute(ctx0, &gf); + ggml_graph_compute_helper(lctx.work_buffer, &gf, n_threads); #endif if (cgraph_fname) { @@ -2575,8 +2598,8 @@ void llama_free_model(struct llama_model * model) { } struct llama_context * llama_new_context_with_model( - struct llama_model * model, - struct llama_context_params params) { + struct llama_model * model, + struct llama_context_params params) { if (!model) { return nullptr; @@ -2645,7 +2668,7 @@ struct llama_context * llama_new_context_with_model( #ifdef GGML_USE_METAL if (params.n_gpu_layers > 0) { // this allocates all Metal resources and memory buffers - ctx->ctx_metal = ggml_metal_init(); + ctx->ctx_metal = ggml_metal_init(1); void * data_ptr = NULL; size_t data_size = 0; @@ -2802,6 +2825,9 @@ int llama_apply_lora_from_file_internal(const struct llama_model & model, const // read tensors and apply bool warned = false; int n_tensors = 0; + + std::vector<uint8_t> work_buffer; + while (true) { int32_t n_dims; int32_t length; @@ -2966,8 +2992,8 @@ int llama_apply_lora_from_file_internal(const struct llama_model & model, const } struct ggml_cgraph gf = ggml_build_forward(r); - gf.n_threads = n_threads; - ggml_graph_compute(lora_ctx, &gf); + + ggml_graph_compute_helper(work_buffer, &gf, n_threads); // we won't need these tensors again, reset the context to save memory ggml_free(lora_ctx); @@ -3120,7 +3146,6 @@ size_t llama_copy_state_data(struct llama_context * ctx, uint8_t * dst) { ggml_context * cpy_ctx = ggml_init({ 4096, NULL, /* no_alloc */ true }); ggml_cgraph gf{}; - gf.n_threads = 1; ggml_tensor * kout3d = ggml_new_tensor_3d(cpy_ctx, kv_self.k->type, n_embd, kv_ntok, n_layer); kout3d->data = out; @@ -3140,7 +3165,7 @@ size_t llama_copy_state_data(struct llama_context * ctx, uint8_t * dst) { ggml_build_forward_expand(&gf, ggml_cpy(cpy_ctx, k3d, kout3d)); ggml_build_forward_expand(&gf, ggml_cpy(cpy_ctx, v3d, vout3d)); - ggml_graph_compute(cpy_ctx, &gf); + ggml_graph_compute_helper(ctx->work_buffer, &gf, /*n_threads*/ 1); ggml_free(cpy_ctx); } @@ -3226,7 +3251,6 @@ size_t llama_set_state_data(struct llama_context * ctx, uint8_t * src) { ggml_context * cpy_ctx = ggml_init({ 4096, NULL, /* no_alloc */ true }); ggml_cgraph gf{}; - gf.n_threads = 1; ggml_tensor * kin3d = ggml_new_tensor_3d(cpy_ctx, kv_self.k->type, n_embd, kv_ntok, n_layer); kin3d->data = (void *) inp; @@ -3246,7 +3270,7 @@ size_t llama_set_state_data(struct llama_context * ctx, uint8_t * src) { ggml_build_forward_expand(&gf, ggml_cpy(cpy_ctx, kin3d, k3d)); ggml_build_forward_expand(&gf, ggml_cpy(cpy_ctx, vin3d, v3d)); - ggml_graph_compute(cpy_ctx, &gf); + ggml_graph_compute_helper(ctx->work_buffer, &gf, /*n_threads*/ 1); ggml_free(cpy_ctx); } diff --git a/tests/CMakeLists.txt b/tests/CMakeLists.txt index 4171c12..1acf050 100644 --- a/tests/CMakeLists.txt +++ b/tests/CMakeLists.txt @@ -10,5 +10,5 @@ llama_add_test(test-quantize-fns.cpp) llama_add_test(test-quantize-perf.cpp) llama_add_test(test-sampling.cpp) llama_add_test(test-tokenizer-0.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab.bin) -# llama_add_test(test-grad0.c) # SLOW +llama_add_test(test-grad0.c) # SLOW # llama_add_test(test-opt.c) # SLOW diff --git a/tests/test-grad0.c b/tests/test-grad0.c index a3e2521..da4001c 100644 --- a/tests/test-grad0.c +++ b/tests/test-grad0.c @@ -10,6 +10,8 @@ #pragma warning(disable: 4244 4267) // possible loss of data #endif +#pragma GCC diagnostic ignored "-Wdouble-promotion" + #define MAX_NARGS 3 #undef MIN @@ -49,7 +51,7 @@ float frand(void) { int irand(int n) { if (n == 0) return 0; - else return rand()%n; + return rand()%n; } void get_random_dims(int64_t * dims, int ndims) { @@ -159,12 +161,14 @@ struct ggml_tensor * get_random_tensor_int( float get_element(const struct ggml_tensor * t, int idx) { if (t->type == GGML_TYPE_F32) { return ((float *)t->data)[idx]; - } else if (t->type == GGML_TYPE_I32) { + } + + if (t->type == GGML_TYPE_I32) { return ((int32_t *)t->data)[idx]; - } else { - assert(false); - return INFINITY; } + + assert(false); + return INFINITY; } void set_element(struct ggml_tensor * t, int idx, float value) { @@ -215,15 +219,14 @@ bool check_gradient( } struct ggml_cgraph gf = ggml_build_forward (f); - gf.n_threads = n_threads; - struct ggml_cgraph gb = ggml_build_backward(ctx0, &gf, false); - gb.n_threads = n_threads; - ggml_graph_compute(ctx0, &gf); + ggml_graph_compute_with_ctx(ctx0, &gf, n_threads); + ggml_graph_reset (&gf); ggml_set_f32 (f->grad, 1.0f); - ggml_graph_compute(ctx0, &gb); + + ggml_graph_compute_with_ctx(ctx0, &gb, n_threads); // ggml_graph_dump_dot(&gf, NULL, "test-grad0-forward.dot"); // ggml_graph_dump_dot(&gb, &gf, "test-grad0-backward.dot"); @@ -236,15 +239,16 @@ bool check_gradient( const float xm = x0 - eps; const float xp = x0 + eps; set_element(x[i], k, xp); - ggml_graph_compute(ctx0, &gf); + + ggml_graph_compute_with_ctx(ctx0, &gf, n_threads); const float f0 = ggml_get_f32_1d(f, 0); set_element(x[i], k, xm); - ggml_graph_compute(ctx0, &gf); - const float f1 = ggml_get_f32_1d(f, 0); + ggml_graph_compute_with_ctx(ctx0, &gf, n_threads); + const float f1 = ggml_get_f32_1d(f, 0); const float g0 = (f0 - f1)/(2.0f*eps); set_element(x[i], k, x0); @@ -252,12 +256,13 @@ bool check_gradient( // compute gradient using backward graph ggml_graph_reset (&gf); ggml_set_f32 (f->grad, 1.0f); - ggml_graph_compute(ctx0, &gb); + + ggml_graph_compute_with_ctx(ctx0, &gb, n_threads); const float g1 = get_element(x[i]->grad, k); const float error_abs = fabsf(g0 - g1); - const float error_rel = g0 != 0 ? fabsf(g0 - g1)/fabs(g0) : 0; + const float error_rel = g0 != 0 ? fabsf(g0 - g1)/fabsf(g0) : 0; if (error_abs > max_error_abs || error_rel > max_error_rel) { printf("%s: ndims=%d, i=%d, k=%d, x0=%f, xm=%f, xp=%f, f0=%f, f1=%f, g0=%f, g1=%f, eps=%f, error_abs=%f, error_rel=%f\n", diff --git a/tests/test-opt.c b/tests/test-opt.c index d001615..e928a7d 100644 --- a/tests/test-opt.c +++ b/tests/test-opt.c @@ -7,6 +7,7 @@ #define MAX_NARGS 2 +#pragma GCC diagnostic ignored "-Wdouble-promotion" // // logging @@ -33,7 +34,7 @@ #define GGML_PRINT(...) printf(__VA_ARGS__) -float frand() { +float frand(void) { return (float)rand()/(float)RAND_MAX; } @@ -114,7 +115,7 @@ void set_element(struct ggml_tensor * t, int idx, float value) { ((float *)t->data)[idx] = value; } -int main(int argc, const char ** argv) { +int main(void) { struct ggml_init_params params = { .mem_size = 1024*1024*1024, .mem_buffer = NULL, @@ -137,10 +138,11 @@ int main(int argc, const char ** argv) { struct ggml_tensor * d = ggml_sub(ctx, c, ab); struct ggml_tensor * e = ggml_sum(ctx, ggml_sqr(ctx, d)); - struct ggml_cgraph ge = ggml_build_forward(e); - ggml_graph_reset (&ge); - ggml_graph_compute(ctx, &ge); + ggml_graph_reset(&ge); + + ggml_graph_compute_with_ctx(ctx, &ge, /*n_threads*/ 1); + const float fe = ggml_get_f32_1d(e, 0); printf("%s: e = %.4f\n", __func__, fe); @@ -148,8 +150,10 @@ int main(int argc, const char ** argv) { ggml_opt(ctx, opt_params, e); - ggml_graph_reset (&ge); - ggml_graph_compute(ctx, &ge); + ggml_graph_reset(&ge); + + ggml_graph_compute_with_ctx(ctx, &ge, /*n_threads*/ 1); + const float fe_opt = ggml_get_f32_1d(e, 0); printf("%s: original e = %.4f\n", __func__, fe); printf("%s: optimized e = %.4f\n", __func__, fe_opt); |