aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorQingyou Meng <meng.qingyou@gmail.com>2023-07-08 00:24:01 +0800
committerGitHub <noreply@github.com>2023-07-07 19:24:01 +0300
commit1d656d6360359cfdaaf5d64ed9690047b600dbcb (patch)
treeea41daf563633ab0552f24fd0bacce51833e04eb
parent72421402834141df6cbdcf595fe46dbd11874dce (diff)
ggml : change ggml_graph_compute() API to not require context (#1999)
* ggml_graph_compute: deprecate using ggml_context, try resolve issue #287 * rewrite: no longer consider backward compitability; plan and make_plan * minor: rename ctx as plan; const * remove ggml_graph_compute from tests/test-grad0.c, but current change breaks backward * add static ggml_graph_compute_sugar() * minor: update comments * reusable buffers * ggml : more consistent naming + metal fixes * ggml : fix docs * tests : disable grad / opt + minor naming changes * ggml : add ggml_graph_compute_with_ctx() - backwards compatible API - deduplicates a lot of copy-paste * ci : enable test-grad0 * examples : factor out plan allocation into a helper function * llama : factor out plan stuff into a helper function * ci : fix env * llama : fix duplicate symbols + refactor example benchmark * ggml : remove obsolete assert + refactor n_tasks section * ggml : fix indentation in switch * llama : avoid unnecessary bool * ggml : remove comments from source file and match order in header --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
-rw-r--r--.github/workflows/build.yml13
-rw-r--r--examples/baby-llama/baby-llama.cpp24
-rw-r--r--examples/benchmark/benchmark-matmult.cpp29
-rw-r--r--examples/metal/metal.cpp3
-rw-r--r--examples/train-text-from-scratch/train-text-from-scratch.cpp27
-rw-r--r--ggml-metal.h6
-rw-r--r--ggml-metal.m11
-rw-r--r--ggml.c682
-rw-r--r--ggml.h36
-rw-r--r--llama.cpp54
-rw-r--r--tests/CMakeLists.txt2
-rw-r--r--tests/test-grad0.c35
-rw-r--r--tests/test-opt.c18
13 files changed, 531 insertions, 409 deletions
diff --git a/.github/workflows/build.yml b/.github/workflows/build.yml
index 12481e8..a576139 100644
--- a/.github/workflows/build.yml
+++ b/.github/workflows/build.yml
@@ -16,7 +16,9 @@ on:
paths: ['**/CMakeLists.txt', '**/Makefile', '**/*.h', '**/*.hpp', '**/*.c', '**/*.cpp', '**/*.cu']
env:
- BRANCH_NAME: ${{ github.head_ref || github.ref_name }}
+ BRANCH_NAME: ${{ github.head_ref || github.ref_name }}
+ GGML_NLOOP: 3
+ GGML_NITER: 1
jobs:
ubuntu-focal-make:
@@ -64,7 +66,7 @@ jobs:
id: cmake_test
run: |
cd build
- ctest --verbose
+ ctest --verbose --timeout 900
ubuntu-latest-cmake-sanitizer:
runs-on: ubuntu-latest
@@ -99,7 +101,7 @@ jobs:
id: cmake_test
run: |
cd build
- ctest --verbose
+ ctest --verbose --timeout 900
macOS-latest-make:
runs-on: macos-latest
@@ -147,10 +149,11 @@ jobs:
id: cmake_test
run: |
cd build
- ctest --verbose
+ ctest --verbose --timeout 900
windows-latest-cmake:
runs-on: windows-latest
+
env:
OPENBLAS_VERSION: 0.3.23
OPENCL_VERSION: 2023.04.17
@@ -249,7 +252,7 @@ jobs:
if: ${{ matrix.build != 'clblast' && (matrix.build != 'avx512' || env.HAS_AVX512F == '1') }} # Test AVX-512 only when possible
run: |
cd build
- ctest -C Release --verbose
+ ctest -C Release --verbose --timeout 900
- name: Get commit hash
id: commit
diff --git a/examples/baby-llama/baby-llama.cpp b/examples/baby-llama/baby-llama.cpp
index 212f54d..4965881 100644
--- a/examples/baby-llama/baby-llama.cpp
+++ b/examples/baby-llama/baby-llama.cpp
@@ -31,6 +31,17 @@ float frand_normal(struct random_normal_distribution * rnd) {
return ((r < rnd->min) ? (rnd->min) : (r > rnd->max) ? (rnd->max) : r);
}
+void ggml_graph_compute_helper(std::vector<uint8_t> & buf, ggml_cgraph * graph, int n_threads) {
+ struct ggml_cplan plan = ggml_graph_plan(graph, n_threads);
+
+ if (plan.work_size > 0) {
+ buf.resize(plan.work_size);
+ plan.work_data = buf.data();
+ }
+
+ ggml_graph_compute(graph, &plan);
+}
+
struct ggml_tensor * randomize_tensor(
struct ggml_tensor * tensor,
int ndims,
@@ -1569,6 +1580,8 @@ int main(int argc, char ** argv) {
int n_tokens = model.hparams.n_ctx;
int n_vocab = model.hparams.n_vocab;
+ std::vector<uint8_t> work_buffer;
+
for (int ex=0; ex<n_examples; ++ex) {
struct ggml_init_params params = {
/*.mem_size =*/ compute_size,
@@ -1586,7 +1599,6 @@ int main(int argc, char ** argv) {
int n_past = 0;
ggml_cgraph gf = {};
- gf.n_threads = 1;
get_example_targets_batch(ctx0, 64*ex+0, tokens_input, targets);
@@ -1595,7 +1607,7 @@ int main(int argc, char ** argv) {
struct ggml_tensor * e = square_error_loss(ctx0, targets, logits);
ggml_build_forward_expand(&gf, e);
- ggml_graph_compute(ctx0, &gf);
+ ggml_graph_compute_helper(work_buffer, &gf, /*n_threads*/ 1);
float error_before_opt = ggml_get_f32_1d(e, 0);
@@ -1611,7 +1623,7 @@ int main(int argc, char ** argv) {
ggml_opt(ctx0, opt_params_lbfgs, e);
//
ggml_build_forward_expand(&gf, e);
- ggml_graph_compute(ctx0, &gf);
+ ggml_graph_compute_helper(work_buffer, &gf, /*n_threads*/ 1);
float error_after_opt = ggml_get_f32_1d(e, 0);
@@ -1659,13 +1671,12 @@ int main(int argc, char ** argv) {
struct ggml_context * ctx0 = ggml_init(params);
ggml_cgraph gf = {};
- gf.n_threads = 1;
int n_past = 0;
struct ggml_tensor * logits = forward(&model, &kv_self, ctx0, &gf, tokens_input, sample_ctx, n_past);
ggml_build_forward_expand(&gf, logits);
- ggml_graph_compute(ctx0, &gf);
+ ggml_graph_compute_helper(work_buffer, &gf, /*n_threads*/ 1);
struct ggml_tensor * best_samples = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, sample_ctx);
struct ggml_tensor * probs = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_vocab, sample_ctx);
@@ -1687,10 +1698,11 @@ int main(int argc, char ** argv) {
}
print_matrix(model.tok_embeddings);
-
printf("done\n");
+
// ggml_free(kv_self.ctx);
// ggml_free(model_lora.ctx);
ggml_free(model.ctx);
+
return 0;
}
diff --git a/examples/benchmark/benchmark-matmult.cpp b/examples/benchmark/benchmark-matmult.cpp
index 39d15ca..f7215f4 100644
--- a/examples/benchmark/benchmark-matmult.cpp
+++ b/examples/benchmark/benchmark-matmult.cpp
@@ -20,6 +20,17 @@
#pragma warning(disable: 4244 4267) // possible loss of data
#endif
+void ggml_graph_compute_helper(std::vector<uint8_t> & buf, ggml_cgraph * graph, int n_threads) {
+ struct ggml_cplan plan = ggml_graph_plan(graph, n_threads);
+
+ if (plan.work_size > 0) {
+ buf.resize(plan.work_size);
+ plan.work_data = buf.data();
+ }
+
+ ggml_graph_compute(graph, &plan);
+}
+
float tensor_sum_elements(const ggml_tensor * tensor) {
float sum = 0;
if (tensor->type==GGML_TYPE_F32) {
@@ -159,13 +170,14 @@ int main(int argc, char ** argv) {
// printf("Creating compute graph\n");
struct ggml_cgraph gf = ggml_build_forward(m11xm2);
- gf.n_threads=benchmark_params.n_threads;
- printf("cgraph->n_threads=%i\n",gf.n_threads);
+ printf("n_threads=%i\n", benchmark_params.n_threads);
TENSOR_DUMP(m11);
TENSOR_DUMP(m2);
- ggml_graph_compute(ctx, &gf);
+ std::vector<uint8_t> work_buffer;
+
+ ggml_graph_compute_helper(work_buffer, &gf, benchmark_params.n_threads);
TENSOR_DUMP(gf.nodes[0]);
@@ -187,7 +199,6 @@ int main(int argc, char ** argv) {
// printf("Creating compute graph\n");
struct ggml_cgraph gf31 = ggml_build_forward(q31);
- gf31.n_threads=benchmark_params.n_threads;
// Set up a second graph computation to make sure we override the CPU cache lines
// printf("Creating new tensor q12 & Running quantize\n");
@@ -199,8 +210,7 @@ int main(int argc, char ** argv) {
//printf("Creating compute graph\n");
struct ggml_cgraph gf32 = ggml_build_forward(q32);
- gf32.n_threads=benchmark_params.n_threads;
- printf("cgraph->n_threads=%i\n",gf31.n_threads);
+ printf("n_threads=%i\n", benchmark_params.n_threads);
const int dimx = sizex;
const int dimy = sizey;
@@ -221,14 +231,15 @@ int main(int argc, char ** argv) {
long long int start = ggml_time_us();
//printf("Running ggml_graph_compute\n");
- ggml_graph_compute(ctx, &gf31);
+ ggml_graph_compute_helper(work_buffer, &gf31, benchmark_params.n_threads);
+
long long int stop = ggml_time_us();
long long int usec = stop-start;
double gflops = (double)(flops_per_matrix)/usec/1000.0;
gflops_sum += gflops;
printf("%9i;%8i;%6i;%6i;%6i;%15lli;%18lli;%10.2f\n",
i,
- gf31.n_threads,
+ benchmark_params.n_threads,
sizex, sizey, sizez, flops_per_matrix,
usec,gflops);
@@ -253,7 +264,7 @@ int main(int argc, char ** argv) {
}
// Running a different graph computation to make sure we override the CPU cache lines
- ggml_graph_compute(ctx, &gf32);
+ ggml_graph_compute_helper(work_buffer, &gf32, benchmark_params.n_threads);
}
printf("\n");
printf("Average%78.2f\n",gflops_sum/((double)benchmark_params.n_iterations));
diff --git a/examples/metal/metal.cpp b/examples/metal/metal.cpp
index cdfe4bf..7438def 100644
--- a/examples/metal/metal.cpp
+++ b/examples/metal/metal.cpp
@@ -35,10 +35,9 @@ int main(int argc, char ** argv) {
struct ggml_context * ctx_eval = NULL;
struct ggml_cgraph gf = ggml_graph_import(fname_cgraph, &ctx_data, &ctx_eval);
- gf.n_threads = 1;
// this allocates all Metal resources and memory buffers
- auto * ctx_metal = ggml_metal_init();
+ auto * ctx_metal = ggml_metal_init(1);
const size_t max_size_data = ggml_get_max_tensor_size(ctx_data);
const size_t max_size_eval = ggml_get_max_tensor_size(ctx_eval);
diff --git a/examples/train-text-from-scratch/train-text-from-scratch.cpp b/examples/train-text-from-scratch/train-text-from-scratch.cpp
index c50eeb3..b96fdcd 100644
--- a/examples/train-text-from-scratch/train-text-from-scratch.cpp
+++ b/examples/train-text-from-scratch/train-text-from-scratch.cpp
@@ -60,6 +60,17 @@ float frand_uniform(struct random_uniform_distribution * rnd) {
return rnd->rd(rnd->gen);
}
+void ggml_graph_compute_helper(std::vector<uint8_t> & buf, ggml_cgraph * graph, int n_threads) {
+ struct ggml_cplan plan = ggml_graph_plan(graph, n_threads);
+
+ if (plan.work_size > 0) {
+ buf.resize(plan.work_size);
+ plan.work_data = buf.data();
+ }
+
+ ggml_graph_compute(graph, &plan);
+}
+
struct ggml_tensor * randomize_tensor_normal(struct ggml_tensor * tensor, struct random_normal_distribution * rnd) {
float scale = 1.0f; // xavier
switch (tensor->n_dims) {
@@ -1426,11 +1437,9 @@ struct ggml_tensor * forward_batch_wo_cache_flash_attn_train(
gf->n_nodes = 0;
gf->n_leafs = 0;
- gf->work_size = 0;
gf->perf_runs = 0;
gf->perf_cycles = 0;
gf->perf_time_us = 0;
- gf->work = NULL;
const auto & hparams = model->hparams;
//const int n_ctx = hparams.n_ctx;
@@ -3162,6 +3171,7 @@ int main(int argc, char ** argv) {
printf("used_mem model+cache: %zu bytes\n", ggml_used_mem(model.ctx));
// ggml_print_tensor_objects(model.ctx);
+ // TODO: use std::vector<uint8_t> intead of "new"
size_t compute_size = 1024ll*1024ll*1024ll*((size_t) params.mem_compute_gb);
uint8_t * compute_addr = new uint8_t[compute_size];
@@ -3183,6 +3193,8 @@ int main(int argc, char ** argv) {
GGML_ASSERT(train_samples[i]+n_tokens-1 < (int) train_tokens.size());
}
+ std::vector<uint8_t> work_buffer;
+
printf("%s: begin training\n", __func__);
for (int ex = 0; ex < params.n_examples; ++ex) {
@@ -3217,9 +3229,6 @@ int main(int argc, char ** argv) {
struct ggml_cgraph * gf = (struct ggml_cgraph *) gfbuf->data;
struct ggml_cgraph * gb = (struct ggml_cgraph *) gbbuf->data;
- // ggml_cgraph gf = {};
- gf->n_threads = params.n_threads;
- gb->n_threads = params.n_threads;
get_example_targets_batch(lctx, train_samples.data(), train_samples.size(), train_tokens.data(), train_tokens.size(), ex, tokens_input, target_logits, target_probs);
@@ -3248,7 +3257,7 @@ int main(int argc, char ** argv) {
*gb = ggml_build_backward(ctx0, gf, true);
}
- ggml_graph_compute(ctx0, gf);
+ ggml_graph_compute_helper(work_buffer, gf, params.n_threads);
size_t used_mem_before_opt = ggml_used_mem(ctx0);
@@ -3272,7 +3281,7 @@ int main(int argc, char ** argv) {
model.train_samples += n_batch;
model.train_tokens += n_batch * n_tokens;
- ggml_graph_compute(ctx0, gf);
+ ggml_graph_compute_helper(work_buffer, gf, params.n_threads);
float error_after_opt = ggml_get_f32_1d(loss, 0);
@@ -3354,13 +3363,12 @@ int main(int argc, char ** argv) {
struct ggml_context * ctx0 = ggml_init(cparams);
ggml_cgraph gf = {};
- gf.n_threads = params.n_threads;
int n_past = 0;
struct ggml_tensor * logits = forward(&model, &kv_self, ctx0, &gf, tokens_input, sample_ctx, n_past);
ggml_build_forward_expand(&gf, logits);
- ggml_graph_compute(ctx0, &gf);
+ ggml_graph_compute_helper(work_buffer, &gf, params.n_threads);
//struct ggml_tensor * best_samples = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, sample_ctx);
//struct ggml_tensor * probs = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_vocab, sample_ctx);
@@ -3386,6 +3394,7 @@ int main(int argc, char ** argv) {
delete[] compute_addr;
delete[] compute_buf_0;
delete[] compute_buf_1;
+
llama_free(lctx);
llama_free_model(lmodel);
ggml_free(model.ctx);
diff --git a/ggml-metal.h b/ggml-metal.h
index b9e50ac..928f170 100644
--- a/ggml-metal.h
+++ b/ggml-metal.h
@@ -34,9 +34,13 @@ extern "C" {
struct ggml_metal_context;
-struct ggml_metal_context * ggml_metal_init(void);
+// number of command buffers to use
+struct ggml_metal_context * ggml_metal_init(int n_cb);
void ggml_metal_free(struct ggml_metal_context * ctx);
+// set the number of command buffers to use
+void ggml_metal_set_n_cb(struct ggml_metal_context * ctx, int n_cb);
+
// creates a mapping between a host memory buffer and a device memory buffer
// - make sure to map all buffers used in the graph before calling ggml_metal_graph_compute
// - the mapping is used during computation to determine the arguments of the compute kernels
diff --git a/ggml-metal.m b/ggml-metal.m
index fd69c41..3f15f79 100644
--- a/ggml-metal.m
+++ b/ggml-metal.m
@@ -25,6 +25,8 @@ struct ggml_metal_buffer {
};
struct ggml_metal_context {
+ int n_cb;
+
float * logits;
id<MTLDevice> device;
@@ -86,11 +88,12 @@ static NSString * const msl_library_source = @"see metal.metal";
@implementation GGMLMetalClass
@end
-struct ggml_metal_context * ggml_metal_init(void) {
+struct ggml_metal_context * ggml_metal_init(int n_cb) {
fprintf(stderr, "%s: allocating\n", __func__);
struct ggml_metal_context * ctx = malloc(sizeof(struct ggml_metal_context));
+ ctx->n_cb = n_cb;
ctx->device = MTLCreateSystemDefaultDevice();
ctx->queue = [ctx->device newCommandQueue];
ctx->n_buffers = 0;
@@ -208,6 +211,10 @@ void ggml_metal_free(struct ggml_metal_context * ctx) {
free(ctx);
}
+void ggml_metal_set_n_cb(struct ggml_metal_context * ctx, int n_cb) {
+ ctx->n_cb = n_cb;
+}
+
// finds the Metal buffer that contains the tensor data on the GPU device
// the assumption is that there is 1-to-1 mapping between the host and device memory buffers, so we can find the
// Metal buffer based on the host memory pointer
@@ -354,7 +361,7 @@ void ggml_metal_graph_compute(
// create multiple command buffers and enqueue them
// then, we encode the graph into the command buffers in parallel
- const int n_cb = gf->n_threads;
+ const int n_cb = ctx->n_cb;
NSMutableArray * command_buffers = [NSMutableArray arrayWithCapacity:n_cb];
diff --git a/ggml.c b/ggml.c
index 4ba7ac9..55b0aff 100644
--- a/ggml.c
+++ b/ggml.c
@@ -4583,14 +4583,13 @@ struct ggml_tensor * ggml_new_tensor_impl(
/*.src0 =*/ NULL,
/*.src1 =*/ NULL,
/*.opt =*/ { NULL },
- /*.n_tasks =*/ 0,
/*.perf_runs =*/ 0,
/*.perf_cycles =*/ 0,
/*.perf_time_us =*/ 0,
/*.data =*/ (data == NULL && !ctx->no_alloc) ? (void *)(result + 1) : data,
/*.name =*/ { 0 },
/*.extra =*/ NULL,
- /*.pad =*/ { 0 },
+ /*.padding =*/ { 0 },
};
// TODO: this should not be needed as long as we don't rely on aligned SIMD loads
@@ -10718,8 +10717,6 @@ static void ggml_compute_forward_mul_mat(
float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
- assert(ne00 % 32 == 0);
-
for (int64_t ic = 0; ic < ne11; ++ic) {
vec_dot(ne00, &dst_col[ic*ne0], src0_row, (void *) (src1_col + ic*row_size));
}
@@ -15772,9 +15769,6 @@ struct ggml_cgraph ggml_build_forward(struct ggml_tensor * tensor) {
struct ggml_cgraph result = {
/*.n_nodes =*/ 0,
/*.n_leafs =*/ 0,
- /*.n_threads =*/ GGML_DEFAULT_N_THREADS,
- /*.work_size =*/ 0,
- /*.work =*/ NULL,
/*.nodes =*/ { NULL },
/*.grads =*/ { NULL },
/*.leafs =*/ { NULL },
@@ -15945,12 +15939,13 @@ void clear_numa_thread_affinity(void) {}
#endif
struct ggml_compute_state_shared {
- struct ggml_cgraph * cgraph;
+ const struct ggml_cgraph * cgraph;
+ const struct ggml_cplan * cplan;
int64_t perf_node_start_cycles;
int64_t perf_node_start_time_us;
- int n_threads;
+ const int n_threads;
// synchronization primitives
atomic_int n_active; // num active threads
@@ -15974,9 +15969,13 @@ static void ggml_graph_compute_perf_stats_node(struct ggml_tensor * node, const
static thread_ret_t ggml_graph_compute_thread(void * data) {
struct ggml_compute_state * state = (struct ggml_compute_state *) data;
- struct ggml_cgraph * cgraph = state->shared->cgraph;
- const int n_threads = state->shared->n_threads;
+ const struct ggml_cgraph * cgraph = state->shared->cgraph;
+ const struct ggml_cplan * cplan = state->shared->cplan;
+
+ const int * n_tasks_arr = cplan->n_tasks;
+ const int n_threads = state->shared->n_threads;
+
set_numa_thread_affinity(state->ith, n_threads);
int node_n = -1;
@@ -15989,15 +15988,15 @@ static thread_ret_t ggml_graph_compute_thread(void * data) {
/*.type =*/ GGML_TASK_FINALIZE,
/*.ith =*/ 0,
/*.nth =*/ 0,
- /*.wsize =*/ cgraph->work ? ggml_nbytes(cgraph->work) : 0,
- /*.wdata =*/ cgraph->work ? cgraph->work->data : NULL,
+ /*.wsize =*/ cplan->work_size,
+ /*.wdata =*/ cplan->work_data,
};
if (node_n != -1) {
/* FINALIZE */
struct ggml_tensor * node = state->shared->cgraph->nodes[node_n];
if (GGML_OP_HAS_FINALIZE[node->op]) {
- params.nth = node->n_tasks;
+ params.nth = n_tasks_arr[node_n];
ggml_compute_forward(&params, node);
ggml_graph_compute_perf_stats_node(node, state->shared);
}
@@ -16008,11 +16007,12 @@ static thread_ret_t ggml_graph_compute_thread(void * data) {
GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, node_n, cgraph->n_nodes);
struct ggml_tensor * node = cgraph->nodes[node_n];
+ const int n_tasks = n_tasks_arr[node_n];
state->shared->perf_node_start_cycles = ggml_perf_cycles();
state->shared->perf_node_start_time_us = ggml_perf_time_us();
- params.nth = node->n_tasks;
+ params.nth = n_tasks;
/* INIT */
if (GGML_OP_HAS_INIT[node->op]) {
@@ -16020,7 +16020,7 @@ static thread_ret_t ggml_graph_compute_thread(void * data) {
ggml_compute_forward(&params, node);
}
- if (node->n_tasks == 1) {
+ if (n_tasks == 1) {
// TODO: maybe push node_n to the atomic but if other threads see n_tasks is 1,
// they do something more efficient than spinning (?)
params.type = GGML_TASK_COMPUTE;
@@ -16052,16 +16052,17 @@ static thread_ret_t ggml_graph_compute_thread(void * data) {
/* COMPUTE */
struct ggml_tensor * node = cgraph->nodes[node_n];
+ const int n_tasks = n_tasks_arr[node_n];
struct ggml_compute_params params = {
/*.type =*/ GGML_TASK_COMPUTE,
/*.ith =*/ state->ith,
- /*.nth =*/ node->n_tasks,
- /*.wsize =*/ cgraph->work ? ggml_nbytes(cgraph->work) : 0,
- /*.wdata =*/ cgraph->work ? cgraph->work->data : NULL,
+ /*.nth =*/ n_tasks,
+ /*.wsize =*/ cplan->work_size,
+ /*.wdata =*/ cplan->work_data,
};
- if (state->ith < node->n_tasks) {
+ if (state->ith < n_tasks) {
ggml_compute_forward(&params, node);
}
}
@@ -16069,349 +16070,372 @@ static thread_ret_t ggml_graph_compute_thread(void * data) {
return 0;
}
-void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
- const int n_threads = cgraph->n_threads;
+struct ggml_cplan ggml_graph_plan(struct ggml_cgraph * cgraph, int n_threads) {
+ if (n_threads <= 0) {
+ n_threads = GGML_DEFAULT_N_THREADS;
+ }
- struct ggml_compute_state_shared state_shared = {
- /*.cgraph =*/ cgraph,
- /*.perf_node_start_cycles =*/ 0,
- /*.perf_node_start_time_us =*/ 0,
- /*.n_threads =*/ n_threads,
- /*.n_active =*/ n_threads,
- /*.node_n =*/ -1,
- };
- struct ggml_compute_state * workers = alloca(sizeof(struct ggml_compute_state)*n_threads);
+ size_t work_size = 0;
- // initialize tasks + work buffer
- {
- size_t work_size = 0;
+ struct ggml_cplan cplan;
+ memset(&cplan, 0, sizeof(struct ggml_cplan));
- // thread scheduling for the different operations
- for (int i = 0; i < cgraph->n_nodes; i++) {
- struct ggml_tensor * node = cgraph->nodes[i];
+ // thread scheduling for the different operations + work buffer size estimation
+ for (int i = 0; i < cgraph->n_nodes; i++) {
+ int n_tasks = 1;
- switch (node->op) {
- case GGML_OP_CPY:
- case GGML_OP_DUP:
- {
- node->n_tasks = n_threads;
+ struct ggml_tensor * node = cgraph->nodes[i];
- size_t cur = 0;
- if (ggml_is_quantized(node->type)) {
- cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->ne[0] * n_threads;
- }
+ switch (node->op) {
+ case GGML_OP_CPY:
+ case GGML_OP_DUP:
+ {
+ n_tasks = n_threads;
- work_size = MAX(work_size, cur);
- } break;
- case GGML_OP_ADD:
- case GGML_OP_ADD1:
- {
- node->n_tasks = n_threads;
+ size_t cur = 0;
+ if (ggml_is_quantized(node->type)) {
+ cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->ne[0] * n_tasks;
+ }
- size_t cur = 0;
+ work_size = MAX(work_size, cur);
+ } break;
+ case GGML_OP_ADD:
+ case GGML_OP_ADD1:
+ {
+ n_tasks = n_threads;
- if (ggml_is_quantized(node->src0->type)) {
- cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->src0->ne[0] * n_threads;
- }
+ size_t cur = 0;
- work_size = MAX(work_size, cur);
- } break;
- case GGML_OP_ACC:
- {
- node->n_tasks = n_threads;
+ if (ggml_is_quantized(node->src0->type)) {
+ cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->src0->ne[0] * n_tasks;
+ }
- size_t cur = 0;
+ work_size = MAX(work_size, cur);
+ } break;
+ case GGML_OP_ACC:
+ {
+ n_tasks = n_threads;
- if (ggml_is_quantized(node->src0->type)) {
- cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->src1->ne[0] * n_threads;
- }
+ size_t cur = 0;
+
+ if (ggml_is_quantized(node->src0->type)) {
+ cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->src1->ne[0] * n_tasks;
+ }
+
+ work_size = MAX(work_size, cur);
+ } break;
+ case GGML_OP_SUB:
+ case GGML_OP_DIV:
+ case GGML_OP_SQR:
+ case GGML_OP_SQRT:
+ case GGML_OP_LOG:
+ case GGML_OP_SUM:
+ case GGML_OP_SUM_ROWS:
+ case GGML_OP_MEAN:
+ case GGML_OP_ARGMAX:
+ case GGML_OP_REPEAT:
+ case GGML_OP_REPEAT_BACK:
+ case GGML_OP_ABS:
+ case GGML_OP_SGN:
+ case GGML_OP_NEG:
+ case GGML_OP_STEP:
+ case GGML_OP_TANH:
+ case GGML_OP_ELU:
+ case GGML_OP_RELU:
+ {
+ n_tasks = 1;
+ } break;
+ case GGML_OP_MUL:
+ case GGML_OP_GELU:
+ case GGML_OP_GELU_QUICK:
+ case GGML_OP_SILU:
+ case GGML_OP_SILU_BACK:
+ case GGML_OP_NORM:
+ case GGML_OP_RMS_NORM:
+ case GGML_OP_RMS_NORM_BACK:
+ {
+ n_tasks = n_threads;
+ } break;
+ case GGML_OP_MUL_MAT:
+ case GGML_OP_OUT_PROD:
+ {
+ n_tasks = n_threads;
- work_size = MAX(work_size, cur);
- } break;
- case GGML_OP_SUB:
- case GGML_OP_DIV:
- case GGML_OP_SQR:
- case GGML_OP_SQRT:
- case GGML_OP_LOG:
- case GGML_OP_SUM:
- case GGML_OP_SUM_ROWS:
- case GGML_OP_MEAN:
- case GGML_OP_ARGMAX:
- case GGML_OP_REPEAT:
- case GGML_OP_REPEAT_BACK:
- case GGML_OP_ABS:
- case GGML_OP_SGN:
- case GGML_OP_NEG:
- case GGML_OP_STEP:
- case GGML_OP_TANH:
- case GGML_OP_ELU:
- case GGML_OP_RELU:
- {
- node->n_tasks = 1;
- } break;
- case GGML_OP_MUL:
- case GGML_OP_GELU:
- case GGML_OP_GELU_QUICK:
- case GGML_OP_SILU:
- case GGML_OP_SILU_BACK:
- case GGML_OP_NORM:
- case GGML_OP_RMS_NORM:
- case GGML_OP_RMS_NORM_BACK:
- {
- node->n_tasks = n_threads;
- } break;
- case GGML_OP_MUL_MAT:
- case GGML_OP_OUT_PROD:
- {
- node->n_tasks = n_threads;
-
- // TODO: use different scheduling for different matrix sizes
- //const int nr0 = ggml_nrows(node->src0);
- //const int nr1 = ggml_nrows(node->src1);
-
- //node->n_tasks = MIN(n_threads, MAX(1, nr0/128));
- //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks = %d\n", nr0, nr1, nr0*nr1, node->n_tasks);
-
- size_t cur = 0;
- const enum ggml_type vec_dot_type = type_traits[node->src0->type].vec_dot_type;
+ // TODO: use different scheduling for different matrix sizes
+ //const int nr0 = ggml_nrows(node->src0);
+ //const int nr1 = ggml_nrows(node->src1);
+
+ //n_tasks = MIN(n_threads, MAX(1, nr0/128));
+ //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks%d\n", nr0, nr1, nr0*nr1, n_tasks);
+
+ size_t cur = 0;
+ const enum ggml_type vec_dot_type = type_traits[node->src0->type].vec_dot_type;
#if defined(GGML_USE_CUBLAS)
- if (ggml_cuda_can_mul_mat(node->src0, node->src1, node)) {
- node->n_tasks = 1; // TODO: this actually is doing nothing
- // the threads are still spinning
- }
- else
+ if (ggml_cuda_can_mul_mat(node->src0, node->src1, node)) {
+ n_tasks = 1; // TODO: this actually is doing nothing
+ // the threads are still spinning
+ } else
#elif defined(GGML_USE_CLBLAST)
- if (ggml_cl_can_mul_mat(node->src0, node->src1, node)) {
- node->n_tasks = 1; // TODO: this actually is doing nothing
- // the threads are still spinning
- cur = ggml_cl_mul_mat_get_wsize(node->src0, node->src1, node);
- }
- else
+ if (ggml_cl_can_mul_mat(node->src0, node->src1, node)) {
+ n_tasks = 1; // TODO: this actually is doing nothing
+ // the threads are still spinning
+ cur = ggml_cl_mul_mat_get_wsize(node->src0, node->src1, node);
+ } else
#endif
#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
- if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
- node->n_tasks = 1; // TODO: this actually is doing nothing
- // the threads are still spinning
- if (node->src0->type != GGML_TYPE_F32) {
- // here we need memory just for single 2D matrix from src0
- cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
- }
- } else
-#endif
- if (node->src1->type != vec_dot_type) {
- cur = GGML_TYPE_SIZE[vec_dot_type]*ggml_nelements(node->src1)/GGML_BLCK_SIZE[vec_dot_type];
- } else {
- cur = 0;
+ if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
+ n_tasks = 1; // TODO: this actually is doing nothing
+ // the threads are still spinning
+ if (node->src0->type != GGML_TYPE_F32) {
+ // here we need memory just for single 2D matrix from src0
+ cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
}
+ } else
+#endif
+ if (node->src1->type != vec_dot_type) {
+ cur = GGML_TYPE_SIZE[vec_dot_type]*ggml_nelements(node->src1)/GGML_BLCK_SIZE[vec_dot_type];
+ } else {
+ cur = 0;
+ }
- work_size = MAX(work_size, cur);
- } break;
- case GGML_OP_SCALE:
- {
- node->n_tasks = 1;
- } break;
- case GGML_OP_SET:
- case GGML_OP_CONT:
- case GGML_OP_RESHAPE:
- case GGML_OP_VIEW:
- case GGML_OP_PERMUTE:
- case GGML_OP_TRANSPOSE:
- case GGML_OP_GET_ROWS:
- case GGML_OP_GET_ROWS_BACK:
- case GGML_OP_DIAG:
- case GGML_OP_DIAG_MASK_ZERO:
- {
- node->n_tasks = 1;
- } break;
- case GGML_OP_DIAG_MASK_INF:
- case GGML_OP_SOFT_MAX:
- case GGML_OP_SOFT_MAX_BACK:
- case GGML_OP_ROPE:
- case GGML_OP_ROPE_BACK:
- {
- node->n_tasks = n_threads;
- } break;
- case GGML_OP_ALIBI:
- {
- node->n_tasks = 1; //TODO
- } break;
- case GGML_OP_CLAMP:
- {
- node->n_tasks = 1; //TODO
- } break;
- case GGML_OP_CONV_1D:
- {
- node->n_tasks = n_threads;
-
- GGML_ASSERT(node->src0->ne[3] == 1);
- GGML_ASSERT(node->src1->ne[2] == 1);
- GGML_ASSERT(node->src1->ne[3] == 1);
-
- size_t cur = 0;
- const int nk = node->src0->ne[0];
-
- if (node->src0->type == GGML_TYPE_F16 &&
+ work_size = MAX(work_size, cur);
+ } break;
+ case GGML_OP_SCALE:
+ {
+ n_tasks = 1;
+ } break;
+ case GGML_OP_SET:
+ case GGML_OP_CONT:
+ case GGML_OP_RESHAPE:
+ case GGML_OP_VIEW:
+ case GGML_OP_PERMUTE:
+ case GGML_OP_TRANSPOSE:
+ case GGML_OP_GET_ROWS:
+ case GGML_OP_GET_ROWS_BACK:
+ case GGML_OP_DIAG:
+ case GGML_OP_DIAG_MASK_ZERO:
+ {
+ n_tasks = 1;
+ } break;
+ case GGML_OP_DIAG_MASK_INF:
+ case GGML_OP_SOFT_MAX:
+ case GGML_OP_SOFT_MAX_BACK:
+ case GGML_OP_ROPE:
+ case GGML_OP_ROPE_BACK:
+ {
+ n_tasks = n_threads;
+ } break;
+ case GGML_OP_ALIBI:
+ {
+ n_tasks = 1; //TODO
+ } break;
+ case GGML_OP_CLAMP:
+ {
+ n_tasks = 1; //TODO
+ } break;
+ case GGML_OP_CONV_1D:
+ {
+ n_tasks = n_threads;
+
+ GGML_ASSERT(node->src0->ne[3] == 1);
+ GGML_ASSERT(node->src1->ne[2] == 1);
+ GGML_ASSERT(node->src1->ne[3] == 1);
+
+ size_t cur = 0;
+ const int nk = node->src0->ne[0];
+
+ if (node->src0->type == GGML_TYPE_F16 &&
node->src1->type == GGML_TYPE_F32) {
- cur = sizeof(ggml_fp16_t)*(
- nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
- ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
- );
- } else if (node->src0->type == GGML_TYPE_F32 &&
- node->src1->type == GGML_TYPE_F32) {
- cur = sizeof(float)*(
- nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
- ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
- );
- } else {
- GGML_ASSERT(false);
- }
+ cur = sizeof(ggml_fp16_t)*(
+ nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
+ ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
+ );
+ } else if (node->src0->type == GGML_TYPE_F32 &&
+ node->src1->type == GGML_TYPE_F32) {
+ cur = sizeof(float)*(
+ nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
+ ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
+ );
+ } else {
+ GGML_ASSERT(false);
+ }
- work_size = MAX(work_size, cur);
- } break;
- case GGML_OP_CONV_2D:
- {
- node->n_tasks = n_threads;
+ work_size = MAX(work_size, cur);
+ } break;
+ case GGML_OP_CONV_2D:
+ {
+ n_tasks = n_threads;
- GGML_ASSERT(node->src1->ne[3] == 1);
+ GGML_ASSERT(node->src1->ne[3] == 1);
- const int64_t ne00 = node->src0->ne[0]; // W
- const int64_t ne01 = node->src0->ne[1]; // H
- const int64_t ne02 = node->src0->ne[2]; // C
- const int64_t ne03 = node->src0->ne[3]; // N
+ const int64_t ne00 = node->src0->ne[0]; // W
+ const int64_t ne01 = node->src0->ne[1]; // H
+ const int64_t ne02 = node->src0->ne[2]; // C
+ const int64_t ne03 = node->src0->ne[3]; // N
- const int64_t ne10 = node->src1->ne[0]; // W
- const int64_t ne11 = node->src1->ne[1]; // H
- const int64_t ne12 = node->src1->ne[2]; // C
+ const int64_t ne10 = node->src1->ne[0]; // W
+ const int64_t ne11 = node->src1->ne[1]; // H
+ const int64_t ne12 = node->src1->ne[2]; // C
- const int64_t nk = ne00*ne01;
+ const int64_t nk = ne00*ne01;
- UNUSED(ne02);
- UNUSED(ne03);
- UNUSED(nk);
+ UNUSED(ne02);
+ UNUSED(ne03);
+ UNUSED(nk);
- size_t cur = 0;
+ size_t cur = 0;
- if (node->src0->type == GGML_TYPE_F16 &&
+ if (node->src0->type == GGML_TYPE_F16 &&
node->src1->type == GGML_TYPE_F32) {
- cur = sizeof(ggml_fp16_t)*(ne10*ne11*ne12);
- } else if (node->src0->type == GGML_TYPE_F32 &&
- node->src1->type == GGML_TYPE_F32) {
- cur = sizeof(float)* (ne10*ne11*ne12);
- } else {
- GGML_ASSERT(false);
- }
+ cur = sizeof(ggml_fp16_t)*(ne10*ne11*ne12);
+ } else if (node->src0->type == GGML_TYPE_F32 &&
+ node->src1->type == GGML_TYPE_F32) {
+ cur = sizeof(float)* (ne10*ne11*ne12);
+ } else {
+ GGML_ASSERT(false);
+ }
- work_size = MAX(work_size, cur);
- } break;
- case GGML_OP_FLASH_ATTN:
- {
- node->n_tasks = n_threads;
+ work_size = MAX(work_size, cur);
+ } break;
+ case GGML_OP_FLASH_ATTN:
+ {
+ n_tasks = n_threads;
- size_t cur = 0;
+ size_t cur = 0;
- const int64_t ne11 = ggml_up(node->src1->ne[1], GGML_SOFT_MAX_UNROLL);
+ const int64_t ne11 = ggml_up(node->src1->ne[1], GGML_SOFT_MAX_UNROLL);
- if (node->src1->type == GGML_TYPE_F32) {
- cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
- cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
- }
+ if (node->src1->type == GGML_TYPE_F32) {
+ cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
+ cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
+ }
- if (node->src1->type == GGML_TYPE_F16) {
- cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
- cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
- }
+ if (node->src1->type == GGML_TYPE_F16) {
+ cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
+ cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
+ }
- work_size = MAX(work_size, cur);
- } break;
- case GGML_OP_FLASH_FF:
- {
- node->n_tasks = n_threads;
+ work_size = MAX(work_size, cur);
+ } break;
+ case GGML_OP_FLASH_FF:
+ {
+ n_tasks = n_threads;
- size_t cur = 0;
+ size_t cur = 0;
- if (node->src1->type == GGML_TYPE_F32) {
- cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
- cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
- }
+ if (node->src1->type == GGML_TYPE_F32) {
+ cur = sizeof(float)*node->src1->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
+ cur += sizeof(float)*node->src1->ne[1]*n_tasks; // this is overestimated by x2
+ }
- if (node->src1->type == GGML_TYPE_F16) {
- cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
- cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
- }
+ if (node->src1->type == GGML_TYPE_F16) {
+ cur = sizeof(float)*node->src1->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
+ cur += sizeof(float)*node->src1->ne[1]*n_tasks; // this is overestimated by x2
+ }
- work_size = MAX(work_size, cur);
- } break;
- case GGML_OP_FLASH_ATTN_BACK:
- {
- node->n_tasks = n_threads;
+ work_size = MAX(work_size, cur);
+ } break;
+ case GGML_OP_FLASH_ATTN_BACK:
+ {
+ n_tasks = n_threads;
- size_t cur = 0;
+ size_t cur = 0;
- const int64_t D = node->src0->ne[0];
- const int64_t ne11 = ggml_up(node->src1->ne[1], GGML_SOFT_MAX_UNROLL);
- const int64_t mxDn = MAX(D, ne11) * 2; // *2 because of S and SM in ggml_compute_forward_flash_attn_back
- if (node->src1->type == GGML_TYPE_F32) {
- cur = sizeof(float)*mxDn*node->n_tasks; // TODO: this can become (n_tasks-1)
- cur += sizeof(float)*mxDn*node->n_tasks; // this is overestimated by x2
- }
+ const int64_t D = node->src0->ne[0];
+ const int64_t ne11 = ggml_up(node->src1->ne[1], GGML_SOFT_MAX_UNROLL);
+ const int64_t mxDn = MAX(D, ne11) * 2; // *2 because of S and SM in ggml_compute_forward_flash_attn_back
+ if (node->src1->type == GGML_TYPE_F32) {
+ cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
+ cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
+ }
- if (node->src1->type == GGML_TYPE_F16) {
- cur = sizeof(float)*mxDn*node->n_tasks; // TODO: this can become (n_tasks-1)
- cur += sizeof(float)*mxDn*node->n_tasks; // this is overestimated by x2
- }
+ if (node->src1->type == GGML_TYPE_F16) {
+ cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
+ cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
+ }
- work_size = MAX(work_size, cur);
- } break;
- case GGML_OP_WIN_PART:
- case GGML_OP_WIN_UNPART:
- case GGML_OP_MAP_UNARY:
- case GGML_OP_MAP_BINARY:
- case GGML_OP_MAP_CUSTOM1:
- case GGML_OP_MAP_CUSTOM2:
- case GGML_OP_MAP_CUSTOM3:
- {
- node->n_tasks = 1;
- } break;
- case GGML_OP_CROSS_ENTROPY_LOSS:
- {
- node->n_tasks = n_threads;
-
- size_t cur = ggml_type_size(node->type)*(node->n_tasks + node->src0->ne[0]*node->n_tasks);
-
- work_size = MAX(work_size, cur);
- } break;
- case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
- {
- node->n_tasks = n_threads;
-
- size_t cur = ggml_type_size(node->type)*node->src0->ne[0]*node->n_tasks;
-
- work_size = MAX(work_size, cur);
- } break;
- case GGML_OP_NONE:
- {
- node->n_tasks = 1;
- } break;
- case GGML_OP_COUNT:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
+ work_size = MAX(work_size, cur);
+ } break;
+ case GGML_OP_WIN_PART:
+ case GGML_OP_WIN_UNPART:
+ case GGML_OP_MAP_UNARY:
+ case GGML_OP_MAP_BINARY:
+ case GGML_OP_MAP_CUSTOM1:
+ case GGML_OP_MAP_CUSTOM2:
+ case GGML_OP_MAP_CUSTOM3:
+ {
+ n_tasks = 1;
+ } break;
+ case GGML_OP_CROSS_ENTROPY_LOSS:
+ {
+ n_tasks = n_threads;
+
+ size_t cur = ggml_type_size(node->type)*(n_tasks + node->src0->ne[0]*n_tasks);
+
+ work_size = MAX(work_size, cur);
+ } break;
+ case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
+ {
+ n_tasks = n_threads;
- if (cgraph->work != NULL && work_size > cgraph->work_size) {
- GGML_ASSERT(false); // TODO: better handling
+ size_t cur = ggml_type_size(node->type)*node->src0->ne[0]*n_tasks;
+
+ work_size = MAX(work_size, cur);
+ } break;
+ case GGML_OP_NONE:
+ {
+ n_tasks = 1;
+ } break;
+ case GGML_OP_COUNT:
+ {
+ GGML_ASSERT(false);
+ } break;
}
- if (work_size > 0 && cgraph->work == NULL) {
- cgraph->work_size = work_size + CACHE_LINE_SIZE*(n_threads - 1);
+ cplan.n_tasks[i] = n_tasks;
+ }
+
+ if (work_size > 0) {
+ work_size += CACHE_LINE_SIZE*(n_threads - 1);
+ }
+
+ cplan.n_threads = n_threads;
+ cplan.work_size = work_size;
+ cplan.work_data = NULL;
+
+ return cplan;
+}
+
+void ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan) {
+ {
+ GGML_ASSERT(cplan);
+ GGML_ASSERT(cplan->n_threads > 0);
+
+ if (cplan->work_size > 0) {
+ GGML_ASSERT(cplan->work_data);
+ }
- GGML_PRINT_DEBUG("%s: allocating work buffer for graph (%zu bytes)\n", __func__, cgraph->work_size);
- cgraph->work = ggml_new_tensor_1d(ctx, GGML_TYPE_I8, cgraph->work_size);
+ for (int i = 0; i < cgraph->n_nodes; ++i) {
+ if (cgraph->nodes[i]->op != GGML_OP_NONE) {
+ GGML_ASSERT(cplan->n_tasks[i] > 0);
+ }
}
}
+ const int n_threads = cplan->n_threads;
+
+ struct ggml_compute_state_shared state_shared = {
+ /*.cgraph =*/ cgraph,
+ /*.cgraph_plan =*/ cplan,
+ /*.perf_node_start_cycles =*/ 0,
+ /*.perf_node_start_time_us =*/ 0,
+ /*.n_threads =*/ n_threads,
+ /*.n_active =*/ n_threads,
+ /*.node_n =*/ -1,
+ };
+ struct ggml_compute_state * workers = alloca(sizeof(struct ggml_compute_state)*n_threads);
+
// create thread pool
if (n_threads > 1) {
for (int j = 1; j < n_threads; ++j) {
@@ -16473,6 +16497,17 @@ void ggml_graph_reset(struct ggml_cgraph * cgraph) {
}
}
+void ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads) {
+ struct ggml_cplan cplan = ggml_graph_plan(cgraph, n_threads);
+
+ struct ggml_tensor * buf = ggml_new_tensor_1d(ctx, GGML_TYPE_I8, cplan.work_size);
+ GGML_ASSERT(buf);
+
+ cplan.work_data = buf->data;
+
+ ggml_graph_compute(cgraph, &cplan);
+}
+
struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name) {
for (int i = 0; i < cgraph->n_leafs; i++) {
struct ggml_tensor * leaf = cgraph->leafs[i];
@@ -16511,14 +16546,13 @@ static void ggml_graph_export_node(const struct ggml_tensor * tensor, const char
const int64_t * ne = tensor->ne;
const size_t * nb = tensor->nb;
- fprintf(fout, "%-6s %-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %8d %16p %32s\n",
+ fprintf(fout, "%-6s %-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
arg,
ggml_type_name(tensor->type),
ggml_op_name (tensor->op),
tensor->n_dims,
ne[0], ne[1], ne[2], ne[3],
nb[0], nb[1], nb[2], nb[3],
- tensor->n_tasks,
tensor->data,
tensor->name);
}
@@ -17254,9 +17288,6 @@ static enum ggml_opt_result ggml_opt_adam(
struct ggml_cgraph * gb) {
GGML_ASSERT(ggml_is_scalar(f));
- gf->n_threads = params.n_threads;
- gb->n_threads = params.n_threads;
-
// these will store the parameters we want to optimize
struct ggml_tensor * ps[GGML_MAX_PARAMS];
@@ -17303,7 +17334,8 @@ static enum ggml_opt_result ggml_opt_adam(
// compute the function value
ggml_graph_reset (gf);
ggml_set_f32 (f->grad, 1.0f);
- ggml_graph_compute(ctx, gb);
+
+ ggml_graph_compute_with_ctx(ctx, gb, params.n_threads);
opt->adam.fx_prev = ggml_get_f32_1d(f, 0);
opt->adam.fx_best = opt->adam.fx_prev;
@@ -17383,7 +17415,8 @@ static enum ggml_opt_result ggml_opt_adam(
ggml_graph_reset (gf);
ggml_set_f32 (f->grad, 1.0f);
- ggml_graph_compute(ctx, gb);
+
+ ggml_graph_compute_with_ctx(ctx, gb, params.n_threads);
const float fx = ggml_get_f32_1d(f, 0);
@@ -17505,7 +17538,8 @@ static enum ggml_opt_result linesearch_backtracking(
ggml_graph_reset (gf);
ggml_set_f32 (f->grad, 1.0f);
- ggml_graph_compute(ctx, gb);
+
+ ggml_graph_compute_with_ctx(ctx, gb, params->n_threads);
ggml_opt_get_grad(np, ps, g);
@@ -17573,9 +17607,6 @@ static enum ggml_opt_result ggml_opt_lbfgs(
}
}
- gf->n_threads = params.n_threads;
- gb->n_threads = params.n_threads;
-
const int m = params.lbfgs.m;
// these will store the parameters we want to optimize
@@ -17627,7 +17658,8 @@ static enum ggml_opt_result ggml_opt_lbfgs(
ggml_graph_reset (gf);
ggml_set_f32 (f->grad, 1.0f);
- ggml_graph_compute(ctx, gb);
+
+ ggml_graph_compute_with_ctx(ctx, gb, params.n_threads);
ggml_opt_get_grad(np, ps, g);
diff --git a/ggml.h b/ggml.h
index d0710c5..ab84bef 100644
--- a/ggml.h
+++ b/ggml.h
@@ -65,7 +65,7 @@
// ggml_set_f32(a, 3.0f);
// ggml_set_f32(b, 4.0f);
//
-// ggml_graph_compute(ctx0, &gf);
+// ggml_graph_compute_with_ctx(ctx, &gf, n_threads);
//
// printf("f = %f\n", ggml_get_f32_1d(f, 0));
//
@@ -418,9 +418,6 @@ extern "C" {
struct ggml_tensor * src1;
struct ggml_tensor * opt[GGML_MAX_OPT];
- // thread scheduling
- int n_tasks;
-
// performance
int perf_runs;
int64_t perf_cycles;
@@ -432,19 +429,27 @@ extern "C" {
void * extra; // extra things e.g. for ggml-cuda.cu
- char padding[4];
+ char padding[8];
};
static const size_t GGML_TENSOR_SIZE = sizeof(struct ggml_tensor);
+ // the compute plan that needs to be prepared for ggml_graph_compute()
+ // since https://github.com/ggerganov/ggml/issues/287
+ struct ggml_cplan {
+ size_t work_size; // size of work buffer, calculated by `ggml_graph_plan()`
+ uint8_t * work_data; // work buffer, to be allocated by caller before calling to `ggml_graph_compute()`
+
+ int n_threads;
+
+ // the `n_tasks` of nodes, 1:1 mapping to cgraph nodes
+ int n_tasks[GGML_MAX_NODES];
+ };
+
// computation graph
struct ggml_cgraph {
int n_nodes;
int n_leafs;
- int n_threads;
-
- size_t work_size;
- struct ggml_tensor * work;
struct ggml_tensor * nodes[GGML_MAX_NODES];
struct ggml_tensor * grads[GGML_MAX_NODES];
@@ -1290,15 +1295,22 @@ extern "C" {
GGML_API void ggml_set_param(
struct ggml_context * ctx,
- struct ggml_tensor * tensor);
+ struct ggml_tensor * tensor);
GGML_API void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor);
GGML_API struct ggml_cgraph ggml_build_forward (struct ggml_tensor * tensor);
GGML_API struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep);
- GGML_API void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph);
- GGML_API void ggml_graph_reset (struct ggml_cgraph * cgraph);
+ // ggml_graph_plan() has to be called before ggml_graph_compute()
+ // when plan.work_size > 0, caller must allocate memory for plan.work_data
+ GGML_API struct ggml_cplan ggml_graph_plan (struct ggml_cgraph * cgraph, int n_threads /*= GGML_DEFAULT_N_THREADS*/);
+ GGML_API void ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan);
+ GGML_API void ggml_graph_reset (struct ggml_cgraph * cgraph);
+
+ // same as ggml_graph_compute() but the work data is allocated as a part of the context
+ // note: the drawback of this API is that you must have ensured that the context has enough memory for the work data
+ GGML_API void ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads);
GGML_API struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name);
diff --git a/llama.cpp b/llama.cpp
index 02afdeb..ee6ec09 100644
--- a/llama.cpp
+++ b/llama.cpp
@@ -79,6 +79,25 @@ void llama_nop(struct ggml_tensor * tensor) { // don't offload by default
(void) tensor;
}
+//
+// ggml helpers
+//
+
+static void ggml_graph_compute_helper(std::vector<uint8_t> & buf, ggml_cgraph * graph, int n_threads) {
+ struct ggml_cplan plan = ggml_graph_plan(graph, n_threads);
+
+ if (plan.work_size > 0) {
+ buf.resize(plan.work_size);
+ plan.work_data = buf.data();
+ }
+
+ ggml_graph_compute(graph, &plan);
+}
+
+//
+// memory sizes
+//
+
static const std::map<e_model, size_t> & MEM_REQ_SCRATCH0()
{
static std::map<e_model, size_t> k_sizes = {
@@ -321,6 +340,9 @@ struct llama_context {
// input embedding (1-dimensional array: [n_embd])
std::vector<float> embedding;
+ // reusable buffer for `struct ggml_graph_plan.work_data`
+ std::vector<uint8_t> work_buffer;
+
// memory buffers used to evaluate the model
// TODO: move in llama_state
llama_ctx_buffer buf_compute;
@@ -758,7 +780,6 @@ struct llama_model_loader {
};
-
//
// kv cache
//
@@ -1265,7 +1286,7 @@ static bool llama_eval_internal(
const float * embd,
const int n_tokens,
const int n_past,
- const int n_threads,
+ int n_threads,
const char * cgraph_fname) {
LLAMA_ASSERT((!tokens && embd) || (tokens && !embd));
@@ -1306,10 +1327,11 @@ static bool llama_eval_internal(
struct ggml_context * ctx0 = ggml_init(params);
+ ggml_cgraph gf = {};
+
// for big prompts, if BLAS is enabled, it is better to use only one thread
// otherwise, the threads are spin-lock waiting for the BLAS calls and are degrading the performance
- ggml_cgraph gf = {};
- gf.n_threads = N >= 32 && ggml_cpu_has_blas() && !ggml_cpu_has_gpublas() ? 1 : n_threads;
+ n_threads = N >= 32 && ggml_cpu_has_blas() && !ggml_cpu_has_gpublas() ? 1 : n_threads;
struct ggml_tensor * cur;
struct ggml_tensor * inpL;
@@ -1593,6 +1615,7 @@ static bool llama_eval_internal(
#ifdef GGML_USE_METAL
if (lctx.ctx_metal && N == 1) {
+ ggml_metal_set_n_cb (lctx.ctx_metal, n_threads);
ggml_metal_graph_compute(lctx.ctx_metal, &gf);
ggml_metal_get_tensor (lctx.ctx_metal, cur);
} else {
@@ -1612,10 +1635,10 @@ static bool llama_eval_internal(
ggml_metal_get_tensor(lctx.ctx_metal, kv_self.v);
}
- ggml_graph_compute(ctx0, &gf);
+ ggml_graph_compute_helper(lctx.work_buffer, &gf, n_threads);
}
#else
- ggml_graph_compute(ctx0, &gf);
+ ggml_graph_compute_helper(lctx.work_buffer, &gf, n_threads);
#endif
if (cgraph_fname) {
@@ -2575,8 +2598,8 @@ void llama_free_model(struct llama_model * model) {
}
struct llama_context * llama_new_context_with_model(
- struct llama_model * model,
- struct llama_context_params params) {
+ struct llama_model * model,
+ struct llama_context_params params) {
if (!model) {
return nullptr;
@@ -2645,7 +2668,7 @@ struct llama_context * llama_new_context_with_model(
#ifdef GGML_USE_METAL
if (params.n_gpu_layers > 0) {
// this allocates all Metal resources and memory buffers
- ctx->ctx_metal = ggml_metal_init();
+ ctx->ctx_metal = ggml_metal_init(1);
void * data_ptr = NULL;
size_t data_size = 0;
@@ -2802,6 +2825,9 @@ int llama_apply_lora_from_file_internal(const struct llama_model & model, const
// read tensors and apply
bool warned = false;
int n_tensors = 0;
+
+ std::vector<uint8_t> work_buffer;
+
while (true) {
int32_t n_dims;
int32_t length;
@@ -2966,8 +2992,8 @@ int llama_apply_lora_from_file_internal(const struct llama_model & model, const
}
struct ggml_cgraph gf = ggml_build_forward(r);
- gf.n_threads = n_threads;
- ggml_graph_compute(lora_ctx, &gf);
+
+ ggml_graph_compute_helper(work_buffer, &gf, n_threads);
// we won't need these tensors again, reset the context to save memory
ggml_free(lora_ctx);
@@ -3120,7 +3146,6 @@ size_t llama_copy_state_data(struct llama_context * ctx, uint8_t * dst) {
ggml_context * cpy_ctx = ggml_init({ 4096, NULL, /* no_alloc */ true });
ggml_cgraph gf{};
- gf.n_threads = 1;
ggml_tensor * kout3d = ggml_new_tensor_3d(cpy_ctx, kv_self.k->type, n_embd, kv_ntok, n_layer);
kout3d->data = out;
@@ -3140,7 +3165,7 @@ size_t llama_copy_state_data(struct llama_context * ctx, uint8_t * dst) {
ggml_build_forward_expand(&gf, ggml_cpy(cpy_ctx, k3d, kout3d));
ggml_build_forward_expand(&gf, ggml_cpy(cpy_ctx, v3d, vout3d));
- ggml_graph_compute(cpy_ctx, &gf);
+ ggml_graph_compute_helper(ctx->work_buffer, &gf, /*n_threads*/ 1);
ggml_free(cpy_ctx);
}
@@ -3226,7 +3251,6 @@ size_t llama_set_state_data(struct llama_context * ctx, uint8_t * src) {
ggml_context * cpy_ctx = ggml_init({ 4096, NULL, /* no_alloc */ true });
ggml_cgraph gf{};
- gf.n_threads = 1;
ggml_tensor * kin3d = ggml_new_tensor_3d(cpy_ctx, kv_self.k->type, n_embd, kv_ntok, n_layer);
kin3d->data = (void *) inp;
@@ -3246,7 +3270,7 @@ size_t llama_set_state_data(struct llama_context * ctx, uint8_t * src) {
ggml_build_forward_expand(&gf, ggml_cpy(cpy_ctx, kin3d, k3d));
ggml_build_forward_expand(&gf, ggml_cpy(cpy_ctx, vin3d, v3d));
- ggml_graph_compute(cpy_ctx, &gf);
+ ggml_graph_compute_helper(ctx->work_buffer, &gf, /*n_threads*/ 1);
ggml_free(cpy_ctx);
}
diff --git a/tests/CMakeLists.txt b/tests/CMakeLists.txt
index 4171c12..1acf050 100644
--- a/tests/CMakeLists.txt
+++ b/tests/CMakeLists.txt
@@ -10,5 +10,5 @@ llama_add_test(test-quantize-fns.cpp)
llama_add_test(test-quantize-perf.cpp)
llama_add_test(test-sampling.cpp)
llama_add_test(test-tokenizer-0.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab.bin)
-# llama_add_test(test-grad0.c) # SLOW
+llama_add_test(test-grad0.c) # SLOW
# llama_add_test(test-opt.c) # SLOW
diff --git a/tests/test-grad0.c b/tests/test-grad0.c
index a3e2521..da4001c 100644
--- a/tests/test-grad0.c
+++ b/tests/test-grad0.c
@@ -10,6 +10,8 @@
#pragma warning(disable: 4244 4267) // possible loss of data
#endif
+#pragma GCC diagnostic ignored "-Wdouble-promotion"
+
#define MAX_NARGS 3
#undef MIN
@@ -49,7 +51,7 @@ float frand(void) {
int irand(int n) {
if (n == 0) return 0;
- else return rand()%n;
+ return rand()%n;
}
void get_random_dims(int64_t * dims, int ndims) {
@@ -159,12 +161,14 @@ struct ggml_tensor * get_random_tensor_int(
float get_element(const struct ggml_tensor * t, int idx) {
if (t->type == GGML_TYPE_F32) {
return ((float *)t->data)[idx];
- } else if (t->type == GGML_TYPE_I32) {
+ }
+
+ if (t->type == GGML_TYPE_I32) {
return ((int32_t *)t->data)[idx];
- } else {
- assert(false);
- return INFINITY;
}
+
+ assert(false);
+ return INFINITY;
}
void set_element(struct ggml_tensor * t, int idx, float value) {
@@ -215,15 +219,14 @@ bool check_gradient(
}
struct ggml_cgraph gf = ggml_build_forward (f);
- gf.n_threads = n_threads;
-
struct ggml_cgraph gb = ggml_build_backward(ctx0, &gf, false);
- gb.n_threads = n_threads;
- ggml_graph_compute(ctx0, &gf);
+ ggml_graph_compute_with_ctx(ctx0, &gf, n_threads);
+
ggml_graph_reset (&gf);
ggml_set_f32 (f->grad, 1.0f);
- ggml_graph_compute(ctx0, &gb);
+
+ ggml_graph_compute_with_ctx(ctx0, &gb, n_threads);
// ggml_graph_dump_dot(&gf, NULL, "test-grad0-forward.dot");
// ggml_graph_dump_dot(&gb, &gf, "test-grad0-backward.dot");
@@ -236,15 +239,16 @@ bool check_gradient(
const float xm = x0 - eps;
const float xp = x0 + eps;
set_element(x[i], k, xp);
- ggml_graph_compute(ctx0, &gf);
+
+ ggml_graph_compute_with_ctx(ctx0, &gf, n_threads);
const float f0 = ggml_get_f32_1d(f, 0);
set_element(x[i], k, xm);
- ggml_graph_compute(ctx0, &gf);
- const float f1 = ggml_get_f32_1d(f, 0);
+ ggml_graph_compute_with_ctx(ctx0, &gf, n_threads);
+ const float f1 = ggml_get_f32_1d(f, 0);
const float g0 = (f0 - f1)/(2.0f*eps);
set_element(x[i], k, x0);
@@ -252,12 +256,13 @@ bool check_gradient(
// compute gradient using backward graph
ggml_graph_reset (&gf);
ggml_set_f32 (f->grad, 1.0f);
- ggml_graph_compute(ctx0, &gb);
+
+ ggml_graph_compute_with_ctx(ctx0, &gb, n_threads);
const float g1 = get_element(x[i]->grad, k);
const float error_abs = fabsf(g0 - g1);
- const float error_rel = g0 != 0 ? fabsf(g0 - g1)/fabs(g0) : 0;
+ const float error_rel = g0 != 0 ? fabsf(g0 - g1)/fabsf(g0) : 0;
if (error_abs > max_error_abs || error_rel > max_error_rel) {
printf("%s: ndims=%d, i=%d, k=%d, x0=%f, xm=%f, xp=%f, f0=%f, f1=%f, g0=%f, g1=%f, eps=%f, error_abs=%f, error_rel=%f\n",
diff --git a/tests/test-opt.c b/tests/test-opt.c
index d001615..e928a7d 100644
--- a/tests/test-opt.c
+++ b/tests/test-opt.c
@@ -7,6 +7,7 @@
#define MAX_NARGS 2
+#pragma GCC diagnostic ignored "-Wdouble-promotion"
//
// logging
@@ -33,7 +34,7 @@
#define GGML_PRINT(...) printf(__VA_ARGS__)
-float frand() {
+float frand(void) {
return (float)rand()/(float)RAND_MAX;
}
@@ -114,7 +115,7 @@ void set_element(struct ggml_tensor * t, int idx, float value) {
((float *)t->data)[idx] = value;
}
-int main(int argc, const char ** argv) {
+int main(void) {
struct ggml_init_params params = {
.mem_size = 1024*1024*1024,
.mem_buffer = NULL,
@@ -137,10 +138,11 @@ int main(int argc, const char ** argv) {
struct ggml_tensor * d = ggml_sub(ctx, c, ab);
struct ggml_tensor * e = ggml_sum(ctx, ggml_sqr(ctx, d));
-
struct ggml_cgraph ge = ggml_build_forward(e);
- ggml_graph_reset (&ge);
- ggml_graph_compute(ctx, &ge);
+ ggml_graph_reset(&ge);
+
+ ggml_graph_compute_with_ctx(ctx, &ge, /*n_threads*/ 1);
+
const float fe = ggml_get_f32_1d(e, 0);
printf("%s: e = %.4f\n", __func__, fe);
@@ -148,8 +150,10 @@ int main(int argc, const char ** argv) {
ggml_opt(ctx, opt_params, e);
- ggml_graph_reset (&ge);
- ggml_graph_compute(ctx, &ge);
+ ggml_graph_reset(&ge);
+
+ ggml_graph_compute_with_ctx(ctx, &ge, /*n_threads*/ 1);
+
const float fe_opt = ggml_get_f32_1d(e, 0);
printf("%s: original e = %.4f\n", __func__, fe);
printf("%s: optimized e = %.4f\n", __func__, fe_opt);