diff options
author | 0cc4m <picard12@live.de> | 2023-05-22 23:33:24 +0200 |
---|---|---|
committer | GitHub <noreply@github.com> | 2023-05-23 00:33:24 +0300 |
commit | 2e6cd4b02549e343bef3768e6b946f999c82e823 (patch) | |
tree | 70ce2c5dcb9beaac230dfa23d531f6e195d12975 | |
parent | 7e4ea5beff567f53be92f75f9089e6f11fa5dabd (diff) |
OpenCL Token Generation Acceleration (#1459)
* Move back to C++ for OpenCL
* Refactor OpenCL code to work more like the CUDA code, add missing functions
* Deduplicate dequant kernels
* Add OpenCL compile options
* Use compile args for preprocessing constants
* Restore default platform + device selection by id behavior
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Henri Vasserman <henv@hot.ee>
-rw-r--r-- | CMakeLists.txt | 2 | ||||
-rw-r--r-- | Makefile | 5 | ||||
-rw-r--r-- | ggml-opencl.c | 474 | ||||
-rw-r--r-- | ggml-opencl.cpp | 1034 | ||||
-rw-r--r-- | ggml-opencl.h | 18 | ||||
-rw-r--r-- | ggml.c | 83 | ||||
-rw-r--r-- | ggml.h | 1 | ||||
-rw-r--r-- | llama.cpp | 32 |
8 files changed, 1113 insertions, 536 deletions
diff --git a/CMakeLists.txt b/CMakeLists.txt index 3471e44..39db2e3 100644 --- a/CMakeLists.txt +++ b/CMakeLists.txt @@ -201,7 +201,7 @@ if (LLAMA_CLBLAST) if (CLBlast_FOUND) message(STATUS "CLBlast found") - set(GGML_OPENCL_SOURCES ggml-opencl.c ggml-opencl.h) + set(GGML_OPENCL_SOURCES ggml-opencl.cpp ggml-opencl.h) add_compile_definitions(GGML_USE_CLBLAST) @@ -138,6 +138,7 @@ ggml-cuda.o: ggml-cuda.cu ggml-cuda.h endif ifdef LLAMA_CLBLAST CFLAGS += -DGGML_USE_CLBLAST + CXXFLAGS += -DGGML_USE_CLBLAST # Mac provides OpenCL as a framework ifeq ($(UNAME_S),Darwin) LDFLAGS += -lclblast -framework OpenCL @@ -145,8 +146,8 @@ ifdef LLAMA_CLBLAST LDFLAGS += -lclblast -lOpenCL endif OBJS += ggml-opencl.o -ggml-opencl.o: ggml-opencl.c ggml-opencl.h - $(CC) $(CFLAGS) -c $< -o $@ +ggml-opencl.o: ggml-opencl.cpp ggml-opencl.h + $(CXX) $(CXXFLAGS) -c $< -o $@ endif ifneq ($(filter aarch64%,$(UNAME_M)),) # Apple M1, M2, etc. diff --git a/ggml-opencl.c b/ggml-opencl.c deleted file mode 100644 index e26631f..0000000 --- a/ggml-opencl.c +++ /dev/null @@ -1,474 +0,0 @@ -#include "ggml-opencl.h" - -#define CL_TARGET_OPENCL_VERSION 110 -#include <clblast_c.h> - -#include <stdlib.h> -#include <stdio.h> -#include <string.h> - -#include "ggml.h" - -#define MULTILINE_QUOTE(...) #__VA_ARGS__ -static const char * program_source = MULTILINE_QUOTE( - -typedef char int8_t; -typedef uchar uint8_t; -typedef int int32_t; -typedef uint uint32_t; - -struct __attribute__ ((packed)) block_q4_0 -{ - half d; - uint8_t qs[16]; /* QK4_0 / 2 */ -}; - -struct __attribute__ ((packed)) block_q4_1 -{ - half d; - half m; - uint8_t qs[16]; /* QK4_1 / 2 */ -}; - -struct __attribute__ ((packed)) block_q5_0 -{ - half d; - uint32_t qh; - uint8_t qs[16]; /* QK5_0 / 2 */ -}; - -struct __attribute__ ((packed)) block_q5_1 -{ - half d; - half m; - uint32_t qh; - uint8_t qs[16]; /* QK5_1 / 2 */ -}; - -struct __attribute__ ((packed)) block_q8_0 -{ - half d; - int8_t qs[32]; /* QK8_0 */ -}; - - -__kernel void dequantize_row_q4_0(__global struct block_q4_0* x, __global float* y) { - const uint i = get_global_id(0) / 32; /* QK4_0 */ - const uint j = get_local_id(0); - - const float d = vload_half(0, (__global half*) &x[i].d); - - const int x0 = (x[i].qs[j] & 0xf) - 8; - const int x1 = (x[i].qs[j] >> 4) - 8; - - y[i*32 + j + 0 ] = x0*d; - y[i*32 + j + 16] = x1*d; -} - -__kernel void dequantize_row_q4_1(__global struct block_q4_1* x, __global float* y) { - const uint i = get_global_id(0) / 32; /* QK4_1 */ - const uint j = get_local_id(0); - - const float d = vload_half(0, (__global half*) &x[i].d); - const float m = vload_half(0, (__global half*) &x[i].m); - - const int x0 = (x[i].qs[j] & 0xf); - const int x1 = (x[i].qs[j] >> 4); - - y[i*32 + j + 0 ] = x0*d + m; - y[i*32 + j + 16] = x1*d + m; -} - -__kernel void dequantize_row_q5_0(__global struct block_q5_0* x, __global float* y) { - const uint i = get_global_id(0) / 32; /* QK5_0 */ - const uint j = get_local_id(0); - - const float d = vload_half(0, (__global half*) &x[i].d); - - uint32_t qh = x[i].qh; - - const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10; - const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10; - - const int32_t x0 = ((x[i].qs[j] & 0xf) | xh_0) - 16; - const int32_t x1 = ((x[i].qs[j] >> 4) | xh_1) - 16; - - y[i*32 + j + 0 ] = x0*d; - y[i*32 + j + 16] = x1*d; -} - -__kernel void dequantize_row_q5_1(__global struct block_q5_1* x, __global float* y) { - const uint i = get_global_id(0) / 32; /* QK5_1 */ - const uint j = get_local_id(0); - - const float d = vload_half(0, (__global half*) &x[i].d); - const float m = vload_half(0, (__global half*) &x[i].m); - - uint32_t qh = x[i].qh; - - const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10; - const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10; - - const int x0 = (x[i].qs[j] & 0xf) | xh_0; - const int x1 = (x[i].qs[j] >> 4) | xh_1; - - y[i*32 + j + 0 ] = x0*d + m; - y[i*32 + j + 16] = x1*d + m; -} - -__kernel void dequantize_row_q8_0(__global struct block_q8_0* x, __global float* y) { - const uint i = get_global_id(0) / 32; /* QK8_0 */ - const uint j = get_local_id(0); - - const float d = vload_half(0, (__global half*) &x[i].d); - y[i*32 + j] = x[i].qs[j]*d; -} - -); - -#define CL_CHECK(err) \ - do { \ - cl_int err_ = (err); \ - if (err_ != CL_SUCCESS) { \ - fprintf(stderr, "ggml_opencl: %s error %d at %s:%d\n", \ - #err, err_, __FILE__, __LINE__); \ - exit(1); \ - } \ - } while (0) - -#define CLBLAST_CHECK(err) \ - do { \ - CLBlastStatusCode err_ = (err); \ - if (err_ != CLBlastSuccess) { \ - fprintf(stderr, "ggml_opencl: %s error %d at %s:%d\n", \ - #err, err_, __FILE__, __LINE__); \ - exit(1); \ - } \ - } while (0) - -static cl_platform_id platform; -static cl_device_id device; -static cl_context context; -static cl_command_queue queue; -static cl_program program; -static cl_kernel kernel_q4_0, kernel_q4_1, kernel_q5_0, kernel_q5_1, kernel_q8_0; -static cl_mem cl_buffer_a, cl_buffer_qb, cl_buffer_b, cl_buffer_c; -static size_t cl_size_a = 0, cl_size_qb = 0, cl_size_b = 0, cl_size_c = 0; - -static cl_program build_program_from_source(cl_context ctx, cl_device_id dev, const char* program_buffer) { - cl_program p; - char *program_log; - size_t program_size, log_size; - int err; - - program_size = strlen(program_buffer); - - p = clCreateProgramWithSource(ctx, 1, (const char**)&program_buffer, &program_size, &err); - if(err < 0) { - fprintf(stderr, "OpenCL error creating program"); - exit(1); - } - - err = clBuildProgram(p, 0, NULL, NULL, NULL, NULL); - if(err < 0) { - - clGetProgramBuildInfo(p, dev, CL_PROGRAM_BUILD_LOG, 0, NULL, &log_size); - program_log = (char*) malloc(log_size + 1); - program_log[log_size] = '\0'; - clGetProgramBuildInfo(p, dev, CL_PROGRAM_BUILD_LOG, log_size + 1, program_log, NULL); - printf("%s\n", program_log); - free(program_log); - exit(1); - } - - return p; -} - -void ggml_cl_init(void) { - cl_int err = 0; - - struct cl_device; - struct cl_platform { - cl_platform_id id; - unsigned number; - char name[128]; - char vendor[128]; - struct cl_device * devices; - unsigned n_devices; - struct cl_device * default_device; - }; - - struct cl_device { - struct cl_platform * platform; - cl_device_id id; - unsigned number; - cl_device_type type; - char name[128]; - }; - - enum { NPLAT = 16, NDEV = 16 }; - - struct cl_platform platforms[NPLAT]; - unsigned n_platforms = 0; - struct cl_device devices[NDEV]; - unsigned n_devices = 0; - struct cl_device * default_device = NULL; - - platform = NULL; - device = NULL; - - cl_platform_id platform_ids[NPLAT]; - CL_CHECK(clGetPlatformIDs(NPLAT, platform_ids, &n_platforms)); - - for (unsigned i = 0; i < n_platforms; i++) { - struct cl_platform * p = &platforms[i]; - p->number = i; - p->id = platform_ids[i]; - CL_CHECK(clGetPlatformInfo(p->id, CL_PLATFORM_NAME, sizeof(p->name), &p->name, NULL)); - CL_CHECK(clGetPlatformInfo(p->id, CL_PLATFORM_VENDOR, sizeof(p->vendor), &p->vendor, NULL)); - - cl_device_id device_ids[NDEV]; - cl_int clGetDeviceIDsError = clGetDeviceIDs(p->id, CL_DEVICE_TYPE_ALL, NDEV, device_ids, &p->n_devices); - if (clGetDeviceIDsError == CL_DEVICE_NOT_FOUND) { - p->n_devices = 0; - } else { - CL_CHECK(clGetDeviceIDsError); - } - p->devices = p->n_devices > 0 ? &devices[n_devices] : NULL; - p->default_device = NULL; - - for (unsigned j = 0; j < p->n_devices; j++) { - struct cl_device * d = &devices[n_devices]; - d->number = n_devices++; - d->id = device_ids[j]; - d->platform = p; - CL_CHECK(clGetDeviceInfo(d->id, CL_DEVICE_NAME, sizeof(d->name), &d->name, NULL)); - CL_CHECK(clGetDeviceInfo(d->id, CL_DEVICE_TYPE, sizeof(d->type), &d->type, NULL)); - - if (p->default_device == NULL && d->type == CL_DEVICE_TYPE_GPU) { - p->default_device = d; - } - } - - if (default_device == NULL && p->default_device != NULL) { - default_device = p->default_device; - } - } - - if (n_devices == 0) { - fprintf(stderr, "ggml_opencl: could find any OpenCL devices.\n"); - exit(1); - } - - char * user_platform_string = getenv("GGML_OPENCL_PLATFORM"); - char * user_device_string = getenv("GGML_OPENCL_DEVICE"); - int user_platform_number = -1; - int user_device_number = -1; - - unsigned n; - if (user_platform_string != NULL && sscanf(user_platform_string, " %u", &n) == 1 && n < n_platforms) { - user_platform_number = (int)n; - } - if (user_device_string != NULL && sscanf(user_device_string, " %u", &n) == 1 && n < n_devices) { - user_device_number = (int)n; - } - - struct cl_device * selected_devices = devices; - unsigned n_selected_devices = n_devices; - - if (user_platform_number == -1 && user_platform_string != NULL && user_platform_string[0] != 0) { - for (unsigned i = 0; i < n_platforms; i++) { - struct cl_platform * p = &platforms[i]; - if (strstr(p->name, user_platform_string) != NULL || - strstr(p->vendor, user_platform_string) != NULL) { - user_platform_number = (int)i; - break; - } - } - if (user_platform_number == -1) { - fprintf(stderr, "ggml_opencl: no platform matching '%s' was found.\n", user_platform_string); - exit(1); - } - } - if (user_platform_number != -1) { - struct cl_platform * p = &platforms[user_platform_number]; - selected_devices = p->devices; - n_selected_devices = p->n_devices; - default_device = p->default_device; - if (n_selected_devices == 0) { - fprintf(stderr, "ggml_opencl: selected platform '%s' does not have any devices.\n", p->name); - exit(1); - } - } - - if (user_device_number == -1 && user_device_string != NULL && user_device_string[0] != 0) { - for (unsigned i = 0; i < n_selected_devices; i++) { - struct cl_device * d = &selected_devices[i]; - if (strstr(d->name, user_device_string) != NULL) { - user_device_number = d->number; - break; - } - } - if (user_device_number == -1) { - fprintf(stderr, "ggml_opencl: no device matching '%s' was found.\n", user_device_string); - exit(1); - } - } - if (user_device_number != -1) { - selected_devices = &devices[user_device_number]; - n_selected_devices = 1; - default_device = &selected_devices[0]; - } - - GGML_ASSERT(n_selected_devices > 0); - - if (default_device == NULL) { - default_device = &selected_devices[0]; - } - - fprintf(stderr, "ggml_opencl: selecting platform: '%s'\n", default_device->platform->name); - fprintf(stderr, "ggml_opencl: selecting device: '%s'\n", default_device->name); - if (default_device->type != CL_DEVICE_TYPE_GPU) { - fprintf(stderr, "ggml_opencl: warning, not a GPU: '%s'.\n", default_device->name); - } - - platform = default_device->platform->id; - device = default_device->id; - - cl_context_properties properties[] = { - (intptr_t)CL_CONTEXT_PLATFORM, (intptr_t)platform, 0 - }; - - CL_CHECK((context = clCreateContext(properties, 1, &device, NULL, NULL, &err), err)); - - CL_CHECK((queue = clCreateCommandQueue(context, device, CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE, &err), - (err != CL_INVALID_PROPERTY && err != CL_INVALID_VALUE ? err : - (queue = clCreateCommandQueue(context, device, 0, &err), err) - ))); - - program = build_program_from_source(context, device, program_source); - - // Prepare dequantize kernels - CL_CHECK((kernel_q4_0 = clCreateKernel(program, "dequantize_row_q4_0", &err), err)); - CL_CHECK((kernel_q4_1 = clCreateKernel(program, "dequantize_row_q4_1", &err), err)); - CL_CHECK((kernel_q5_0 = clCreateKernel(program, "dequantize_row_q5_0", &err), err)); - CL_CHECK((kernel_q5_1 = clCreateKernel(program, "dequantize_row_q5_1", &err), err)); - CL_CHECK((kernel_q8_0 = clCreateKernel(program, "dequantize_row_q8_0", &err), err)); -} - -static void ggml_cl_malloc(size_t req_size, size_t* cur_size, cl_mem_flags flags, cl_mem* buf) { - if (req_size <= *cur_size) { - return; - } - - // Reallocate buffer with enough space - if (*cur_size > 0) { - clReleaseMemObject(*buf); - } - cl_int err; - CL_CHECK((*buf = clCreateBuffer(context, flags, req_size, NULL, &err), err)); - *cur_size = req_size; -} - -void ggml_cl_sgemm_wrapper( - const enum ggml_blas_order order, const enum ggml_blas_op trans_a, const enum ggml_blas_op trans_b, - const int m, const int n, const int k, - const float alpha, const void *host_a, const int lda, - const float *host_b, const int ldb, const float beta, - float *host_c, const int ldc, const int btype) { - - cl_kernel kernel; - size_t global = n * k, local, size_qb; - bool dequant; - - switch (btype) { - case GGML_TYPE_F32: - dequant = false; - break; - case GGML_TYPE_Q4_0: - dequant = true; - kernel = kernel_q4_0; - local = 16; - size_qb = global * (sizeof(ggml_fp16_t) + local) / 32; - break; - case GGML_TYPE_Q4_1: - dequant = true; - kernel = kernel_q4_1; - local = 16; - size_qb = global * (sizeof(ggml_fp16_t) * 2 + local) / 32; - break; - case GGML_TYPE_Q5_0: - dequant = true; - kernel = kernel_q5_0; - local = 16; - size_qb = global * (sizeof(ggml_fp16_t) + sizeof(uint32_t) + local) / 32; - break; - case GGML_TYPE_Q5_1: - dequant = true; - kernel = kernel_q5_1; - local = 16; - size_qb = global * (sizeof(ggml_fp16_t) * 2 + sizeof(uint32_t) + local) / 32; - break; - case GGML_TYPE_Q8_0: - dequant = true; - kernel = kernel_q8_0; - local = 32; - size_qb = global * (sizeof(ggml_fp16_t) + local) / 32; - break; - default: - fprintf(stderr, "Error: Unsupported OpenCL btype %d\n", btype); - abort(); - } - - const size_t size_a = m * k * sizeof(float); - const size_t size_b = n * k * sizeof(float); - const size_t size_c = m * n * sizeof(float); - - // Prepare buffers - ggml_cl_malloc(size_a, &cl_size_a, CL_MEM_READ_ONLY, &cl_buffer_a); - if (dequant) { - ggml_cl_malloc(size_qb, &cl_size_qb, CL_MEM_READ_ONLY, &cl_buffer_qb); - } - ggml_cl_malloc(size_b, &cl_size_b, CL_MEM_READ_WRITE, &cl_buffer_b); - ggml_cl_malloc(size_c, &cl_size_c, CL_MEM_WRITE_ONLY, &cl_buffer_c); - - cl_event ev_a, ev_qb, ev_b; - - if (dequant) { - CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &cl_buffer_qb)); - CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &cl_buffer_b)); - CL_CHECK(clEnqueueWriteBuffer(queue, cl_buffer_qb, CL_FALSE, 0, size_qb, host_b, 0, NULL, &ev_qb)); - } else { - CL_CHECK(clEnqueueWriteBuffer(queue, cl_buffer_b, CL_FALSE, 0, size_b, host_b, 0, NULL, &ev_b)); - } - - CL_CHECK(clEnqueueWriteBuffer(queue, cl_buffer_a, CL_FALSE, 0, size_a, host_a, 0, NULL, &ev_a)); - if (dequant) { - CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 1, NULL, &global, &local, 1, &ev_qb, &ev_b)); - CL_CHECK(clReleaseEvent(ev_qb)); - } - CL_CHECK(clWaitForEvents(1, &ev_a)); - CL_CHECK(clWaitForEvents(1, &ev_b)); - CL_CHECK(clReleaseEvent(ev_a)); - CL_CHECK(clReleaseEvent(ev_b)); - - cl_event ev_sgemm; - CLBLAST_CHECK(CLBlastSgemm( - (CLBlastLayout)order, - (CLBlastTranspose)trans_a, (CLBlastTranspose)trans_b, - m, n, k, - alpha, - cl_buffer_a, 0, lda, - cl_buffer_b, 0, ldb, - beta, - cl_buffer_c, 0, ldc, - &queue, &ev_sgemm)); - - cl_event ev_c; - CL_CHECK(clEnqueueReadBuffer(queue, cl_buffer_c, CL_TRUE, 0, size_c, host_c, 1, &ev_sgemm, &ev_c)); - - // Wait for completion - CL_CHECK(clWaitForEvents(1, &ev_c)); - CL_CHECK(clReleaseEvent(ev_sgemm)); - CL_CHECK(clReleaseEvent(ev_c)); -} diff --git a/ggml-opencl.cpp b/ggml-opencl.cpp new file mode 100644 index 0000000..fb007dd --- /dev/null +++ b/ggml-opencl.cpp @@ -0,0 +1,1034 @@ +#include "ggml-opencl.h" + +#include <array> +#include <atomic> +#include <sstream> + +#define CL_TARGET_OPENCL_VERSION 110 +#include <clblast.h> + +#include <stdlib.h> +#include <stdio.h> +#include <string.h> + +#include "ggml.h" + +#define CL_DMMV_BLOCK_SIZE 32; + +#define MULTILINE_QUOTE(...) #__VA_ARGS__ +static std::string program_source = MULTILINE_QUOTE( + +typedef char int8_t; +typedef uchar uint8_t; +typedef int int32_t; +typedef uint uint32_t; + +struct __attribute__ ((packed)) block_q4_0 +{ + half d; + uint8_t qs[QK4_0 / 2]; +}; + +struct __attribute__ ((packed)) block_q4_1 +{ + half d; + half m; + uint8_t qs[QK4_1 / 2]; +}; + +struct __attribute__ ((packed)) block_q5_0 +{ + half d; + uint32_t qh; + uint8_t qs[QK5_0 / 2]; +}; + +struct __attribute__ ((packed)) block_q5_1 +{ + half d; + half m; + uint32_t qh; + uint8_t qs[QK5_1 / 2]; +}; + +struct __attribute__ ((packed)) block_q8_0 +{ + half d; + int8_t qs[QK8_0]; +}; + + +__kernel void convert_fp16_to_fp32(__global half* x, __global float* y) { + const uint i = get_global_id(0); + + y[i] = vload_half(0, &x[i]); +} + +void dequantize_q4_0(__global const struct block_q4_0* x, const int ib, const int iqs, float* v0, float* v1) { + const float d = vload_half(0, &x[ib].d); + + const uint8_t vui = x[ib].qs[iqs]; + + const int8_t vi0 = vui & 0xF; + const int8_t vi1 = vui >> 4; + + *v0 = (vi0 - 8)*d; + *v1 = (vi1 - 8)*d; +} +void dequantize_q4_1(__global const struct block_q4_1* x, const int ib, const int iqs, float* v0, float* v1) { + const float d = vload_half(0, &x[ib].d); + const float m = vload_half(0, &x[ib].m); + + const uint8_t vui = x[ib].qs[iqs]; + + const int8_t vi0 = vui & 0xF; + const int8_t vi1 = vui >> 4; + + *v0 = vi0*d + m; + *v1 = vi1*d + m; +} +void dequantize_q5_0(__global const struct block_q5_0* x, const int ib, const int iqs, float* v0, float* v1) { + const float d = vload_half(0, &x[ib].d); + + uint32_t qh = x[ib].qh; + + const uint8_t xh_0 = ((qh >> (iqs + 0)) << 4) & 0x10; + const uint8_t xh_1 = ((qh >> (iqs + 12)) ) & 0x10; + + const int32_t x0 = ((x[ib].qs[iqs] & 0xf) | xh_0) - 16; + const int32_t x1 = ((x[ib].qs[iqs] >> 4) | xh_1) - 16; + + *v0 = x0*d; + *v1 = x1*d; +} +void dequantize_q5_1(__global const struct block_q5_1* x, const int ib, const int iqs, float* v0, float* v1) { + const float d = vload_half(0, &x[ib].d); + const float m = vload_half(0, &x[ib].m); + + uint32_t qh = x[ib].qh; + + const uint8_t xh_0 = ((qh >> (iqs + 0)) << 4) & 0x10; + const uint8_t xh_1 = ((qh >> (iqs + 12)) ) & 0x10; + + const int32_t x0 = ((x[ib].qs[iqs] & 0xf) | xh_0); + const int32_t x1 = ((x[ib].qs[iqs] >> 4) | xh_1); + + *v0 = x0*d + m; + *v1 = x1*d + m; +} +void dequantize_q8_0(__global const struct block_q8_0* x, const int ib, const int iqs, float* v0, float* v1) { + const float d = vload_half(0, &x[ib].d); + + const int8_t vi0 = x[ib].qs[iqs + 0]; + const int8_t vi1 = x[ib].qs[iqs + 1]; + + *v0 = vi0*d; + *v1 = vi1*d; +} +void convert_f16(__global half* x, const int ib, const int iqs, float* v0, float* v1){ + *v0 = vload_half(0, &x[ib + 0]); + *v1 = vload_half(0, &x[ib + 1]); +} +); + +std::string dequant_template = MULTILINE_QUOTE( +__kernel void KERNEL_NAME(__global X_TYPE* x, __global float* y) { + const int i = get_group_id(0)*get_local_size(0) + get_local_id(0)*2; + + if (i >= get_global_size(0)) { + return; + } + + const uint qk = QUANT_K; + const uint qr = QUANT_R; + + const int ib = i/qk; // block index + const int iqs = (i%qk)/qr; // quant index + const int iybs = i - i%qk; // y block start index + const int y_offset = qr == 1 ? 1 : qk/2; + + // dequantize + float v0, v1; + DEQUANT_FUNC(x, ib, iqs, &v0, &v1); + y[iybs + iqs + 0] = v0; + y[iybs + iqs + y_offset] = v1; +} +); + +std::string dequant_mul_mat_vec_template = MULTILINE_QUOTE( +__kernel void KERNEL_NAME(__global X_TYPE* x, __local float* tmp, __global float* y, __global float* dst, const int ncols) { + const int block_size = get_local_size(0); + const int row = get_global_id(0) / block_size; + const int tid = get_local_id(0); + + const uint qk = QUANT_K; + const uint qr = QUANT_R; + + const int y_offset = qr == 1 ? 1 : qk/2; + + tmp[tid] = 0; + + for (int i = 0; i < ncols/block_size; i += 2) { + const int col = i*block_size + 2*tid; + const int ib = (row*ncols + col)/qk; // block index + const int iqs = (col%qk)/qr; // quant index + const int iybs = col - col%qk; // y block start index + + // dequantize + float v0, v1; + DEQUANT_FUNC(x, ib, iqs, &v0, &v1); + + // matrix multiplication + tmp[tid] += v0 * y[iybs + iqs + 0]; + tmp[tid] += v1 * y[iybs + iqs + y_offset]; + } + + // sum up partial sums and write back result + barrier(CLK_LOCAL_MEM_FENCE); + for (int s=block_size/2; s>0; s>>=1) { + if (tid < s) { + tmp[tid] += tmp[tid + s]; + } + barrier(CLK_LOCAL_MEM_FENCE); + } + if (tid == 0) { + dst[row] = tmp[0]; + } +} +); + +#define CL_CHECK(err) \ + do { \ + cl_int err_ = (err); \ + if (err_ != CL_SUCCESS) { \ + fprintf(stderr, "ggml_opencl: %s error %d at %s:%d\n", \ + #err, err_, __FILE__, __LINE__); \ + exit(1); \ + } \ + } while (0) + +#define CLBLAST_CHECK(err) \ + do { \ + CLBlastStatusCode err_ = (err); \ + if (err_ != CLBlastSuccess) { \ + fprintf(stderr, "ggml_opencl: %s error %d at %s:%d\n", \ + #err, err_, __FILE__, __LINE__); \ + exit(1); \ + } \ + } while (0) + +std::array<std::string, 5> dequant_str_keys = { + "KERNEL_NAME", "X_TYPE", "QUANT_K", "QUANT_R", "DEQUANT_FUNC" +}; + +std::array<std::string, 30> dequant_str_values = { + "dequantize_row_q4_0", "struct block_q4_0", "QK4_0", "QR4_0", "dequantize_q4_0", + "dequantize_row_q4_1", "struct block_q4_1", "QK4_1", "QR4_1", "dequantize_q4_1", + "dequantize_row_q5_0", "struct block_q5_0", "QK5_0", "QR5_0", "dequantize_q5_0", + "dequantize_row_q5_1", "struct block_q5_1", "QK5_1", "QR5_1", "dequantize_q5_1", + "dequantize_row_q8_0", "struct block_q8_0", "QK8_0", "QR8_0", "dequantize_q8_0", + "convert_row_f16", "half", "1", "1", "convert_f16" +}; + +std::array<std::string, 30> dequant_mul_mat_vec_str_values = { + "dequantize_mul_mat_vec_q4_0", "struct block_q4_0", "QK4_0", "QR4_0", "dequantize_q4_0", + "dequantize_mul_mat_vec_q4_1", "struct block_q4_1", "QK4_1", "QR4_1", "dequantize_q4_1", + "dequantize_mul_mat_vec_q5_0", "struct block_q5_0", "QK5_0", "QR5_0", "dequantize_q5_0", + "dequantize_mul_mat_vec_q5_1", "struct block_q5_1", "QK5_1", "QR5_1", "dequantize_q5_1", + "dequantize_mul_mat_vec_q8_0", "struct block_q8_0", "QK8_0", "QR8_0", "dequantize_q8_0", + "convert_mul_mat_vec_f16", "half", "1", "1", "convert_f16" +}; + +std::string& replace(std::string& s, const std::string& from, const std::string& to) { + size_t pos = 0; + while ((pos = s.find(from, pos)) != std::string::npos) { + s.replace(pos, from.length(), to); + pos += to.length(); + } + return s; +} + +std::string generate_kernels() { + std::stringstream src; + src << program_source << '\n'; + for (size_t i = 0; i < dequant_str_values.size(); i += dequant_str_keys.size()) { + std::string dequant_kernel = dequant_template; + std::string dmmv_kernel = dequant_mul_mat_vec_template; + for (size_t j = 0; j < dequant_str_keys.size(); j++) { + replace(dequant_kernel, dequant_str_keys[j], dequant_str_values[i + j]); + replace(dmmv_kernel, dequant_str_keys[j], dequant_mul_mat_vec_str_values[i + j]); + } + src << dequant_kernel << '\n'; + src << dmmv_kernel << '\n'; + } + return src.str(); +} + +static cl_platform_id platform; +static cl_device_id device; +static cl_context context; +static cl_command_queue queue; +static cl_program program; +static cl_kernel convert_row_f16_cl; +static cl_kernel dequantize_row_q4_0_cl, dequantize_row_q4_1_cl, dequantize_row_q5_0_cl, dequantize_row_q5_1_cl, dequantize_row_q8_0_cl; +static cl_kernel dequantize_mul_mat_vec_q4_0_cl, dequantize_mul_mat_vec_q4_1_cl, dequantize_mul_mat_vec_q5_0_cl, dequantize_mul_mat_vec_q5_1_cl, dequantize_mul_mat_vec_q8_0_cl, convert_mul_mat_vec_f16_cl; +static bool fp16_support; + +static cl_program build_program_from_source(cl_context ctx, cl_device_id dev, const char* program_buffer) { + cl_program p; + char *program_log; + size_t program_size; + size_t log_size; + int err; + + program_size = strlen(program_buffer); + + p = clCreateProgramWithSource(ctx, 1, (const char**)&program_buffer, &program_size, &err); + if(err < 0) { + fprintf(stderr, "OpenCL error creating program"); + exit(1); + } + + const char* compile_opts = "-cl-mad-enable -cl-unsafe-math-optimizations -cl-finite-math-only -cl-fast-relaxed-math " + "-DQK4_0=32 -DQR4_0=2 -DQK4_1=32 -DQR4_1=2 -DQK5_0=32 -DQR5_0=2 -DQK5_1=32 -DQR5_1=2 -DQK8_0=32 -DQR8_0=1"; + + err = clBuildProgram(p, 0, NULL, compile_opts, NULL, NULL); + if(err < 0) { + + clGetProgramBuildInfo(p, dev, CL_PROGRAM_BUILD_LOG, 0, NULL, &log_size); + program_log = (char*) malloc(log_size + 1); + program_log[log_size] = '\0'; + clGetProgramBuildInfo(p, dev, CL_PROGRAM_BUILD_LOG, log_size + 1, program_log, NULL); + fprintf(stderr, "ggml_opencl: kernel compile error:\n\n%s\n", program_log); + free(program_log); + exit(1); + } + + return p; +} + +void ggml_cl_init(void) { + cl_int err; + + struct cl_device; + struct cl_platform { + cl_platform_id id; + unsigned number; + char name[128]; + char vendor[128]; + struct cl_device * devices; + unsigned n_devices; + struct cl_device * default_device; + }; + + struct cl_device { + struct cl_platform * platform; + cl_device_id id; + unsigned number; + cl_device_type type; + char name[128]; + }; + + enum { NPLAT = 16, NDEV = 16 }; + + struct cl_platform platforms[NPLAT]; + unsigned n_platforms = 0; + struct cl_device devices[NDEV]; + unsigned n_devices = 0; + struct cl_device * default_device = NULL; + + platform = NULL; + device = NULL; + + cl_platform_id platform_ids[NPLAT]; + CL_CHECK(clGetPlatformIDs(NPLAT, platform_ids, &n_platforms)); + + for (unsigned i = 0; i < n_platforms; i++) { + struct cl_platform * p = &platforms[i]; + p->number = i; + p->id = platform_ids[i]; + CL_CHECK(clGetPlatformInfo(p->id, CL_PLATFORM_NAME, sizeof(p->name), &p->name, NULL)); + CL_CHECK(clGetPlatformInfo(p->id, CL_PLATFORM_VENDOR, sizeof(p->vendor), &p->vendor, NULL)); + + cl_device_id device_ids[NDEV]; + cl_int clGetDeviceIDsError = clGetDeviceIDs(p->id, CL_DEVICE_TYPE_ALL, NDEV, device_ids, &p->n_devices); + if (clGetDeviceIDsError == CL_DEVICE_NOT_FOUND) { + p->n_devices = 0; + } else { + CL_CHECK(clGetDeviceIDsError); + } + p->devices = p->n_devices > 0 ? &devices[n_devices] : NULL; + p->default_device = NULL; + + for (unsigned j = 0; j < p->n_devices; j++) { + struct cl_device * d = &devices[n_devices]; + d->number = n_devices++; + d->id = device_ids[j]; + d->platform = p; + CL_CHECK(clGetDeviceInfo(d->id, CL_DEVICE_NAME, sizeof(d->name), &d->name, NULL)); + CL_CHECK(clGetDeviceInfo(d->id, CL_DEVICE_TYPE, sizeof(d->type), &d->type, NULL)); + + if (p->default_device == NULL && d->type == CL_DEVICE_TYPE_GPU) { + p->default_device = d; + } + } + + if (default_device == NULL && p->default_device != NULL) { + default_device = p->default_device; + } + } + + if (n_devices == 0) { + fprintf(stderr, "ggml_opencl: could find any OpenCL devices.\n"); + exit(1); + } + + char * user_platform_string = getenv("GGML_OPENCL_PLATFORM"); + char * user_device_string = getenv("GGML_OPENCL_DEVICE"); + int user_platform_number = -1; + int user_device_number = -1; + + unsigned n; + if (user_platform_string != NULL && sscanf(user_platform_string, " %u", &n) == 1 && n < n_platforms) { + user_platform_number = (int)n; + } + if (user_device_string != NULL && sscanf(user_device_string, " %u", &n) == 1 && n < n_devices) { + user_device_number = (int)n; + } + if (user_platform_number != -1 && user_device_number != -1) { + cl_platform* platform = &platforms[user_platform_number]; + if ((unsigned)user_device_number >= platform->n_devices) { + fprintf(stderr, "ggml_opencl: invalid device number %d\n", user_device_number); + exit(1); + } + default_device = &platform->devices[user_device_number]; + } else { + + struct cl_device * selected_devices = devices; + unsigned n_selected_devices = n_devices; + + if (user_platform_number == -1 && user_platform_string != NULL && user_platform_string[0] != 0) { + for (unsigned i = 0; i < n_platforms; i++) { + struct cl_platform * p = &platforms[i]; + if (strstr(p->name, user_platform_string) != NULL || + strstr(p->vendor, user_platform_string) != NULL) { + user_platform_number = (int)i; + break; + } + } + if (user_platform_number == -1) { + fprintf(stderr, "ggml_opencl: no platform matching '%s' was found.\n", user_platform_string); + exit(1); + } + } + if (user_platform_number != -1) { + struct cl_platform * p = &platforms[user_platform_number]; + selected_devices = p->devices; + n_selected_devices = p->n_devices; + default_device = p->default_device; + if (n_selected_devices == 0) { + fprintf(stderr, "ggml_opencl: selected platform '%s' does not have any devices.\n", p->name); + exit(1); + } + } + + if (user_device_number == -1 && user_device_string != NULL && user_device_string[0] != 0) { + for (unsigned i = 0; i < n_selected_devices; i++) { + struct cl_device * d = &selected_devices[i]; + if (strstr(d->name, user_device_string) != NULL) { + user_device_number = d->number; + break; + } + } + if (user_device_number == -1) { + fprintf(stderr, "ggml_opencl: no device matching '%s' was found.\n", user_device_string); + exit(1); + } + } + if (user_device_number != -1) { + selected_devices = &devices[user_device_number]; + n_selected_devices = 1; + default_device = &selected_devices[0]; + } + + GGML_ASSERT(n_selected_devices > 0); + + if (default_device == NULL) { + default_device = &selected_devices[0]; + } + } + + fprintf(stderr, "ggml_opencl: selecting platform: '%s'\n", default_device->platform->name); + fprintf(stderr, "ggml_opencl: selecting device: '%s'\n", default_device->name); + if (default_device->type != CL_DEVICE_TYPE_GPU) { + fprintf(stderr, "ggml_opencl: warning, not a GPU: '%s'.\n", default_device->name); + } + + platform = default_device->platform->id; + device = default_device->id; + + size_t ext_str_size; + clGetDeviceInfo(device, CL_DEVICE_EXTENSIONS, 0, NULL, &ext_str_size); + char* ext_buffer = (char*) malloc(sizeof(char) * ext_str_size); + clGetDeviceInfo(device, CL_DEVICE_EXTENSIONS, ext_str_size, ext_buffer, NULL); + // Check if ext_buffer contains cl_khr_fp16 + for (size_t i = 0; i < ext_str_size - 12; i++) { + if (memcmp(ext_buffer + i, "cl_khr_fp16", 11) == 0) { + fp16_support = true; + break; + } + } + free(ext_buffer); + fprintf(stderr, "ggml_opencl: device FP16 support: %s\n", fp16_support ? "true" : "false"); + + cl_context_properties properties[] = { + (intptr_t)CL_CONTEXT_PLATFORM, (intptr_t)platform, 0 + }; + + CL_CHECK((context = clCreateContext(properties, 1, &device, NULL, NULL, &err), err)); + + CL_CHECK((queue = clCreateCommandQueue(context, device, CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE, &err), + (err != CL_INVALID_PROPERTY && err != CL_INVALID_VALUE ? err : + (queue = clCreateCommandQueue(context, device, 0, &err), err) + ))); + + const std::string kernel_src = generate_kernels(); + + program = build_program_from_source(context, device, kernel_src.c_str()); + + // FP16 to FP32 kernel + CL_CHECK((convert_row_f16_cl = clCreateKernel(program, "convert_row_f16", &err), err)); + + // Dequantize kernels + CL_CHECK((dequantize_row_q4_0_cl = clCreateKernel(program, "dequantize_row_q4_0", &err), err)); + CL_CHECK((dequantize_row_q4_1_cl = clCreateKernel(program, "dequantize_row_q4_1", &err), err)); + CL_CHECK((dequantize_row_q5_0_cl = clCreateKernel(program, "dequantize_row_q5_0", &err), err)); + CL_CHECK((dequantize_row_q5_1_cl = clCreateKernel(program, "dequantize_row_q5_1", &err), err)); + CL_CHECK((dequantize_row_q8_0_cl = clCreateKernel(program, "dequantize_row_q8_0", &err), err)); + + // dequant mul mat kernel + CL_CHECK((dequantize_mul_mat_vec_q4_0_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q4_0", &err), err)); + CL_CHECK((dequantize_mul_mat_vec_q4_1_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q4_1", &err), err)); + CL_CHECK((dequantize_mul_mat_vec_q5_0_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q5_0", &err), err)); + CL_CHECK((dequantize_mul_mat_vec_q5_1_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q5_1", &err), err)); + CL_CHECK((dequantize_mul_mat_vec_q8_0_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q8_0", &err), err)); + CL_CHECK((convert_mul_mat_vec_f16_cl = clCreateKernel(program, "convert_mul_mat_vec_f16", &err), err)); +} + +static cl_kernel* ggml_get_to_fp32_cl(ggml_type type) { + switch (type) { + case GGML_TYPE_Q4_0: + return &dequantize_row_q4_0_cl; + case GGML_TYPE_Q4_1: + return &dequantize_row_q4_1_cl; + case GGML_TYPE_Q5_0: + return &dequantize_row_q5_0_cl; + case GGML_TYPE_Q5_1: + return &dequantize_row_q5_1_cl; + case GGML_TYPE_Q8_0: + return &dequantize_row_q8_0_cl; + case GGML_TYPE_F16: + return &convert_row_f16_cl; + default: + return nullptr; + } +} + +static cl_kernel* ggml_get_dequantize_mul_mat_vec_cl(ggml_type type) { + switch (type) { + case GGML_TYPE_Q4_0: + return &dequantize_mul_mat_vec_q4_0_cl; + case GGML_TYPE_Q4_1: + return &dequantize_mul_mat_vec_q4_1_cl; + case GGML_TYPE_Q5_0: + return &dequantize_mul_mat_vec_q5_0_cl; + case GGML_TYPE_Q5_1: + return &dequantize_mul_mat_vec_q5_1_cl; + case GGML_TYPE_Q8_0: + return &dequantize_mul_mat_vec_q8_0_cl; + case GGML_TYPE_F16: + return &convert_mul_mat_vec_f16_cl; + default: + return nullptr; + } +} + +// buffer pool for cl +#define MAX_CL_BUFFERS 256 + +struct scoped_spin_lock { + std::atomic_flag& lock; + scoped_spin_lock(std::atomic_flag& lock) : lock(lock) { + while (lock.test_and_set(std::memory_order_acquire)) { + ; // spin + } + } + ~scoped_spin_lock() { + lock.clear(std::memory_order_release); + } + scoped_spin_lock(const scoped_spin_lock&) = delete; + scoped_spin_lock& operator=(const scoped_spin_lock&) = delete; +}; + +struct cl_buffer { + cl_mem mem; + size_t size = 0; +}; + +static cl_buffer g_cl_buffer_pool[MAX_CL_BUFFERS]; +static std::atomic_flag g_cl_pool_lock = ATOMIC_FLAG_INIT; + +static cl_mem ggml_cl_pool_malloc(size_t size, size_t * actual_size, cl_mem_flags flags) { + scoped_spin_lock lock(g_cl_pool_lock); + cl_int err; + + for (int i = 0; i < MAX_CL_BUFFERS; ++i) { + cl_buffer& b = g_cl_buffer_pool[i]; + if (b.size > 0 && b.size >= size) { + cl_mem mem = b.mem; + *actual_size = b.size; + b.size = 0; + return mem; + } + } + cl_mem mem; + CL_CHECK((mem = clCreateBuffer(context, flags, size, NULL, &err), err)); + *actual_size = size; + return mem; +} + +static void ggml_cl_pool_free(cl_mem mem, size_t size) { + scoped_spin_lock lock(g_cl_pool_lock); + + for (int i = 0; i < MAX_CL_BUFFERS; ++i) { + cl_buffer& b = g_cl_buffer_pool[i]; + if (b.size == 0) { + b.mem = mem; + b.size = size; + return; + } + } + fprintf(stderr, "WARNING: cl buffer pool full, increase MAX_CL_BUFFERS\n"); + clReleaseMemObject(mem); +} + +static cl_int ggml_cl_h2d_tensor_2d(cl_command_queue queue, cl_mem dst, size_t offset, const struct ggml_tensor * src, uint64_t i3, uint64_t i2, cl_event* ev) { + cl_int err; + const uint64_t ne0 = src->ne[0]; + const uint64_t ne1 = src->ne[1]; + const uint64_t nb0 = src->nb[0]; + const uint64_t nb1 = src->nb[1]; + const uint64_t nb2 = src->nb[2]; + const uint64_t nb3 = src->nb[3]; + const enum ggml_type type = src->type; + const size_t ts = ggml_type_size(type); + const size_t bs = ggml_blck_size(type); + + const void * x = (const void *) ((const char *) src->data + i2*nb2 + i3*nb3); + if (nb0 == ts && nb1 == ts*ne0/bs) { + err = clEnqueueWriteBuffer(queue, dst, CL_FALSE, offset, ne1*nb1, x, 0, NULL, ev); + return err; + } + if (nb0 == ts) { + const size_t buffer_origin[3] = { offset, 0, 0 }; + const size_t host_origin[3] = { 0, 0, 0 }; + const size_t region[3] = { ts*ne0/bs, ne1, 1 }; + err = clEnqueueWriteBufferRect(queue, dst, CL_FALSE, buffer_origin, host_origin, region, ts*ne0/bs, 0, nb1, 0, x, 0, NULL, ev); + return err; + } + for (uint64_t i1 = 0; i1 < ne1; i1++) { + // pretend the row is a matrix with cols=1 + const size_t buffer_origin[3] = { offset, i1, 0 }; + const size_t host_origin[3] = { 0, 0, 0 }; + const size_t region[3] = { ts/bs, ne0, 1 }; + err = clEnqueueWriteBufferRect(queue, dst, CL_FALSE, buffer_origin, host_origin, region, 0, 0, nb0, 0, ((const char *)x) + i1*nb0, 0, NULL, ev); + if (err != CL_SUCCESS) { + break; + } + } + return err; +} + +static void ggml_cl_mul_mat_f32(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { + const int64_t ne00 = src0->ne[0]; + const int64_t ne01 = src0->ne[1]; + const int64_t ne02 = src0->ne[2]; + const int64_t ne03 = src0->ne[3]; + + const int64_t ne10 = src1->ne[0]; + const int64_t ne11 = src1->ne[1]; + + const int nb2 = dst->nb[2]; + const int nb3 = dst->nb[3]; + + const float alpha = 1.0f; + const float beta = 0.0f; + const int x_ne = ne01 * ne00; + const int y_ne = ne11 * ne10; + const int d_ne = ne11 * ne01; + + size_t x_size; + size_t y_size; + size_t d_size; + cl_mem d_X; + if (src0->backend == GGML_BACKEND_CL) { + d_X = *(cl_mem*) src0->data; + } else { + d_X = ggml_cl_pool_malloc(sizeof(ggml_fp16_t) * x_ne, &x_size, CL_MEM_READ_ONLY); + } + cl_mem d_Y = ggml_cl_pool_malloc(sizeof(float) * y_ne, &y_size, CL_MEM_READ_ONLY); + cl_mem d_D = ggml_cl_pool_malloc(sizeof(float) * d_ne, &d_size, CL_MEM_WRITE_ONLY); + + for (int64_t i03 = 0; i03 < ne03; i03++) { + for (int64_t i02 = 0; i02 < ne02; i02++) { + // copy data to device + if (src0->backend != GGML_BACKEND_CL) { + CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_X, 0, src0, i03, i02, NULL)); + } + CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Y, 0, src1, i03, i02, NULL)); + + CL_CHECK(clFinish(queue)); + + // compute + cl_event ev_sgemm; + clblast::StatusCode status = clblast::Gemm<cl_float>(clblast::Layout::kColMajor, + clblast::Transpose::kYes, clblast::Transpose::kNo, + ne01, ne11, ne10, + alpha, + d_X, 0, ne00, + d_Y, 0, ne10, + beta, + d_D, 0, ne01, + &queue, &ev_sgemm); + + if (status != clblast::StatusCode::kSuccess) { + GGML_ASSERT(false); + } + + // copy dst to host + float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3); + CL_CHECK(clEnqueueReadBuffer(queue, d_D, true, 0, sizeof(float) * d_ne, d, 1, &ev_sgemm, NULL)); + } + } + + if (src0->backend != GGML_BACKEND_CL) { + ggml_cl_pool_free(d_X, x_size); + } + ggml_cl_pool_free(d_Y, y_size); + ggml_cl_pool_free(d_D, d_size); +} + +static void ggml_cl_mul_mat_f16(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, void * wdata, size_t /* wsize */) { + GGML_ASSERT(fp16_support); + + const int64_t ne00 = src0->ne[0]; + const int64_t ne01 = src0->ne[1]; + const int64_t ne02 = src0->ne[2]; + const int64_t ne03 = src0->ne[3]; + + const int64_t ne10 = src1->ne[0]; + const int64_t ne11 = src1->ne[1]; + + const int nb10 = src1->nb[0]; + const int nb11 = src1->nb[1]; + const int nb12 = src1->nb[2]; + const int nb13 = src1->nb[3]; + + const int nb2 = dst->nb[2]; + const int nb3 = dst->nb[3]; + + const ggml_fp16_t alpha = ggml_fp32_to_fp16(1.0f); + const ggml_fp16_t beta = ggml_fp32_to_fp16(0.0f); + const int x_ne = ne01 * ne00; + const int y_ne = ne11 * ne10; + const int d_ne = ne11 * ne01; + + size_t x_size; + size_t y_size; + size_t d_size; + cl_mem d_X; + if (src0->backend == GGML_BACKEND_CL) { + d_X = *(cl_mem*) src0->data; + } else { + d_X = ggml_cl_pool_malloc(sizeof(ggml_fp16_t) * x_ne, &x_size, CL_MEM_READ_ONLY); + } + cl_mem d_Y = ggml_cl_pool_malloc(sizeof(ggml_fp16_t) * y_ne, &y_size, CL_MEM_READ_ONLY); + cl_mem d_D = ggml_cl_pool_malloc(sizeof(ggml_fp16_t) * d_ne, &d_size, CL_MEM_WRITE_ONLY); + + bool src1_cont_rows = nb10 == sizeof(float); + bool src1_cont_cols = (size_t)nb11 == ne11*sizeof(float); + + for (int64_t i03 = 0; i03 < ne03; i03++) { + for (int64_t i02 = 0; i02 < ne02; i02++) { + // copy src0 to device + if (src0->backend != GGML_BACKEND_CL) { + CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_X, 0, src0, i03, i02, NULL)); + } + + // convert src1 to fp16 + // TODO: use multiple threads + ggml_fp16_t * const tmp = (ggml_fp16_t *) wdata + (ne11 * ne10) * (i03 * ne02 + i02); + char * src1i = (char *) src1->data + i03*nb13 + i02*nb12; + if (src1_cont_rows) { + if (src1_cont_cols) { + ggml_fp32_to_fp16_row((float *) src1i, tmp, ne10*ne11); + } + else { + for (int64_t i01 = 0; i01 < ne11; i01++) { + ggml_fp32_to_fp16_row((float *) (src1i + i01*nb11), tmp + i01*ne10, ne10); + } + } + } + else { + for (int64_t i01 = 0; i01 < ne11; i01++) { + for (int64_t i00 = 0; i00 < ne10; i00++) { + // very slow due to no inlining + tmp[i01*ne10 + i00] = ggml_fp32_to_fp16(*(float *) (src1i + i01*nb11 + i00*nb10)); + } + } + } + + // copy src1 to device + CL_CHECK(clEnqueueWriteBuffer(queue, d_Y, false, 0, sizeof(ggml_fp16_t) * y_ne, tmp, 0, NULL, NULL)); + + CL_CHECK(clFinish(queue)); + + // compute + cl_event ev_sgemm; + clblast::StatusCode status = clblast::Gemm<cl_half>(clblast::Layout::kColMajor, + clblast::Transpose::kYes, clblast::Transpose::kNo, + ne01, ne11, ne10, + alpha, + d_X, 0, ne00, + d_Y, 0, ne10, + beta, + d_D, 0, ne01, + &queue, &ev_sgemm); + + if (status != clblast::StatusCode::kSuccess) { + GGML_ASSERT(false); + } + + // copy dst to host, then convert to float + CL_CHECK(clEnqueueReadBuffer(queue, d_D, true, 0, sizeof(ggml_fp16_t) * d_ne, tmp, 1, &ev_sgemm, NULL)); + + float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3); + + ggml_fp16_to_fp32_row(tmp, d, d_ne); + } + } + + if (src0->backend != GGML_BACKEND_CL) { + ggml_cl_pool_free(d_X, x_size); + } + ggml_cl_pool_free(d_Y, y_size); + ggml_cl_pool_free(d_D, d_size); +} + +static void ggml_cl_mul_mat_q_f32(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { + const int64_t ne00 = src0->ne[0]; + const int64_t ne01 = src0->ne[1]; + const int64_t ne02 = src0->ne[2]; + const int64_t ne03 = src0->ne[3]; + + const int64_t ne10 = src1->ne[0]; + const int64_t ne11 = src1->ne[1]; + + const int nb2 = dst->nb[2]; + const int nb3 = dst->nb[3]; + const ggml_type type = src0->type; + const bool mul_mat_vec = ne11 == 1; + + const float alpha = 1.0f; + const float beta = 0.0f; + const int x_ne = ne01 * ne00; + const int y_ne = ne11 * ne10; + const int d_ne = ne11 * ne01; + const size_t q_sz = ggml_type_size(type) * x_ne / ggml_blck_size(type); + + size_t x_size; + size_t y_size; + size_t d_size; + size_t q_size; + cl_mem d_X; + if (!mul_mat_vec) { + d_X = ggml_cl_pool_malloc(sizeof(float) * x_ne, &x_size, CL_MEM_READ_WRITE); + } + cl_mem d_Y = ggml_cl_pool_malloc(sizeof(float) * y_ne, &y_size, CL_MEM_READ_ONLY); + cl_mem d_D = ggml_cl_pool_malloc(sizeof(float) * d_ne, &d_size, CL_MEM_WRITE_ONLY); + cl_mem d_Q; + if (src0->backend == GGML_BACKEND_CPU) { + d_Q = ggml_cl_pool_malloc(q_sz, &q_size, CL_MEM_READ_ONLY); + } + + cl_kernel* to_fp32_cl = ggml_get_to_fp32_cl(type); + cl_kernel* dmmv = ggml_get_dequantize_mul_mat_vec_cl(type); + GGML_ASSERT(to_fp32_cl != nullptr); + + for (int64_t i03 = 0; i03 < ne03; i03++) { + for (int64_t i02 = 0; i02 < ne02; i02++) { + cl_event ev_sgemm; + + // copy src0 to device if necessary + if (src0->backend == GGML_BACKEND_CPU) { + CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Q, 0, src0, i03, i02, NULL)); + } else if (src0->backend == GGML_BACKEND_CL) { + d_Q = *(cl_mem*) src0->data; + } else { + GGML_ASSERT(false); + } + if (mul_mat_vec) { // specialized dequantize_mul_mat_vec kernel + // copy src1 to device + CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Y, 0, src1, i03, i02, NULL)); + + // compute + const size_t global = ne01 * CL_DMMV_BLOCK_SIZE; + const size_t local = CL_DMMV_BLOCK_SIZE; + const cl_int ncols = ne00; + CL_CHECK(clSetKernelArg(*dmmv, 0, sizeof(cl_mem), &d_Q)); + CL_CHECK(clSetKernelArg(*dmmv, 1, sizeof(float) * local, NULL)); + CL_CHECK(clSetKernelArg(*dmmv, 2, sizeof(cl_mem), &d_Y)); + CL_CHECK(clSetKernelArg(*dmmv, 3, sizeof(cl_mem), &d_D)); + CL_CHECK(clSetKernelArg(*dmmv, 4, sizeof(cl_int), &ncols)); + CL_CHECK(clFinish(queue)); + CL_CHECK(clEnqueueNDRangeKernel(queue, *dmmv, 1, NULL, &global, &local, 0, NULL, &ev_sgemm)); + } else { // general dequantization kernel + CLBlast matrix matrix multiplication + // convert src0 to fp32 on device + const size_t global = x_ne; + CL_CHECK(clSetKernelArg(*to_fp32_cl, 0, sizeof(cl_mem), &d_Q)); + CL_CHECK(clSetKernelArg(*to_fp32_cl, 1, sizeof(cl_mem), &d_X)); + CL_CHECK(clFinish(queue)); + CL_CHECK(clEnqueueNDRangeKernel(queue, *to_fp32_cl, 1, NULL, &global, NULL, 0, NULL, NULL)); + + // copy src1 to device + CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Y, 0, src1, i03, i02, NULL)); + + // wait for conversion + CL_CHECK(clFinish(queue)); + + // compute + clblast::StatusCode status = clblast::Gemm<cl_float>(clblast::Layout::kColMajor, + clblast::Transpose::kYes, clblast::Transpose::kNo, + ne01, ne11, ne10, + alpha, + d_X, 0, ne00, + d_Y, 0, ne10, + beta, + d_D, 0, ne01, + &queue, &ev_sgemm); + + if (status != clblast::StatusCode::kSuccess) { + GGML_ASSERT(false); + } + } + + // copy dst to host + float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3); + CL_CHECK(clEnqueueReadBuffer(queue, d_D, true, 0, sizeof(float) * d_ne, d, 1, &ev_sgemm, NULL)); + clReleaseEvent(ev_sgemm); + } + } + + if (!mul_mat_vec) { + ggml_cl_pool_free(d_X, x_size); + } + ggml_cl_pool_free(d_Y, y_size); + ggml_cl_pool_free(d_D, d_size); + if (src0->backend == GGML_BACKEND_CPU) { + ggml_cl_pool_free(d_Q, q_size); + } +} + + +bool ggml_cl_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) { + const int64_t ne10 = src1->ne[0]; + + const int64_t ne0 = dst->ne[0]; + const int64_t ne1 = dst->ne[1]; + + // TODO: find the optimal values for these + if ((src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) && + src1->type == GGML_TYPE_F32 && + dst->type == GGML_TYPE_F32 && + ((ne0 >= 32 && ne1 >= 32 && ne10 >= 32) || src0->backend == GGML_BACKEND_CL)) { + return true; + } + + return false; +} + +bool ggml_cl_mul_mat_use_f16(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * /* dst */) { + // If device doesn't support FP16 + if (!fp16_support) { + return false; + } + + size_t src0_sz = ggml_nbytes(src0); + size_t src1_sz = ggml_nbytes(src1); + + // mul_mat_q: src0 is converted to fp32 on device + size_t mul_mat_q_transfer = src0_sz + src1_sz; + + // mul_mat_f16: src1 is converted to fp16 on cpu + size_t mul_mat_f16_transfer = src0_sz + sizeof(ggml_fp16_t) * ggml_nelements(src1); + + // choose the smaller one to transfer to the device + // TODO: this is not always the best choice due to the overhead of converting to fp16 + return mul_mat_f16_transfer < mul_mat_q_transfer; +} + +void ggml_cl_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst, void * wdata, size_t wsize) { + GGML_ASSERT(ggml_cl_can_mul_mat(src0, src1, dst)); + + if (src0->type == GGML_TYPE_F32) { + ggml_cl_mul_mat_f32(src0, src1, dst); + } + else if (src0->type == GGML_TYPE_F16) { + if (ggml_cl_mul_mat_use_f16(src0, src1, dst)) { + ggml_cl_mul_mat_f16(src0, src1, dst, wdata, wsize); + } + else { + ggml_cl_mul_mat_q_f32(src0, src1, dst); + } + } + else if (ggml_is_quantized(src0->type)) { + ggml_cl_mul_mat_q_f32(src0, src1, dst); + } + else { + GGML_ASSERT(false); + } +} + +size_t ggml_cl_mul_mat_get_wsize(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) { + if (ggml_cl_mul_mat_use_f16(src0, src1, dst)) { + return ggml_nelements(src1) * sizeof(ggml_fp16_t); + } + return 0; +} + +void ggml_cl_transform_tensor(ggml_tensor * tensor) { + const int64_t ne0 = tensor->ne[0]; + const int64_t ne1 = tensor->ne[1]; + const int64_t ne2 = tensor->ne[2]; + const int64_t ne3 = tensor->ne[3]; + + const ggml_type type = tensor->type; + const size_t q_sz = ggml_type_size(type) * ne0 * ne1 * ne2 * ne3 / ggml_blck_size(type); + + size_t q_size; + cl_mem* dst = (cl_mem*) malloc(sizeof(cl_mem)); + *dst = ggml_cl_pool_malloc(q_sz, &q_size, CL_MEM_READ_ONLY); + + // copy tensor to device + for (int64_t i3 = 0; i3 < ne3; i3++) { + for (int64_t i2 = 0; i2 < ne2; i2++) { + int i = i3*ne2 + i2; + CL_CHECK(ggml_cl_h2d_tensor_2d(queue, *dst, i*ne0*ne1, tensor, i3, i2, NULL)); + } + } + + CL_CHECK(clFinish(queue)); + + tensor->data = dst; + tensor->backend = GGML_BACKEND_CL; +} diff --git a/ggml-opencl.h b/ggml-opencl.h index 7bcc603..5a1a500 100644 --- a/ggml-opencl.h +++ b/ggml-opencl.h @@ -1,23 +1,21 @@ #pragma once +#include "ggml.h" + #ifdef __cplusplus extern "C" { #endif void ggml_cl_init(void); -enum ggml_blas_order { - GGML_BLAS_ORDER_ROW_MAJOR = 101, - GGML_BLAS_ORDER_COLUMN_MAJOR = 102, -}; +bool ggml_cl_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst); +size_t ggml_cl_mul_mat_get_wsize(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst); +void ggml_cl_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst, void * wdata, size_t wsize); -enum ggml_blas_op { - GGML_BLAS_OP_N = 111, - GGML_BLAS_OP_T = 112, - GGML_BLAS_OP_C = 113, -}; +void * ggml_cl_host_malloc(size_t size); +void ggml_cl_host_free(void * ptr); -void ggml_cl_sgemm_wrapper(const enum ggml_blas_order order, const enum ggml_blas_op trans_a, const enum ggml_blas_op trans_b, const int m, const int n, const int k, const float alpha, const void *host_a, const int lda, const float *host_b, const int ldb, const float beta, float *host_c, const int ldc, const int btype); +void ggml_cl_transform_tensor(struct ggml_tensor * tensor); #ifdef __cplusplus } @@ -9431,7 +9431,7 @@ static void ggml_compute_forward_rms_norm_back( // ggml_compute_forward_mul_mat -#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST) +#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) // helper function to determine if it is better to use BLAS or not // for large matrices, BLAS is faster static bool ggml_compute_forward_mul_mat_use_blas( @@ -9472,7 +9472,7 @@ static void ggml_compute_forward_mul_mat_f32( const int64_t ne02 = src0->ne[2]; const int64_t ne03 = src0->ne[3]; -#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST) +#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) const int64_t ne10 = src1->ne[0]; #endif const int64_t ne11 = src1->ne[1]; @@ -9536,9 +9536,16 @@ static void ggml_compute_forward_mul_mat_f32( } return; } +#elif defined(GGML_USE_CLBLAST) + if (ggml_cl_can_mul_mat(src0, src1, dst)) { + if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) { + ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize); + } + return; + } #endif -#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST) +#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) { if (params->ith != 0) { return; @@ -9558,21 +9565,11 @@ static void ggml_compute_forward_mul_mat_f32( const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13); float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3); -#if defined(GGML_USE_CLBLAST) - // zT = y * xT - ggml_cl_sgemm_wrapper(GGML_BLAS_ORDER_ROW_MAJOR, GGML_BLAS_OP_N, GGML_BLAS_OP_T, - ne11, ne01, ne10, - 1.0f, y, ne10, - x, ne10, - 0.0f, d, ne01, - GGML_TYPE_F32); -#else cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans, ne11, ne01, ne10, 1.0f, y, ne10, x, ne00, 0.0f, d, ne01); -#endif } } //printf("CBLAS F32 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3); @@ -9711,9 +9708,16 @@ static void ggml_compute_forward_mul_mat_f16_f32( } return; } +#elif defined(GGML_USE_CLBLAST) + if (ggml_cl_can_mul_mat(src0, src1, dst)) { + if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) { + ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize); + } + return; + } #endif -#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST) +#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) { GGML_ASSERT(nb10 == sizeof(float)); @@ -9743,20 +9747,6 @@ static void ggml_compute_forward_mul_mat_f16_f32( assert(id*sizeof(float) <= params->wsize); } -#if defined(GGML_USE_CLBLAST) - const float * x = wdata; - const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13); - - float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3); - - // zT = y * xT - ggml_cl_sgemm_wrapper(GGML_BLAS_ORDER_ROW_MAJOR, GGML_BLAS_OP_N, GGML_BLAS_OP_T, - ne11, ne01, ne10, - 1.0f, y, ne10, - x, ne10, - 0.0f, d, ne01, - GGML_TYPE_F32); -#else const float * x = wdata; const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13); @@ -9768,7 +9758,6 @@ static void ggml_compute_forward_mul_mat_f16_f32( 1.0f, y, ne10, x, ne00, 0.0f, d, ne01); -#endif } } @@ -9931,9 +9920,16 @@ static void ggml_compute_forward_mul_mat_q_f32( } return; } +#elif defined(GGML_USE_CLBLAST) + if (ggml_cl_can_mul_mat(src0, src1, dst)) { + if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) { + ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize); + } + return; + } #endif -#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST) +#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) { if (params->ith != 0) { return; @@ -9956,9 +9952,6 @@ static void ggml_compute_forward_mul_mat_q_f32( float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3); -#if defined(GGML_USE_CLBLAST) - const void* x = (char *) src0->data + i03*nb03 + i02*nb02; -#else { size_t id = 0; for (int64_t i01 = 0; i01 < ne01; ++i01) { @@ -9970,23 +9963,12 @@ static void ggml_compute_forward_mul_mat_q_f32( } const float * x = wdata; -#endif -#if defined(GGML_USE_CLBLAST) - // zT = y * xT - ggml_cl_sgemm_wrapper(GGML_BLAS_ORDER_ROW_MAJOR, GGML_BLAS_OP_N, GGML_BLAS_OP_T, - ne11, ne01, ne10, - 1.0f, y, ne10, - x, ne10, - 0.0f, d, ne01, - type); -#else cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans, ne11, ne01, ne10, 1.0f, y, ne10, x, ne00, 0.0f, d, ne01); -#endif } } @@ -14165,9 +14147,16 @@ void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph) cur = ggml_cuda_mul_mat_get_wsize(node->src0, node->src1, node); } else +#elif defined(GGML_USE_CLBLAST) + if (ggml_cl_can_mul_mat(node->src0, node->src1, node)) { + node->n_tasks = 1; // TODO: this actually is doing nothing + // the threads are still spinning + cur = ggml_cl_mul_mat_get_wsize(node->src0, node->src1, node); + } + else #endif if (node->src0->type == GGML_TYPE_F16 && node->src1->type == GGML_TYPE_F32) { -#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST) +#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) { node->n_tasks = 1; // TODO: this actually is doing nothing // the threads are still spinning @@ -14181,13 +14170,13 @@ void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph) #endif } else if (node->src0->type == GGML_TYPE_F32 && node->src1->type == GGML_TYPE_F32) { cur = 0; -#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST) +#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) { node->n_tasks = 1; } #endif } else if (ggml_is_quantized(node->src0->type) && node->src1->type == GGML_TYPE_F32) { -#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST) +#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) { node->n_tasks = 1; cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]); @@ -249,6 +249,7 @@ extern "C" { enum ggml_backend { GGML_BACKEND_CPU = 0, GGML_BACKEND_CUDA = 1, + GGML_BACKEND_CL = 2, }; // model file types @@ -12,6 +12,8 @@ #include "ggml.h" #ifdef GGML_USE_CUBLAS #include "ggml-cuda.h" +#elif defined(GGML_USE_CLBLAST) +#include "ggml-opencl.h" #endif #include <array> @@ -1092,7 +1094,7 @@ static void llama_model_load_internal( fprintf(stderr, "%s: [cublas] offloading output layer to GPU\n", __func__); } fprintf(stderr, "%s: [cublas] total VRAM used: %zu MB\n", __func__, vram_total / 1024 / 1024); -#else +#elif !defined(GGML_USE_CLBLAST) (void) n_gpu_layers; #endif } @@ -1125,7 +1127,33 @@ static void llama_model_load_internal( done_size += lt.size; } } -#endif // GGML_USE_CUBLAS +#elif defined(GGML_USE_CLBLAST) + { + const int n_gpu = std::min(n_gpu_layers, int(hparams.n_layer)); + + fprintf(stderr, "ggml_opencl: offloading %d layers to GPU\n", n_gpu); + + size_t vram_total = 0; + + for (int i = 0; i < n_gpu; ++i) { + const auto & layer = model.layers[i]; + + ggml_cl_transform_tensor(layer.wq); vram_total += ggml_nbytes(layer.wq); + ggml_cl_transform_tensor(layer.wk); vram_total += ggml_nbytes(layer.wk); + ggml_cl_transform_tensor(layer.wv); vram_total += ggml_nbytes(layer.wv); + ggml_cl_transform_tensor(layer.wo); vram_total += ggml_nbytes(layer.wo); + ggml_cl_transform_tensor(layer.w1); vram_total += ggml_nbytes(layer.w1); + ggml_cl_transform_tensor(layer.w2); vram_total += ggml_nbytes(layer.w2); + ggml_cl_transform_tensor(layer.w3); vram_total += ggml_nbytes(layer.w3); + } + if (n_gpu_layers > (int) hparams.n_layer) { + fprintf(stderr, "ggml_opencl: offloading output layer to GPU\n"); + ggml_cl_transform_tensor(model.output); vram_total += ggml_nbytes(model.output); + } + + fprintf(stderr, "ggml_opencl: total VRAM used: %zu MB\n", vram_total / 1024 / 1024); + } +#endif if (progress_callback) { progress_callback(1.0f, progress_callback_user_data); |