aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authormj-shifu <77107165+mj-shifu@users.noreply.github.com>2023-07-27 22:39:17 +0200
committerGitHub <noreply@github.com>2023-07-27 14:39:17 -0600
commit7c529cede6e84054e77a3eceab31c53de7b2f55b (patch)
treee4e35443d956aec18b2a17fe536915ca5bd01007
parent1a941869cbef8e9cc351a6c6987e4ae3b0f021f7 (diff)
convert.py : Update to support 70B HF format model files (#2427)
* convert.py : fix llama 2 70b conversion from Huggingface
-rw-r--r--[-rwxr-xr-x]convert.py96
1 files changed, 52 insertions, 44 deletions
diff --git a/convert.py b/convert.py
index ac99579..ab6a4e1 100755..100644
--- a/convert.py
+++ b/convert.py
@@ -133,7 +133,7 @@ TENSORS_SET = set(TENSORS_LIST)
def find_n_mult(n_ff: int, n_embd: int) -> int:
# hardcoded magic range
- for n_mult in range(256, 1, -1):
+ for n_mult in range(8192, 1, -1):
calc_ff = (((8*n_embd) // 3 + n_mult - 1) // n_mult)*n_mult
if calc_ff == n_ff:
return n_mult
@@ -141,11 +141,12 @@ def find_n_mult(n_ff: int, n_embd: int) -> int:
@dataclass
class Params:
- n_vocab: int
- n_embd: int
- n_mult: int
- n_head: int
- n_layer: int
+ n_vocab: int
+ n_embd: int
+ n_mult: int
+ n_head: int
+ n_layer: int
+ n_kv_head: Optional[int] # This parameter is only used for Llama 2
@staticmethod
def guessed(model: 'LazyModel') -> 'Params':
@@ -167,11 +168,12 @@ class Params:
n_head=n_embd // 128 # guessed
return Params(
- n_vocab = n_vocab,
- n_embd = n_embd,
- n_mult = 256,
- n_head = n_head,
- n_layer = n_layer,
+ n_vocab = n_vocab,
+ n_embd = n_embd,
+ n_mult = 256,
+ n_head = n_head,
+ n_layer = n_layer,
+ n_kv_head = None,
)
@staticmethod
@@ -183,15 +185,17 @@ class Params:
n_head = config["num_attention_heads"];
n_layer = config["num_hidden_layers"];
n_ff = config["intermediate_size"];
+ n_kv_head = config.get("num_key_value_heads")
n_mult = find_n_mult(n_ff, n_embd);
return Params(
- n_vocab = n_vocab,
- n_embd = n_embd,
- n_mult = n_mult,
- n_head = n_head,
- n_layer = n_layer,
+ n_vocab = n_vocab,
+ n_embd = n_embd,
+ n_mult = n_mult,
+ n_head = n_head,
+ n_layer = n_layer,
+ n_kv_head = n_kv_head,
)
# LLaMA v2 70B params.json
@@ -200,21 +204,22 @@ class Params:
def loadOriginalParamsJson(model: 'LazyModel', config_path: 'Path') -> 'Params':
config = json.load(open(config_path))
- n_vocab = config["vocab_size"];
- n_embd = config["dim"];
- n_head = config["n_heads"];
- n_layer = config["n_layers"];
- n_mult = config["multiple_of"];
+ n_vocab = config["vocab_size"];
+ n_embd = config["dim"];
+ n_head = config["n_heads"];
+ n_layer = config["n_layers"];
+ n_mult = config["multiple_of"];
if n_vocab == -1:
n_vocab = model["tok_embeddings.weight"].shape[0]
return Params(
- n_vocab = n_vocab,
- n_embd = n_embd,
- n_mult = n_mult,
- n_head = n_head,
- n_layer = n_layer,
+ n_vocab = n_vocab,
+ n_embd = n_embd,
+ n_mult = n_mult,
+ n_head = n_head,
+ n_layer = n_layer,
+ n_kv_head = None,
)
@staticmethod
@@ -317,10 +322,12 @@ class GGMLVocab:
Vocab = Union[SentencePieceVocab, GGMLVocab]
-def permute(weights: NDArray, n_head: int) -> NDArray:
+def permute(weights: NDArray, n_head: int, n_kv_head: Optional[int] = None) -> NDArray:
+ if n_kv_head is not None and n_head != n_kv_head:
+ n_head //= n_kv_head
return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
- .swapaxes(1, 2)
- .reshape(weights.shape))
+ .swapaxes(1, 2)
+ .reshape(weights.shape))
def dequantize_q4(qvalues_pack32: NDArray, scales: NDArray, addends: Optional[NDArray], g_idx: Optional[NDArray]) -> NDArray:
@@ -368,7 +375,7 @@ class Tensor(metaclass=ABCMeta):
@abstractmethod
def astype(self, data_type: DataType) -> 'Tensor': ...
@abstractmethod
- def permute(self, n_head: int) -> 'Tensor': ...
+ def permute(self, n_head: int, n_kv_head: Optional[int] = None) -> 'Tensor': ...
@abstractmethod
def permute_part(self, n_part: int, n_head: int) -> 'UnquantizedTensor': ...
@abstractmethod
@@ -406,8 +413,8 @@ class UnquantizedTensor(Tensor):
r = self.ndarray.shape[0] // 3
return UnquantizedTensor(self.ndarray[r * n_part : r * n_part + r, ...])
- def permute(self, n_head: int) -> 'UnquantizedTensor':
- return UnquantizedTensor(permute(self.ndarray, n_head))
+ def permute(self, n_head: int, n_kv_head: Optional[int] = None) -> 'UnquantizedTensor':
+ return UnquantizedTensor(permute(self.ndarray, n_head, n_kv_head))
def load_unquantized(lazy_tensor: 'LazyTensor', expected_dtype: Any = None, convert: bool = False) -> NDArray:
@@ -455,26 +462,27 @@ class GGMLQuantizedTensor(Tensor):
def to_ggml(self) -> 'GGMLQuantizedTensor':
return self
- def permute(self, n_head: int) -> 'GGMLQuantizedTensor':
- return GGMLQuantizedTensor(permute(self.ndarray, n_head), self.shape, self.data_type)
+ def permute(self, n_head: int, n_kv_head: Optional[int] = None) -> 'GGMLQuantizedTensor':
+ return GGMLQuantizedTensor(permute(self.ndarray, n_head, n_kv_head), self.shape, self.data_type)
GGMLCompatibleTensor = Union[UnquantizedTensor, GGMLQuantizedTensor]
class DeferredPermutedTensor(Tensor):
- def __init__(self, base: Tensor, n_head: int) -> None:
+ def __init__(self, base: Tensor, n_head: int, n_kv_head: Optional[int] = None) -> None:
self.base = base
self.n_head = n_head
+ self.n_kv_head = n_kv_head
self.data_type = self.base.data_type
def astype(self, data_type: DataType) -> Tensor:
- return self.base.astype(data_type).permute(self.n_head)
+ return self.base.astype(data_type).permute(self.n_head, self.n_kv_head)
def to_ggml(self) -> GGMLCompatibleTensor:
- return self.base.to_ggml().permute(self.n_head)
+ return self.base.to_ggml().permute(self.n_head, self.n_kv_head)
- def permute(self, n_head: int) -> Tensor:
+ def permute(self, n_head: int, n_kv_head: Optional[int] = None) -> Tensor:
raise Exception("shouldn't permute twice")
@@ -566,8 +574,8 @@ class GPTQForLLaMaQuantizedTensor(Tensor):
ret.data_type = QuantizedDataType(groupsize=new_groupsize, have_addends=True, have_g_idx=False)
return ret
- def permute(self, n_head: int) -> Tensor:
- return DeferredPermutedTensor(self, n_head)
+ def permute(self, n_head: int, n_kv_head: Optional[int] = None) -> Tensor:
+ return DeferredPermutedTensor(self, n_head, n_kv_head)
def to_ggml(self) -> GGMLQuantizedTensor:
# The output format looks like this:
@@ -698,10 +706,10 @@ def merge_multifile_models(models_plus: List[ModelPlus]) -> ModelPlus:
return ModelPlus(model, paths, format, vocab)
-def permute_lazy(lazy_tensor: LazyTensor, n_head: int) -> LazyTensor:
+def permute_lazy(lazy_tensor: LazyTensor, n_head: int, n_kv_head: Optional[int] = None) -> LazyTensor:
def load() -> Tensor:
- return lazy_tensor.load().permute(n_head)
- return LazyTensor(load, lazy_tensor.shape, lazy_tensor.data_type, f'permute({n_head}) ' + lazy_tensor.description)
+ return lazy_tensor.load().permute(n_head, n_kv_head)
+ return LazyTensor(load, lazy_tensor.shape, lazy_tensor.data_type, f'permute({n_head}, {n_kv_head}) ' + lazy_tensor.description)
def permute_part_lazy(lazy_tensor: LazyTensor, n_part: int, n_head: int) -> LazyTensor:
def load() -> Tensor:
@@ -726,7 +734,7 @@ def convert_transformers_to_orig(model: LazyModel, params: Params) -> LazyModel:
for i in itertools.count():
if f"model.layers.{i}.self_attn.q_proj.weight" in model:
out[f"layers.{i}.attention.wq.weight"] = permute_lazy(model[f"model.layers.{i}.self_attn.q_proj.weight"], params.n_head)
- out[f"layers.{i}.attention.wk.weight"] = permute_lazy(model[f"model.layers.{i}.self_attn.k_proj.weight"], params.n_head)
+ out[f"layers.{i}.attention.wk.weight"] = permute_lazy(model[f"model.layers.{i}.self_attn.k_proj.weight"], params.n_head, params.n_kv_head)
out[f"layers.{i}.attention.wv.weight"] = model[f"model.layers.{i}.self_attn.v_proj.weight"]
elif f"model.layers.{i}.self_attn.W_pack.weight" in model:
out[f"layers.{i}.attention.wq.weight"] = permute_part_lazy(model[f"model.layers.{i}.self_attn.W_pack.weight"], 0, params.n_head)