diff options
author | Ivan Stepanov <ivanstepanovftw@gmail.com> | 2023-05-04 19:54:37 +0300 |
---|---|---|
committer | GitHub <noreply@github.com> | 2023-05-04 18:54:37 +0200 |
commit | d3e8093e9b5845514b049ede3b12728c8f013eba (patch) | |
tree | 16b085f9325e172a244e7d16699fe6152b076335 | |
parent | 360cfe5bec852805b84eec799102fc6f45df9fef (diff) |
convert: support DT_BF16 tensors (#1309)
Co-authored-by: Pavol Rusnak <pavol@rusnak.io>
-rw-r--r-- | convert.py | 18 |
1 files changed, 17 insertions, 1 deletions
@@ -67,6 +67,7 @@ FTYPE_TO_DATA_TYPE: Dict[int, DataType] = \ {ftype: dtype for (dtype, ftype) in DATA_TYPE_TO_FTYPE.items()} DATA_TYPE_TO_NUMPY: Dict[DataType, 'np.dtype[Any]'] = { + DT_BF16: np.dtype(np.uint16), DT_F16: np.dtype(np.float16), DT_F32: np.dtype(np.float32), DT_I32: np.dtype(np.int32), @@ -276,6 +277,12 @@ class Tensor(metaclass=ABCMeta): def to_ggml(self) -> 'GGMLCompatibleTensor': ... +def bf16_to_fp32(bf16_arr: np.ndarray) -> np.ndarray: + assert bf16_arr.dtype == np.uint16, f"Input array should be of dtype uint16, but got {bf16_arr.dtype}" + fp32_arr = bf16_arr.astype(np.uint32) << 16 + return fp32_arr.view(np.float32) + + class UnquantizedTensor(Tensor): def __init__(self, ndarray: NDArray) -> None: assert isinstance(ndarray, np.ndarray) @@ -284,6 +291,8 @@ class UnquantizedTensor(Tensor): def astype(self, data_type: DataType) -> Tensor: dtype = DATA_TYPE_TO_NUMPY[data_type] + if self.data_type == DT_BF16: + self.ndarray = bf16_to_fp32(self.ndarray) return UnquantizedTensor(self.ndarray.astype(dtype)) def to_ggml(self) -> 'UnquantizedTensor': @@ -686,6 +695,7 @@ class LazyUnpickler(pickle.Unpickler): description = f'storage data_type={data_type} path-in-zip={filename} path={self.zip_file.filename}' return LazyStorage(load=load, kind=pid[1], description=description) + @staticmethod def lazy_rebuild_tensor_v2(storage: Any, storage_offset: Any, size: Any, stride: Any, # pyright: ignore[reportSelfClsParameterName] requires_grad: Any, backward_hooks: Any, metadata: Any = None) -> LazyTensor: assert isinstance(storage, LazyStorage) @@ -696,12 +706,18 @@ class LazyUnpickler(pickle.Unpickler): description = f'pickled storage_offset={storage_offset} in {storage.description}' return LazyTensor(load, list(size), storage.kind.data_type, description) + @staticmethod + def rebuild_from_type_v2(func, new_type, args, state): + return func(*args) + CLASSES: Dict[Any, Any] = { + ('torch._tensor', '_rebuild_from_type_v2'): rebuild_from_type_v2, ('torch._utils', '_rebuild_tensor_v2'): lazy_rebuild_tensor_v2, ('torch', 'BFloat16Storage'): LazyStorageKind(DT_BF16), ('torch', 'HalfStorage'): LazyStorageKind(DT_F16), ('torch', 'FloatStorage'): LazyStorageKind(DT_F32), ('torch', 'IntStorage'): LazyStorageKind(DT_I32), + ('torch', 'Tensor'): LazyTensor, } def find_class(self, module: str, name: str) -> Any: @@ -961,7 +977,7 @@ class OutputFile: def pick_output_type(model: LazyModel, output_type_str: Optional[str]) -> GGMLFileType: wq_type = model["layers.0.attention.wq.weight"].data_type - if output_type_str == "f32" or (output_type_str is None and wq_type == DT_F32): + if output_type_str == "f32" or (output_type_str is None and wq_type in (DT_F32, DT_BF16)): return GGMLFileType.AllF32 if output_type_str == "f16" or (output_type_str is None and wq_type == DT_F16): return GGMLFileType.MostlyF16 |