aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorGeorgi Gerganov <ggerganov@gmail.com>2023-06-27 00:06:51 +0300
committerGeorgi Gerganov <ggerganov@gmail.com>2023-06-27 00:06:51 +0300
commitd9779021bd59ed96daae75e820a5ac5da47ca8ff (patch)
tree1ba4204697c8cf798346211330cc401c4f7f23e2
parentd38e45157862b58a1824387e64860d68ca3533a7 (diff)
ggml : add support for ChatGLM RoPE
-rw-r--r--ggml.c82
-rw-r--r--ggml.h7
2 files changed, 76 insertions, 13 deletions
diff --git a/ggml.c b/ggml.c
index c179bee..92faf03 100644
--- a/ggml.c
+++ b/ggml.c
@@ -6778,6 +6778,7 @@ struct ggml_tensor * ggml_rope_impl(
int n_past,
int n_dims,
int mode,
+ int n_ctx,
bool inplace) {
GGML_ASSERT(n_past >= 0);
bool is_node = false;
@@ -6790,11 +6791,12 @@ struct ggml_tensor * ggml_rope_impl(
ggml_scratch_save(ctx);
- struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
+ struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 4);
((int32_t *) b->data)[0] = n_past;
((int32_t *) b->data)[1] = n_dims;
((int32_t *) b->data)[2] = mode;
+ ((int32_t *) b->data)[3] = n_ctx;
ggml_scratch_load(ctx);
@@ -6811,8 +6813,9 @@ struct ggml_tensor * ggml_rope(
struct ggml_tensor * a,
int n_past,
int n_dims,
- int mode) {
- return ggml_rope_impl(ctx, a, n_past, n_dims, mode, false);
+ int mode,
+ int n_ctx) {
+ return ggml_rope_impl(ctx, a, n_past, n_dims, mode, n_ctx, false);
}
struct ggml_tensor * ggml_rope_inplace(
@@ -6820,8 +6823,9 @@ struct ggml_tensor * ggml_rope_inplace(
struct ggml_tensor * a,
int n_past,
int n_dims,
- int mode) {
- return ggml_rope_impl(ctx, a, n_past, n_dims, mode, true);
+ int mode,
+ int n_ctx) {
+ return ggml_rope_impl(ctx, a, n_past, n_dims, mode, n_ctx, true);
}
// ggml_rope_back
@@ -12440,7 +12444,7 @@ static void ggml_compute_forward_rope_f32(
const struct ggml_tensor * src1,
struct ggml_tensor * dst) {
GGML_ASSERT(src1->type == GGML_TYPE_I32);
- GGML_ASSERT(ggml_nelements(src1) == 3);
+ GGML_ASSERT(ggml_nelements(src1) == 4);
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
return;
@@ -12449,6 +12453,7 @@ static void ggml_compute_forward_rope_f32(
const int n_past = ((int32_t *) src1->data)[0];
const int n_dims = ((int32_t *) src1->data)[1];
const int mode = ((int32_t *) src1->data)[2];
+ const int n_ctx = ((int32_t *) src1->data)[3];
assert(n_past >= 0);
@@ -12493,6 +12498,7 @@ static void ggml_compute_forward_rope_f32(
const float theta_scale = powf(10000.0, -2.0f/n_dims);
const bool is_neox = mode & 2;
+ const bool is_glm = mode & 4;
for (int64_t i3 = 0; i3 < ne3; i3++) {
for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
@@ -12503,7 +12509,32 @@ static void ggml_compute_forward_rope_f32(
float theta = (float)p;
- if (!is_neox) {
+ if (is_glm) {
+ theta = MIN(p, n_ctx - 2);
+ float block_theta = MAX(p - (n_ctx - 2), 0);
+ for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
+ const float cos_theta = cosf(theta);
+ const float sin_theta = sinf(theta);
+ const float cos_block_theta = cosf(block_theta);
+ const float sin_block_theta = sinf(block_theta);
+
+ theta *= theta_scale;
+ block_theta *= theta_scale;
+
+ const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
+ float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
+
+ const float x0 = src[0];
+ const float x1 = src[n_dims/2];
+ const float x2 = src[n_dims];
+ const float x3 = src[n_dims/2*3];
+
+ dst_data[0] = x0*cos_theta - x1*sin_theta;
+ dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
+ dst_data[n_dims] = x2*cos_block_theta - x3*sin_block_theta;
+ dst_data[n_dims/2*3] = x2*sin_block_theta + x3*cos_block_theta;
+ }
+ } else if (!is_neox) {
for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
const float cos_theta = cosf(theta);
const float sin_theta = sinf(theta);
@@ -12553,7 +12584,7 @@ static void ggml_compute_forward_rope_f16(
const struct ggml_tensor * src1,
struct ggml_tensor * dst) {
GGML_ASSERT(src1->type == GGML_TYPE_I32);
- GGML_ASSERT(ggml_nelements(src1) == 3);
+ GGML_ASSERT(ggml_nelements(src1) == 4);
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
return;
@@ -12562,6 +12593,7 @@ static void ggml_compute_forward_rope_f16(
const int n_past = ((int32_t *) src1->data)[0];
const int n_dims = ((int32_t *) src1->data)[1];
const int mode = ((int32_t *) src1->data)[2];
+ const int n_ctx = ((int32_t *) src1->data)[3];
assert(n_past >= 0);
@@ -12606,6 +12638,7 @@ static void ggml_compute_forward_rope_f16(
const float theta_scale = powf(10000.0, -2.0f/n_dims);
const bool is_neox = mode & 2;
+ const bool is_glm = mode & 4;
for (int64_t i3 = 0; i3 < ne3; i3++) {
for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
@@ -12616,7 +12649,32 @@ static void ggml_compute_forward_rope_f16(
float theta = (float)p;
- if (!is_neox) {
+ if (is_glm) {
+ theta = MIN(p, n_ctx - 2);
+ float block_theta = MAX(p - (n_ctx - 2), 0);
+ for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
+ const float cos_theta = cosf(theta);
+ const float sin_theta = sinf(theta);
+ const float cos_block_theta = cosf(block_theta);
+ const float sin_block_theta = sinf(block_theta);
+
+ theta *= theta_scale;
+ block_theta *= theta_scale;
+
+ const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
+ ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
+
+ const float x0 = GGML_FP16_TO_FP32(src[0]);
+ const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
+ const float x2 = GGML_FP16_TO_FP32(src[n_dims]);
+ const float x3 = GGML_FP16_TO_FP32(src[n_dims/2*3]);
+
+ dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
+ dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
+ dst_data[n_dims] = GGML_FP32_TO_FP16(x2*cos_block_theta - x3*sin_block_theta);
+ dst_data[n_dims/2*3] = GGML_FP32_TO_FP16(x2*sin_block_theta + x3*cos_block_theta);
+ }
+ } if (!is_neox) {
for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
const float cos_theta = cosf(theta);
const float sin_theta = sinf(theta);
@@ -16189,17 +16247,19 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor
{
if (src0->grad) {
assert(src1->type == GGML_TYPE_I32);
- assert(ggml_nelements(src1) == 3);
+ assert(ggml_nelements(src1) == 4);
const int n_past = ((int32_t *) src1->data)[0];
const int n_dims = ((int32_t *) src1->data)[1];
const int mode = ((int32_t *) src1->data)[2];
+ const int n_ctx = ((int32_t *) src1->data)[3];
src0->grad = ggml_add_impl(ctx,
src0->grad,
ggml_rope(ctx,
tensor->grad,
n_past,
n_dims,
- mode),
+ mode,
+ n_ctx),
inplace);
}
if (src1->grad) {
diff --git a/ggml.h b/ggml.h
index 08025e5..4599132 100644
--- a/ggml.h
+++ b/ggml.h
@@ -1036,13 +1036,15 @@ extern "C" {
// rotary position embedding
// if mode & 1 == 1, skip n_past elements
// if mode & 2 == 1, GPT-NeoX style
+ // if mode & 4 == 1, ChatGLM style
// TODO: avoid creating a new tensor every time
GGML_API struct ggml_tensor * ggml_rope(
struct ggml_context * ctx,
struct ggml_tensor * a,
int n_past,
int n_dims,
- int mode);
+ int mode,
+ int n_ctx);
// in-place, returns view(a)
GGML_API struct ggml_tensor * ggml_rope_inplace(
@@ -1050,7 +1052,8 @@ extern "C" {
struct ggml_tensor * a,
int n_past,
int n_dims,
- int mode);
+ int mode,
+ int n_ctx);
// rotary position embedding backward, i.e compute dx from dy
// a - dy