aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorJustine Tunney <jtunney@gmail.com>2023-03-30 05:42:56 -0700
committerJustine Tunney <jtunney@gmail.com>2023-03-30 12:28:25 -0700
commitee0c40dd6de8c3c658ae43199939ef40bb1cf408 (patch)
tree92a09d5cd19cbf08b091edaf5019c6a697fa1c50
parent6f23ba5ee235cbcb1eedd63b98422dd8d4392a78 (diff)
Introduce GGML migration tool for new file format
If you deleted your old Meta LLaMA .pth files, then the migrate-ggml-2023-03-30-pr613.py script will allow you to convert your old ggml files into the new mmap()'able format. See #613
-rw-r--r--convert-pth-to-ggml.py8
-rw-r--r--llama.cpp19
-rw-r--r--migrate-ggml-2023-03-30-pr613.py313
3 files changed, 326 insertions, 14 deletions
diff --git a/convert-pth-to-ggml.py b/convert-pth-to-ggml.py
index 7d46115..df42e76 100644
--- a/convert-pth-to-ggml.py
+++ b/convert-pth-to-ggml.py
@@ -1,4 +1,4 @@
-# Convert a LLaMA model checkpoint to a ggml compatible file
+# Convert a LLaMA model checkpoint to a ggjt compatible file
#
# Load the model using Torch
# Iterate over all variables and write them to a binary file.
@@ -52,8 +52,8 @@ GGML_BLCK_SIZE = {
}
GGML_TYPE_SIZE = {
- GGML_TYPE_Q4_0: 4 + QK/2,
- GGML_TYPE_Q4_1: 4*2 + QK/2,
+ GGML_TYPE_Q4_0: 4 + QK//2,
+ GGML_TYPE_Q4_1: 4*2 + QK//2,
GGML_TYPE_I8: 1,
GGML_TYPE_I16: 2,
GGML_TYPE_I32: 4,
@@ -245,11 +245,9 @@ def main():
fname_model = f"{dir_model}/consolidated.00.pth"
fname_out = f"{dir_model}/ggml-vocab.bin"
print(f"Extracting only the vocab from '{fname_model}'\n")
- model = torch.load(fname_model, map_location="cpu")
with open(fname_out, "wb") as fout:
write_header(fout, hparams, ftype)
write_tokens(fout, tokenizer)
- del model
print(f"Done. Output file: {fname_out}\n")
return
diff --git a/llama.cpp b/llama.cpp
index 28e885c..bed2420 100644
--- a/llama.cpp
+++ b/llama.cpp
@@ -347,14 +347,15 @@ static void munmap_file(void * addr, size_t length) {
#endif
}
-static bool report_bad_magic(const char *path) {
+static bool report_bad_magic(const char *path, uint32_t got, uint32_t want) {
fprintf(stderr,
- "%s: invalid model file (bad magic)\n"
- "you most likely need to regenerate your ggml files\n"
- "the benefit is you'll get 10-100x faster load times\n"
- "see https://github.com/ggerganov/llama.cpp/issues/91\n"
- "use convert-pth-to-ggml.py on your llama model files\n",
- path);
+ "%s: invalid model file (bad magic [got %#x want %#x])\n"
+ "\tyou most likely need to regenerate your ggml files\n"
+ "\tthe benefit is you'll get 10-100x faster load times\n"
+ "\tsee https://github.com/ggerganov/llama.cpp/issues/91\n"
+ "\tuse convert-pth-to-ggml.py to regenerate from original pth\n"
+ "\tuse migrate-ggml-2023-03-30-pr613.py if you deleted originals\n",
+ path, got, want);
return false;
}
@@ -397,7 +398,7 @@ static bool llama_model_load(
return false;
}
if (magic != LLAMA_FILE_MAGIC) {
- return report_bad_magic(fname.c_str());
+ return report_bad_magic(fname.c_str(), magic, LLAMA_FILE_MAGIC);
}
uint32_t format_version;
@@ -1312,7 +1313,7 @@ static bool llama_model_quantize_internal(const std::string & fname_inp, const s
return false;
}
if (magic != LLAMA_FILE_MAGIC) {
- return report_bad_magic(fname_inp.c_str());
+ return report_bad_magic(fname_inp.c_str(), magic, LLAMA_FILE_MAGIC);
}
fout.write((char *) &magic, sizeof(magic));
diff --git a/migrate-ggml-2023-03-30-pr613.py b/migrate-ggml-2023-03-30-pr613.py
new file mode 100644
index 0000000..5596f6c
--- /dev/null
+++ b/migrate-ggml-2023-03-30-pr613.py
@@ -0,0 +1,313 @@
+# Migrate ggml file(s) with ggmf magic to ggml file with ggjt magic
+#
+# We caused a breaking change to the file format on 2023-03-30 in:
+# https://github.com/ggerganov/llama.cpp/pull/613
+#
+# (1) If you still have the Meta LLaMA .pth files, then close this
+# file now; you can just run `convert-pth-to-ggml.py` again to
+# migrate to the new format. The tool is easier to use too. It
+# isn't necessary anymore to manage split output files because
+# the new format always combines things into a single file.
+#
+# (2) If you deleted the Meta LLaMA .pth files due to save on disk
+# space, then this tool is intended to help you. Please check
+# out the instructions below.
+#
+# USAGE
+#
+# python migrate-ggml-2023-03-30-pr613.py INPUT OUTPUT
+#
+# PREREQUISITES
+#
+# pip install numpy
+# cd llama.cpp
+# make -j4
+#
+# EXAMPLE (7B MODEL)
+#
+# # you can replace all the 'f16' with 'q4_0' if you're using quantized weights
+# python migrate-ggml-2023-03-30-pr613.py models/7B/ggml-model-f16.bin models/7B/ggml-model-f16-ggjt.bin
+#
+# # check that it works
+# ./main -m models/7B/ggml-model-f16-ggjt.bin -p 'Question: Do you love me?'
+#
+# # you can delete the old files
+# rm -f models/7B/ggml-model-f16.bin
+# mv models/7B/ggml-model-f16-ggjt.bin models/7B/ggml-model-f16.bin
+#
+# EXAMPLE (13B MODEL)
+#
+# # you can replace all the 'f16' with 'q4_0' if you're using quantized weights
+# python migrate-ggml-2023-03-30-pr613.py models/13B/ggml-model-f16.bin models/13B/ggml-model-f16-ggjt.bin
+#
+# # check that it works
+# ./main -m models/13B/ggml-model-f16-ggjt.bin -p 'Question: Do you love me?'
+#
+# # you can delete the old files
+# rm -f models/13B/ggml-model-f16.bin*
+# mv models/13B/ggml-model-f16-ggjt.bin models/13B/ggml-model-f16.bin
+#
+
+import argparse
+import os
+import sys
+import json
+import struct
+import numpy as np
+
+QK = 32
+
+GGML_TYPE_Q4_0 = 0
+GGML_TYPE_Q4_1 = 1
+GGML_TYPE_I8 = 2
+GGML_TYPE_I16 = 3
+GGML_TYPE_I32 = 4
+GGML_TYPE_F16 = 5
+GGML_TYPE_F32 = 6
+
+WTYPE_NAMES = {
+ 0: "F32",
+ 1: "F16",
+ 2: "Q4_0",
+ 3: "Q4_1",
+}
+
+WTYPES = {
+ 0: GGML_TYPE_F32,
+ 1: GGML_TYPE_F16,
+ 2: GGML_TYPE_Q4_0,
+ 3: GGML_TYPE_Q4_1,
+}
+
+GGML_BLCK_SIZE = {
+ GGML_TYPE_Q4_0: QK,
+ GGML_TYPE_Q4_1: QK,
+ GGML_TYPE_I8: 1,
+ GGML_TYPE_I16: 1,
+ GGML_TYPE_I32: 1,
+ GGML_TYPE_F16: 1,
+ GGML_TYPE_F32: 1,
+}
+
+GGML_TYPE_SIZE = {
+ GGML_TYPE_Q4_0: 4 + QK//2,
+ GGML_TYPE_Q4_1: 4*2 + QK//2,
+ GGML_TYPE_I8: 1,
+ GGML_TYPE_I16: 2,
+ GGML_TYPE_I32: 4,
+ GGML_TYPE_F16: 2,
+ GGML_TYPE_F32: 4,
+}
+
+HPARAMS = [
+ 'magic', # int32
+ 'version', # int32
+ 'n_vocab', # int32
+ 'n_embd', # int32
+ 'n_mult', # int32
+ 'n_head', # int32
+ 'n_layer', # int32
+ 'n_rot', # int32
+ 'f16', # int32
+]
+
+def read_hparams(fin):
+ struct_fmt = "i" * len(HPARAMS)
+ struct_size = struct.calcsize(struct_fmt)
+ buf = fin.read(struct_size)
+ ints = struct.unpack(struct_fmt, buf)
+ hparams = dict(zip(HPARAMS, ints))
+ return hparams
+
+def write_hparams(fout, hparams):
+ struct_fmt = "i" * len(HPARAMS)
+ struct_size = struct.calcsize(struct_fmt)
+ ints = [hparams[h] for h in HPARAMS]
+ fout.write(struct.pack(struct_fmt, *ints))
+
+def read_tokens(fin, hparams):
+ tokens = []
+ for i in range(hparams['n_vocab']):
+ len_b = fin.read(4)
+ (length,) = struct.unpack("i", len_b)
+ word = fin.read(length)
+ score_b = fin.read(4)
+ (score,) = struct.unpack("f", score_b)
+ tokens.append((word, score))
+ return tokens
+
+def write_tokens(fout, tokens):
+ for word, score in tokens:
+ fout.write(struct.pack("i", len(word)))
+ fout.write(word)
+ fout.write(struct.pack("f", score))
+
+def ggml_nelements(shape):
+ r = 1
+ for i in shape:
+ r *= i
+ return r
+
+def ggml_nbytes(shape, ftype):
+ x = ggml_nelements(shape)
+ t = WTYPES[ftype]
+ x *= GGML_TYPE_SIZE[t]
+ x //= GGML_BLCK_SIZE[t]
+ return x
+
+def copy_tensors(fin, fout, part_id, n_parts):
+ while True:
+
+ b = fin.read(4)
+ if not b: break
+ (n_dims,) = struct.unpack("i", b)
+ b = fin.read(4)
+ (length,) = struct.unpack("i", b)
+ b = fin.read(4)
+ (ftype,) = struct.unpack("i", b)
+
+ assert n_dims in (1, 2)
+
+ partshape = list(range(n_dims))
+ for i in range(n_dims):
+ b = fin.read(4)
+ partshape[i] = struct.unpack("i", b)[0]
+ partshape = list(reversed(partshape))
+
+ name = fin.read(length)
+ data = fin.read(ggml_nbytes(partshape, ftype))
+
+ blck_size = GGML_BLCK_SIZE[WTYPES[ftype]]
+ type_size = GGML_TYPE_SIZE[WTYPES[ftype]]
+
+ print(f"Processing tensor {name} with shape: {partshape} and type: {WTYPE_NAMES[ftype]}")
+
+ # determine dimension along which multipart tensor is sharded
+ #
+ # split_dim 0 regex:
+ # - output.*
+ # - layers.*.attention.wq.weight
+ # - layers.*.attention.wk.weight
+ # - layers.*.attention.wv.weight
+ # - layers.*.feed_forward.w1.weight
+ # - layers.*.feed_forward.w3.weight
+ #
+ # split_dim 1 regex:
+ # - tok_embeddings.*
+ # - layers.*.attention.wo.weight
+ # - layers.*.feed_forward.w2.weight
+ #
+ if n_dims > 1:
+ split_dim = 1
+ if b"tok_embeddings" in name:
+ split_dim = 1
+ elif b"layers" in name:
+ if b"attention.wo.weight" in name:
+ split_dim = 1
+ elif b"feed_forward.w2.weight" in name:
+ split_dim = 1
+ else:
+ split_dim = 0
+ elif b"output" in name:
+ split_dim = 0
+
+ # output tensor header
+ fullshape = list(partshape)
+ if n_dims > 1:
+ fullshape[split_dim] *= n_parts
+ fout.write(struct.pack("iii", n_dims, len(name), ftype))
+ for dim in reversed(fullshape):
+ fout.write(struct.pack("i", dim))
+ fout.write(name)
+
+ # ensure tensor data is aligned
+ tensor_data_offset = fout.tell()
+ while tensor_data_offset % QK != 0:
+ fout.write(struct.pack("B", 0))
+ tensor_data_offset += 1
+
+ # output unified mappable tensor data
+ if n_dims == 1 or n_parts == 1:
+ # copy tensor which we thankfully received in one piece
+ if part_id == 0:
+ fout.write(data)
+ elif split_dim == 0:
+ # reassemble multifile tensor containing some of the rows
+ rows_per_chunk = partshape[0]
+ current_row = part_id * rows_per_chunk
+ bytes_per_row = fullshape[1] // blck_size * type_size
+ offset = current_row * bytes_per_row
+ fout.seek(tensor_data_offset + offset)
+ fout.write(data)
+ elif split_dim == 1:
+ # reassemble multifile tensor containing some of the cols
+ cols_per_chunk = partshape[1]
+ current_col = part_id * cols_per_chunk
+ bpr = partshape[1] // blck_size * type_size
+ bytes_per_row = fullshape[1] // blck_size * type_size
+ offset_current_col = current_col // blck_size * type_size
+ for row in range(partshape[0]):
+ offset_row = row * bytes_per_row
+ offset = offset_row + offset_current_col
+ fout.seek(tensor_data_offset + offset)
+ fout.write(data[row * bpr:row * bpr + bpr])
+
+ # advance file position to next tensor
+ fout.seek(tensor_data_offset + ggml_nbytes(fullshape, ftype))
+
+def parse_args():
+ parser = argparse.ArgumentParser(description='Migrate from GGML to new GGJT file format')
+ parser.add_argument('fin_path', help='your old ggml file (leave out the .1 .2 etc.)')
+ parser.add_argument('fout_path', help='your new ggjt file name')
+ return parser.parse_args()
+
+def main():
+ args = parse_args()
+ assert args.fin_path
+ assert args.fout_path
+ assert args.fin_path != args.fout_path
+
+ with open(args.fin_path, "rb") as fin:
+ hparams = read_hparams(fin)
+ tokens = read_tokens(fin, hparams)
+
+ if hparams['magic'] == 0x67676a74: # ggjt
+ print("%s: input ggml has already been converted to 'ggjt' magic\n" %
+ (args.fin_path))
+ sys.exit(1)
+
+ if hparams['magic'] != 0x67676d66: # ggmf
+ print("%s: input ggml file doesn't have expected 'ggmf' magic: %#x\n" %
+ (args.fin_path, hparams['magic']))
+ sys.exit(1)
+
+ hparams['magic'] = 0x67676a74 # ggjt
+
+ # count number of multipart files by convention
+ n_parts = 1
+ while True:
+ if os.path.exists("%s.%d" % (args.fin_path, n_parts)):
+ n_parts += 1
+ else:
+ break
+
+ # we output a single file for ggml
+ with open(args.fout_path, "wb") as fout:
+ write_hparams(fout, hparams)
+ write_tokens(fout, tokens)
+ offset_of_tensors = fout.tell()
+ # the tensors we load could be split across multiple files
+ for part_id in range(n_parts):
+ fout.seek(offset_of_tensors)
+ print(f"Processing part {part_id+1} of {n_parts}\n")
+ fin_path = args.fin_path
+ if part_id > 0:
+ fin_path += ".%d" % (part_id)
+ with open(fin_path, "rb") as fin:
+ read_tokens(fin, read_hparams(fin))
+ copy_tensors(fin, fout, part_id, n_parts)
+
+ print(f"Done. Output file: {args.fout_path}\n")
+
+if __name__ == "__main__":
+ main()