diff options
author | jwj7140 <32943891+jwj7140@users.noreply.github.com> | 2023-07-05 03:06:12 +0900 |
---|---|---|
committer | GitHub <noreply@github.com> | 2023-07-04 21:06:12 +0300 |
commit | f257fd255044decffad93dee2502875ce66ad80c (patch) | |
tree | 721030366e4a3ca93088493581ad19750b6bff95 /examples/server | |
parent | 7ee76e45afae7f9a7a53e93393accfb5b36684e1 (diff) |
Add an API example using server.cpp similar to OAI. (#2009)
* add api_like_OAI.py
* add evaluated token count to server
* add /v1/ endpoints binding
Diffstat (limited to 'examples/server')
-rw-r--r-- | examples/server/README.md | 16 | ||||
-rwxr-xr-x | examples/server/api_like_OAI.py | 219 | ||||
-rw-r--r-- | examples/server/server.cpp | 14 |
3 files changed, 244 insertions, 5 deletions
diff --git a/examples/server/README.md b/examples/server/README.md index ba4b2fe..4ed226e 100644 --- a/examples/server/README.md +++ b/examples/server/README.md @@ -190,3 +190,19 @@ Run with bash: ```sh bash chat.sh ``` + +### API like OAI + +API example using Python Flask: [api_like_OAI.py](api_like_OAI.py) +This example must be used with server.cpp + +```sh +python api_like_OAI.py +``` + +After running the API server, you can use it in Python by setting the API base URL. +```python +openai.api_base = "http://<Your api-server IP>:port" +``` + +Then you can utilize llama.cpp as an OpenAI's **chat.completion** or **text_completion** API diff --git a/examples/server/api_like_OAI.py b/examples/server/api_like_OAI.py new file mode 100755 index 0000000..aa325a0 --- /dev/null +++ b/examples/server/api_like_OAI.py @@ -0,0 +1,219 @@ +import argparse +from flask import Flask, jsonify, request, Response +import urllib.parse +import requests +import time +import json + + +app = Flask(__name__) + +parser = argparse.ArgumentParser(description="An example of using server.cpp with a similar API to OAI. It must be used together with server.cpp.") +parser.add_argument("--chat-prompt", type=str, help="the top prompt in chat completions(default: 'A chat between a curious user and an artificial intelligence assistant. The assistant follows the given rules no matter what.\\n')", default='A chat between a curious user and an artificial intelligence assistant. The assistant follows the given rules no matter what.\\n') +parser.add_argument("--user-name", type=str, help="USER name in chat completions(default: '\\nUSER: ')", default="\\nUSER: ") +parser.add_argument("--ai-name", type=str, help="ASSISTANT name in chat completions(default: '\\nASSISTANT: ')", default="\\nASSISTANT: ") +parser.add_argument("--system-name", type=str, help="SYSTEM name in chat completions(default: '\\nASSISTANT's RULE: ')", default="\\nASSISTANT's RULE: ") +parser.add_argument("--stop", type=str, help="the end of response in chat completions(default: '</s>')", default="</s>") +parser.add_argument("--llama-api", type=str, help="Set the address of server.cpp in llama.cpp(default: http://127.0.0.1:8080)", default='http://127.0.0.1:8080') +parser.add_argument("--api-key", type=str, help="Set the api key to allow only few user(default: NULL)", default="") +parser.add_argument("--host", type=str, help="Set the ip address to listen.(default: 127.0.0.1)", default='127.0.0.1') +parser.add_argument("--port", type=int, help="Set the port to listen.(default: 8081)", default=8081) + +args = parser.parse_args() + +def is_present(json, key): + try: + buf = json[key] + except KeyError: + return False + return True + + + +#convert chat to prompt +def convert_chat(messages): + prompt = "" + args.chat_prompt.replace("\\n", "\n") + + system_n = args.system_name.replace("\\n", "\n") + user_n = args.user_name.replace("\\n", "\n") + ai_n = args.ai_name.replace("\\n", "\n") + stop = args.stop.replace("\\n", "\n") + + + for line in messages: + if (line["role"] == "system"): + prompt += f"{system_n}{line['content']}" + if (line["role"] == "user"): + prompt += f"{user_n}{line['content']}" + if (line["role"] == "assistant"): + prompt += f"{ai_n}{line['content']}{stop}" + prompt += ai_n.rstrip() + + return prompt + +def make_postData(body, chat=False, stream=False): + postData = {} + if (chat): + postData["prompt"] = convert_chat(body["messages"]) + else: + postData["prompt"] = body["prompt"] + if(is_present(body, "temperature")): postData["temperature"] = body["temperature"] + if(is_present(body, "top_k")): postData["top_k"] = body["top_k"] + if(is_present(body, "top_p")): postData["top_p"] = body["top_p"] + if(is_present(body, "max_tokens")): postData["n_predict"] = body["max_tokens"] + if(is_present(body, "presence_penalty")): postData["presence_penalty"] = body["presence_penalty"] + if(is_present(body, "frequency_penalty")): postData["frequency_penalty"] = body["frequency_penalty"] + if(is_present(body, "repeat_penalty")): postData["repeat_penalty"] = body["repeat_penalty"] + if(is_present(body, "mirostat")): postData["mirostat"] = body["mirostat"] + if(is_present(body, "mirostat_tau")): postData["mirostat_tau"] = body["mirostat_tau"] + if(is_present(body, "mirostat_eta")): postData["mirostat_eta"] = body["mirostat_eta"] + if(is_present(body, "seed")): postData["seed"] = body["seed"] + if(is_present(body, "logit_bias")): postData["logit_bias"] = [[int(token), body["logit_bias"][token]] for token in body["logit_bias"].keys()] + if (args.stop != ""): + postData["stop"] = [args.stop] + else: + postData["stop"] = [] + if(is_present(body, "stop")): postData["stop"] += body["stop"] + postData["n_keep"] = -1 + postData["stream"] = stream + + return postData + +def make_resData(data, chat=False, promptToken=[]): + resData = { + "id": "chatcmpl" if (chat) else "cmpl", + "object": "chat.completion" if (chat) else "text_completion", + "created": int(time.time()), + "truncated": data["truncated"], + "model": "LLaMA_CPP", + "usage": { + "prompt_tokens": data["tokens_evaluated"], + "completion_tokens": data["tokens_predicted"], + "total_tokens": data["tokens_evaluated"] + data["tokens_predicted"] + } + } + if (len(promptToken) != 0): + resData["promptToken"] = promptToken + if (chat): + #only one choice is supported + resData["choices"] = [{ + "index": 0, + "message": { + "role": "assistant", + "content": data["content"], + }, + "finish_reason": "stop" if (data["stopped_eos"] or data["stopped_word"]) else "length" + }] + else: + #only one choice is supported + resData["choices"] = [{ + "text": data["content"], + "index": 0, + "logprobs": None, + "finish_reason": "stop" if (data["stopped_eos"] or data["stopped_word"]) else "length" + }] + return resData + +def make_resData_stream(data, chat=False, time_now = 0, start=False): + resData = { + "id": "chatcmpl" if (chat) else "cmpl", + "object": "chat.completion.chunk" if (chat) else "text_completion.chunk", + "created": time_now, + "model": "LLaMA_CPP", + "choices": [ + { + "finish_reason": None, + "index": 0 + } + ] + } + if (chat): + if (start): + resData["choices"][0]["delta"] = { + "role": "assistant" + } + else: + resData["choices"][0]["delta"] = { + "content": data["content"] + } + if (data["stop"]): + resData["choices"][0]["finish_reason"] = "stop" if (data["stopped_eos"] or data["stopped_word"]) else "length" + else: + resData["choices"][0]["text"] = data["content"] + if (data["stop"]): + resData["choices"][0]["finish_reason"] = "stop" if (data["stopped_eos"] or data["stopped_word"]) else "length" + + return resData + + +@app.route('/chat/completions', methods=['POST']) +@app.route('/v1/chat/completions', methods=['POST']) +def chat_completions(): + if (args.api_key != "" and request.headers["Authorization"].split()[1] != args.api_key): + return Response(status=403) + body = request.get_json() + stream = False + tokenize = False + if(is_present(body, "stream")): stream = body["stream"] + if(is_present(body, "tokenize")): tokenize = body["tokenize"] + postData = make_postData(body, chat=True, stream=stream) + + promptToken = [] + if (tokenize): + tokenData = requests.request("POST", urllib.parse.urljoin(args.llama_api, "/tokenize"), data=json.dumps({"content": postData["prompt"]})).json() + promptToken = tokenData["tokens"] + + if (not stream): + data = requests.request("POST", urllib.parse.urljoin(args.llama_api, "/completion"), data=json.dumps(postData)) + print(data.json()) + resData = make_resData(data.json(), chat=True, promptToken=promptToken) + return jsonify(resData) + else: + def generate(): + data = requests.request("POST", urllib.parse.urljoin(args.llama_api, "/completion"), data=json.dumps(postData), stream=True) + time_now = int(time.time()) + resData = make_resData_stream({}, chat=True, time_now=time_now, start=True) + yield 'data: {}\n'.format(json.dumps(resData)) + for line in data.iter_lines(): + if line: + decoded_line = line.decode('utf-8') + resData = make_resData_stream(json.loads(decoded_line[6:]), chat=True, time_now=time_now) + yield 'data: {}\n'.format(json.dumps(resData)) + return Response(generate(), mimetype='text/event-stream') + + +@app.route('/completions', methods=['POST']) +@app.route('/v1/completions', methods=['POST']) +def completion(): + if (args.api_key != "" and request.headers["Authorization"].split()[1] != args.api_key): + return Response(status=403) + body = request.get_json() + stream = False + tokenize = False + if(is_present(body, "stream")): stream = body["stream"] + if(is_present(body, "tokenize")): tokenize = body["tokenize"] + postData = make_postData(body, chat=False, stream=stream) + + promptToken = [] + if (tokenize): + tokenData = requests.request("POST", urllib.parse.urljoin(args.llama_api, "/tokenize"), data=json.dumps({"content": postData["prompt"]})).json() + promptToken = tokenData["tokens"] + + if (not stream): + data = requests.request("POST", urllib.parse.urljoin(args.llama_api, "/completion"), data=json.dumps(postData)) + print(data.json()) + resData = make_resData(data.json(), chat=False, promptToken=promptToken) + return jsonify(resData) + else: + def generate(): + data = requests.request("POST", urllib.parse.urljoin(args.llama_api, "/completion"), data=json.dumps(postData), stream=True) + time_now = int(time.time()) + for line in data.iter_lines(): + if line: + decoded_line = line.decode('utf-8') + resData = make_resData_stream(json.loads(decoded_line[6:]), chat=False, time_now=time_now) + yield 'data: {}\n'.format(json.dumps(resData)) + return Response(generate(), mimetype='text/event-stream') + +if __name__ == '__main__': + app.run(args.host, port=args.port) diff --git a/examples/server/server.cpp b/examples/server/server.cpp index 043e497..a835c39 100644 --- a/examples/server/server.cpp +++ b/examples/server/server.cpp @@ -158,6 +158,7 @@ struct llama_server_context { std::string generated_text; std::vector<completion_token_output> generated_token_probs; + size_t num_prompt_tokens = 0; size_t num_tokens_predicted = 0; size_t n_past = 0; size_t n_remain = 0; @@ -195,6 +196,7 @@ struct llama_server_context { void rewind() { params.antiprompt.clear(); + num_prompt_tokens = 0; num_tokens_predicted = 0; generated_text = ""; generated_text.reserve(params.n_ctx); @@ -226,17 +228,18 @@ struct llama_server_context { void loadPrompt() { params.prompt.insert(0, 1, ' '); // always add a first space std::vector<llama_token> prompt_tokens = ::llama_tokenize(ctx, params.prompt, true); + num_prompt_tokens = prompt_tokens.size(); if (params.n_keep < 0) { - params.n_keep = (int)prompt_tokens.size(); + params.n_keep = (int)num_prompt_tokens; } params.n_keep = std::min(params.n_ctx - 4, params.n_keep); // if input prompt is too big, truncate like normal - if (prompt_tokens.size() >= (size_t)params.n_ctx) { + if (num_prompt_tokens>= (size_t)params.n_ctx) { const int n_left = (params.n_ctx - params.n_keep) / 2; std::vector<llama_token> new_tokens(prompt_tokens.begin(), prompt_tokens.begin() + params.n_keep); - const int erased_blocks = (prompt_tokens.size() - params.n_keep - n_left - 1) / n_left; + const int erased_blocks = (num_prompt_tokens - params.n_keep - n_left - 1) / n_left; new_tokens.insert(new_tokens.end(), prompt_tokens.begin() + params.n_keep + erased_blocks * n_left, prompt_tokens.end()); std::copy(prompt_tokens.end() - params.n_ctx, prompt_tokens.end(), last_n_tokens.begin()); @@ -250,7 +253,7 @@ struct llama_server_context { truncated = true; prompt_tokens = new_tokens; } else { - const size_t ps = prompt_tokens.size(); + const size_t ps = num_prompt_tokens; std::fill(last_n_tokens.begin(), last_n_tokens.end() - ps, 0); std::copy(prompt_tokens.begin(), prompt_tokens.end(), last_n_tokens.end() - ps); } @@ -258,7 +261,7 @@ struct llama_server_context { // compare the evaluated prompt with the new prompt n_past = common_part(embd, prompt_tokens); embd = prompt_tokens; - if (n_past == prompt_tokens.size()) { + if (n_past == num_prompt_tokens) { // we have to evaluate at least 1 token to generate logits. n_past--; } @@ -763,6 +766,7 @@ static json format_final_response(llama_server_context & llama, const std::strin { "stop", true }, { "model", llama.params.model_alias }, { "tokens_predicted", llama.num_tokens_predicted }, + { "tokens_evaluated", llama.num_prompt_tokens }, { "generation_settings", format_generation_settings(llama) }, { "prompt", llama.params.prompt }, { "truncated", llama.truncated }, |