aboutsummaryrefslogtreecommitdiff
path: root/examples
diff options
context:
space:
mode:
authorslaren <slarengh@gmail.com>2023-07-24 17:57:12 +0200
committerGitHub <noreply@github.com>2023-07-24 17:57:12 +0200
commit41c674161fb2459bdf7806d1eebead15bc5d046e (patch)
tree0a211224c924a579287762cc7492fe1c9fcf3509 /examples
parentb3f138d05849ccbce67303ac17b50ebbc268128a (diff)
make rms_norm_eps a parameter (#2374)
* make rms_norm_eps a parameter * add rms_norm_eps to command line * fix baby llama, test-grad0 * use scientific notation for eps param in the help ggml-ci
Diffstat (limited to 'examples')
-rw-r--r--examples/baby-llama/baby-llama.cpp20
-rw-r--r--examples/common.cpp8
-rw-r--r--examples/common.h23
-rw-r--r--examples/train-text-from-scratch/train-text-from-scratch.cpp32
4 files changed, 48 insertions, 35 deletions
diff --git a/examples/baby-llama/baby-llama.cpp b/examples/baby-llama/baby-llama.cpp
index 4965881..f9dc0aa 100644
--- a/examples/baby-llama/baby-llama.cpp
+++ b/examples/baby-llama/baby-llama.cpp
@@ -8,6 +8,8 @@
#pragma warning(disable: 4244 4267) // possible loss of data
#endif
+static const float rms_norm_eps = 1e-6f;
+
float frand() {
return (float)rand()/(float)RAND_MAX;
}
@@ -562,7 +564,7 @@ struct ggml_tensor * forward(
// norm
{
// cur shape [n_embd,N,1,1]
- cur = ggml_rms_norm(ctx0, inpL);
+ cur = ggml_rms_norm(ctx0, inpL, rms_norm_eps);
// cur = attention_norm*cur
cur = ggml_mul(ctx0,
@@ -685,7 +687,7 @@ struct ggml_tensor * forward(
// norm
{
// cur shape [n_embd,N,1,1]
- cur = ggml_rms_norm(ctx0, inpFF);
+ cur = ggml_rms_norm(ctx0, inpFF, rms_norm_eps);
// cur = ffn_norm*cur
// cur shape [n_embd,N,1,1]
@@ -729,7 +731,7 @@ struct ggml_tensor * forward(
{
// inpL shape [n_embd,N,1,1]
- inpL = ggml_rms_norm(ctx0, inpL);
+ inpL = ggml_rms_norm(ctx0, inpL, rms_norm_eps);
// inpL = norm*inpL
// inpL shape [n_embd,N,1,1]
@@ -817,7 +819,7 @@ struct ggml_tensor * forward_batch(
// norm
{
// cur shape [n_embd,N*n_batch,1,1]
- cur = ggml_rms_norm(ctx0, inpL);
+ cur = ggml_rms_norm(ctx0, inpL, rms_norm_eps);
assert_shape_2d(cur, n_embd, N*n_batch);
// cur = attention_norm*cur
@@ -981,7 +983,7 @@ struct ggml_tensor * forward_batch(
// norm
{
// cur shape [n_embd,N*n_batch,1,1]
- cur = ggml_rms_norm(ctx0, inpFF);
+ cur = ggml_rms_norm(ctx0, inpFF, rms_norm_eps);
assert_shape_2d(cur, n_embd, N*n_batch);
// cur = ffn_norm*cur
@@ -1034,7 +1036,7 @@ struct ggml_tensor * forward_batch(
{
// inpL shape [n_embd,N*n_batch,1,1]
- inpL = ggml_rms_norm(ctx0, inpL);
+ inpL = ggml_rms_norm(ctx0, inpL, rms_norm_eps);
assert_shape_2d(inpL, n_embd, N*n_batch);
// inpL = norm*inpL
@@ -1104,7 +1106,7 @@ struct ggml_tensor * forward_lora(
// norm
{
// cur shape [n_embd,N,1,1]
- cur = ggml_rms_norm(ctx0, inpL);
+ cur = ggml_rms_norm(ctx0, inpL, rms_norm_eps);
// cur = attention_norm*cur
cur = ggml_mul(ctx0,
@@ -1251,7 +1253,7 @@ struct ggml_tensor * forward_lora(
// norm
{
// cur shape [n_embd,N,1,1]
- cur = ggml_rms_norm(ctx0, inpFF);
+ cur = ggml_rms_norm(ctx0, inpFF, rms_norm_eps);
// cur = ffn_norm*cur
// cur shape [n_embd,N,1,1]
@@ -1295,7 +1297,7 @@ struct ggml_tensor * forward_lora(
{
// inpL shape [n_embd,N,1,1]
- inpL = ggml_rms_norm(ctx0, inpL);
+ inpL = ggml_rms_norm(ctx0, inpL, rms_norm_eps);
// inpL = norm*inpL
// inpL shape [n_embd,N,1,1]
diff --git a/examples/common.cpp b/examples/common.cpp
index 779605f..0e88a12 100644
--- a/examples/common.cpp
+++ b/examples/common.cpp
@@ -177,6 +177,12 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
break;
}
params.n_gqa = std::stoi(argv[i]);
+ } else if (arg == "-eps" || arg == "--rms-norm-eps") {
+ if (++i >= argc) {
+ invalid_param = true;
+ break;
+ }
+ params.rms_norm_eps = std::stof(argv[i]);
} else if (arg == "--rope-freq-base") {
if (++i >= argc) {
invalid_param = true;
@@ -519,6 +525,7 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
fprintf(stdout, " -c N, --ctx-size N size of the prompt context (default: %d)\n", params.n_ctx);
fprintf(stdout, " -b N, --batch-size N batch size for prompt processing (default: %d)\n", params.n_batch);
fprintf(stdout, " -gqa N, --gqa N grouped-query attention factor (TEMP!!! use 8 for LLaMAv2 70B) (default: %d)\n", params.n_gqa);
+ fprintf(stdout, " -eps N, --rms-norm-eps N rms norm eps (TEMP!!! use 1e-5 for LLaMAv2) (default: %.1e)\n", params.rms_norm_eps);
fprintf(stdout, " --top-k N top-k sampling (default: %d, 0 = disabled)\n", params.top_k);
fprintf(stdout, " --top-p N top-p sampling (default: %.1f, 1.0 = disabled)\n", (double)params.top_p);
fprintf(stdout, " --tfs N tail free sampling, parameter z (default: %.1f, 1.0 = disabled)\n", (double)params.tfs_z);
@@ -615,6 +622,7 @@ struct llama_context_params llama_context_params_from_gpt_params(const gpt_param
lparams.n_ctx = params.n_ctx;
lparams.n_batch = params.n_batch;
lparams.n_gqa = params.n_gqa;
+ lparams.rms_norm_eps = params.rms_norm_eps;
lparams.n_gpu_layers = params.n_gpu_layers;
lparams.main_gpu = params.main_gpu;
lparams.tensor_split = params.tensor_split;
diff --git a/examples/common.h b/examples/common.h
index 7086606..894a085 100644
--- a/examples/common.h
+++ b/examples/common.h
@@ -22,18 +22,19 @@
int32_t get_num_physical_cores();
struct gpt_params {
- uint32_t seed = -1; // RNG seed
+ uint32_t seed = -1; // RNG seed
int32_t n_threads = get_num_physical_cores();
- int32_t n_predict = -1; // new tokens to predict
- int32_t n_ctx = 512; // context size
- int32_t n_batch = 512; // batch size for prompt processing (must be >=32 to use BLAS)
- int32_t n_gqa = 1; // grouped-query attention factor (TODO: move to hparams)
- int32_t n_keep = 0; // number of tokens to keep from initial prompt
- int32_t n_chunks = -1; // max number of chunks to process (-1 = unlimited)
- int32_t n_gpu_layers = 0; // number of layers to store in VRAM
- int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors
- float tensor_split[LLAMA_MAX_DEVICES] = {0}; // how split tensors should be distributed across GPUs
- int32_t n_probs = 0; // if greater than 0, output the probabilities of top n_probs tokens.
+ int32_t n_predict = -1; // new tokens to predict
+ int32_t n_ctx = 512; // context size
+ int32_t n_batch = 512; // batch size for prompt processing (must be >=32 to use BLAS)
+ int32_t n_gqa = 1; // grouped-query attention factor (TODO: move to hparams)
+ int32_t n_keep = 0; // number of tokens to keep from initial prompt
+ int32_t n_chunks = -1; // max number of chunks to process (-1 = unlimited)
+ int32_t n_gpu_layers = 0; // number of layers to store in VRAM
+ int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors
+ float tensor_split[LLAMA_MAX_DEVICES] = {0}; // how split tensors should be distributed across GPUs
+ int32_t n_probs = 0; // if greater than 0, output the probabilities of top n_probs tokens.
+ float rms_norm_eps = 1e-6; // rms norm epsilon
float rope_freq_base = 10000.0f; // RoPE base frequency
float rope_freq_scale = 1.0f; // RoPE frequency scaling factor
diff --git a/examples/train-text-from-scratch/train-text-from-scratch.cpp b/examples/train-text-from-scratch/train-text-from-scratch.cpp
index 449b4e9..4bbf6b7 100644
--- a/examples/train-text-from-scratch/train-text-from-scratch.cpp
+++ b/examples/train-text-from-scratch/train-text-from-scratch.cpp
@@ -16,6 +16,8 @@
#pragma warning(disable: 4244 4267) // possible loss of data
#endif
+static const float rms_norm_eps = 1e-6f;
+
struct random_normal_distribution {
std::mt19937 gen;
std::normal_distribution<float> rd;
@@ -439,7 +441,7 @@ struct ggml_tensor * forward(
// norm
{
// cur shape [n_embd,N,1,1]
- cur = ggml_rms_norm(ctx0, inpL);
+ cur = ggml_rms_norm(ctx0, inpL, rms_norm_eps);
// cur = attention_norm*cur
cur = ggml_mul(ctx0,
@@ -562,7 +564,7 @@ struct ggml_tensor * forward(
// norm
{
// cur shape [n_embd,N,1,1]
- cur = ggml_rms_norm(ctx0, inpFF);
+ cur = ggml_rms_norm(ctx0, inpFF, rms_norm_eps);
// cur = ffn_norm*cur
// cur shape [n_embd,N,1,1]
@@ -606,7 +608,7 @@ struct ggml_tensor * forward(
{
// inpL shape [n_embd,N,1,1]
- inpL = ggml_rms_norm(ctx0, inpL);
+ inpL = ggml_rms_norm(ctx0, inpL, rms_norm_eps);
// inpL = norm*inpL
// inpL shape [n_embd,N,1,1]
@@ -694,7 +696,7 @@ struct ggml_tensor * forward_batch(
// norm
{
// cur shape [n_embd,N*n_batch,1,1]
- cur = ggml_rms_norm(ctx0, inpL);
+ cur = ggml_rms_norm(ctx0, inpL, rms_norm_eps);
assert_shape_2d(cur, n_embd, N*n_batch);
// cur = attention_norm*cur
@@ -857,7 +859,7 @@ struct ggml_tensor * forward_batch(
// norm
{
// cur shape [n_embd,N*n_batch,1,1]
- cur = ggml_rms_norm(ctx0, inpFF);
+ cur = ggml_rms_norm(ctx0, inpFF, rms_norm_eps);
assert_shape_2d(cur, n_embd, N*n_batch);
// cur = ffn_norm*cur
@@ -910,7 +912,7 @@ struct ggml_tensor * forward_batch(
{
// inpL shape [n_embd,N*n_batch,1,1]
- inpL = ggml_rms_norm(ctx0, inpL);
+ inpL = ggml_rms_norm(ctx0, inpL, rms_norm_eps);
assert_shape_2d(inpL, n_embd, N*n_batch);
// inpL = norm*inpL
@@ -979,7 +981,7 @@ struct ggml_tensor * forward_batch_wo_cache(
// norm
{
// cur shape [n_embd,N*n_batch,1,1]
- cur = ggml_rms_norm(ctx0, inpL);
+ cur = ggml_rms_norm(ctx0, inpL, rms_norm_eps);
assert_shape_2d(cur, n_embd, N*n_batch);
// cur = attention_norm*cur
@@ -1085,7 +1087,7 @@ struct ggml_tensor * forward_batch_wo_cache(
// norm
{
// cur shape [n_embd,N*n_batch,1,1]
- cur = ggml_rms_norm(ctx0, inpFF);
+ cur = ggml_rms_norm(ctx0, inpFF, rms_norm_eps);
assert_shape_2d(cur, n_embd, N*n_batch);
// cur = ffn_norm*cur
@@ -1138,7 +1140,7 @@ struct ggml_tensor * forward_batch_wo_cache(
{
// inpL shape [n_embd,N*n_batch,1,1]
- inpL = ggml_rms_norm(ctx0, inpL);
+ inpL = ggml_rms_norm(ctx0, inpL, rms_norm_eps);
assert_shape_2d(inpL, n_embd, N*n_batch);
// inpL = norm*inpL
@@ -1203,7 +1205,7 @@ struct ggml_tensor * forward_batch_wo_cache_flash_attn(
// norm
{
- cur = ggml_rms_norm(ctx0, inpL);
+ cur = ggml_rms_norm(ctx0, inpL, rms_norm_eps);
assert_shape_2d(cur, n_embd, N*n_batch);
// cur = attention_norm*cur
@@ -1267,7 +1269,7 @@ struct ggml_tensor * forward_batch_wo_cache_flash_attn(
{
// norm
{
- cur = ggml_rms_norm(ctx0, inpFF);
+ cur = ggml_rms_norm(ctx0, inpFF, rms_norm_eps);
assert_shape_2d(cur, n_embd, N*n_batch);
// cur = ffn_norm*cur
@@ -1311,7 +1313,7 @@ struct ggml_tensor * forward_batch_wo_cache_flash_attn(
// norm
{
- inpL = ggml_rms_norm(ctx0, inpL);
+ inpL = ggml_rms_norm(ctx0, inpL, rms_norm_eps);
assert_shape_2d(inpL, n_embd, N*n_batch);
// inpL = norm*inpL
@@ -1603,7 +1605,7 @@ struct ggml_tensor * forward_batch_wo_cache_flash_attn_train(
struct my_llama_layer & layer = model->layers[il];
// tensors with values necessary for backward pass are in persistent buf(-1)
// other tensors with buf(0) and buf(1) are only temporary needed, and their memory reused after layer is completed.
- use_buf(-1); struct ggml_tensor * t02 = expand(gf, ggml_rms_norm (ctx0, cur)); assert_shape_2d(t02, n_embd, N*n_batch);
+ use_buf(-1); struct ggml_tensor * t02 = expand(gf, ggml_rms_norm (ctx0, cur, rms_norm_eps)); assert_shape_2d(t02, n_embd, N*n_batch);
use_buf( 0); struct ggml_tensor * t03 = expand(gf, ggml_repeat (ctx0, layer.attention_norm, t02)); assert_shape_2d(t03, n_embd, N*n_batch);
use_buf(-1); struct ggml_tensor * t04 = expand(gf, ggml_mul (ctx0, t02, t03)); assert_shape_2d(t04, n_embd, N*n_batch);
use_buf(-1); struct ggml_tensor * t05 = expand(gf, ggml_mul_mat (ctx0, layer.wq, t04)); assert_shape_2d(t05, n_embd, N*n_batch);
@@ -1623,7 +1625,7 @@ struct ggml_tensor * forward_batch_wo_cache_flash_attn_train(
use_buf(-1); struct ggml_tensor * t19 = expand(gf, ggml_reshape_2d (ctx0, t18, n_embd, N*n_batch)); assert_shape_2d(t19, n_embd, N*n_batch);
use_buf( 0); struct ggml_tensor * t20 = expand(gf, ggml_mul_mat (ctx0, layer.wo, t19)); assert_shape_2d(t20, n_embd, N*n_batch);
use_buf(-1); struct ggml_tensor * t21 = expand(gf, ggml_add (ctx0, t20, cur)); assert_shape_2d(t21, n_embd, N*n_batch);
- use_buf(-1); struct ggml_tensor * t22 = expand(gf, ggml_rms_norm (ctx0, t21)); assert_shape_2d(t22, n_embd, N*n_batch);
+ use_buf(-1); struct ggml_tensor * t22 = expand(gf, ggml_rms_norm (ctx0, t21, rms_norm_eps)); assert_shape_2d(t22, n_embd, N*n_batch);
use_buf( 0); struct ggml_tensor * t23 = expand(gf, ggml_repeat (ctx0, layer.ffn_norm, t22)); assert_shape_2d(t23, n_embd, N*n_batch);
use_buf(-1); struct ggml_tensor * t24 = expand(gf, ggml_mul (ctx0, t23, t22)); assert_shape_2d(t24, n_embd, N*n_batch);
use_buf(-1); struct ggml_tensor * t25 = expand(gf, ggml_mul_mat (ctx0, layer.w3, t24)); assert_shape_2d(t25, n_ff, N*n_batch);
@@ -1666,7 +1668,7 @@ struct ggml_tensor * forward_batch_wo_cache_flash_attn_train(
}
clr_buf(0);
use_buf(0);
- struct ggml_tensor * t31 = expand(gf, ggml_rms_norm (ctx0, cur)); assert_shape_2d(t31, n_embd, N*n_batch);
+ struct ggml_tensor * t31 = expand(gf, ggml_rms_norm (ctx0, cur, rms_norm_eps)); assert_shape_2d(t31, n_embd, N*n_batch);
struct ggml_tensor * t32 = expand(gf, ggml_repeat (ctx0, model->norm, t31)); assert_shape_2d(t32, n_embd, N*n_batch);
struct ggml_tensor * t33 = expand(gf, ggml_mul (ctx0, t32, t31)); assert_shape_2d(t33, n_embd, N*n_batch);
use_buf(-1);