aboutsummaryrefslogtreecommitdiff
path: root/ggml-opencl.cpp
diff options
context:
space:
mode:
author0cc4m <picard12@live.de>2023-06-04 08:12:05 +0200
committerGitHub <noreply@github.com>2023-06-04 08:12:05 +0200
commitdcb2ed48268e421baf25adc00d602dad0f415564 (patch)
tree261ef84fe660d06fce90c58fc01a16ae0e69be52 /ggml-opencl.cpp
parentd8bd0013e8768aaa3dc9cfc1ff01499419d5348e (diff)
OpenCL: Fix duplication of layers in VRAM and RAM, add GPU mul kernel (#1653)
* Use events instead of clFinish, where possible * OpenCL: Don't load gpu layers into RAM, add mul_f32 kernel * Reduce queueing overhead for contiguous tensors by using single mul kernel call * Adapt to #1612 cl_mem malloc changes * Reduce code duplication between cuda and opencl branches * Improve implementation
Diffstat (limited to 'ggml-opencl.cpp')
-rw-r--r--ggml-opencl.cpp184
1 files changed, 173 insertions, 11 deletions
diff --git a/ggml-opencl.cpp b/ggml-opencl.cpp
index 9a5cb05..52ba3aa 100644
--- a/ggml-opencl.cpp
+++ b/ggml-opencl.cpp
@@ -3,6 +3,7 @@
#include <array>
#include <atomic>
#include <sstream>
+#include <vector>
#define CL_TARGET_OPENCL_VERSION 110
#include <clblast.h>
@@ -197,6 +198,18 @@ __kernel void KERNEL_NAME(__global X_TYPE* x, __local float* tmp, __global float
}
);
+std::string mul_template = MULTILINE_QUOTE(
+__kernel void KERNEL_NAME(__global TYPE* x, const int x_offset, __global TYPE* y, const int y_offset, __global TYPE* dst, const int dst_offset, const int ky) {
+ const int i = get_group_id(0)*get_local_size(0) + get_local_id(0);
+
+ if (i >= get_global_size(0)) {
+ return;
+ }
+
+ dst[dst_offset + i] = x[x_offset + i] * y[y_offset + i%ky];
+}
+);
+
#define CL_CHECK(err) \
do { \
cl_int err_ = (err); \
@@ -239,6 +252,13 @@ std::array<std::string, 30> dequant_mul_mat_vec_str_values = {
"convert_mul_mat_vec_f16", "half", "1", "1", "convert_f16"
};
+std::array<std::string, 2> mul_str_keys = {
+ "KERNEL_NAME", "TYPE"
+};
+std::array<std::string, 2> mul_str_values = {
+ "mul_f32", "float"
+};
+
std::string& replace(std::string& s, const std::string& from, const std::string& to) {
size_t pos = 0;
while ((pos = s.find(from, pos)) != std::string::npos) {
@@ -261,6 +281,13 @@ std::string generate_kernels() {
src << dequant_kernel << '\n';
src << dmmv_kernel << '\n';
}
+ for (size_t i = 0; i < mul_str_values.size(); i += mul_str_keys.size()) {
+ std::string mul_kernel = mul_template;
+ for (size_t j = 0; j < mul_str_keys.size(); j++) {
+ replace(mul_kernel, mul_str_keys[j], mul_str_values[i + j]);
+ }
+ src << mul_kernel << '\n';
+ }
return src.str();
}
@@ -272,6 +299,7 @@ static cl_program program;
static cl_kernel convert_row_f16_cl;
static cl_kernel dequantize_row_q4_0_cl, dequantize_row_q4_1_cl, dequantize_row_q5_0_cl, dequantize_row_q5_1_cl, dequantize_row_q8_0_cl;
static cl_kernel dequantize_mul_mat_vec_q4_0_cl, dequantize_mul_mat_vec_q4_1_cl, dequantize_mul_mat_vec_q5_0_cl, dequantize_mul_mat_vec_q5_1_cl, dequantize_mul_mat_vec_q8_0_cl, convert_mul_mat_vec_f16_cl;
+static cl_kernel mul_f32_cl;
static bool fp16_support;
static cl_program build_program_from_source(cl_context ctx, cl_device_id dev, const char* program_buffer) {
@@ -508,6 +536,9 @@ void ggml_cl_init(void) {
CL_CHECK((dequantize_mul_mat_vec_q5_1_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q5_1", &err), err));
CL_CHECK((dequantize_mul_mat_vec_q8_0_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q8_0", &err), err));
CL_CHECK((convert_mul_mat_vec_f16_cl = clCreateKernel(program, "convert_mul_mat_vec_f16", &err), err));
+
+ // mul kernel
+ CL_CHECK((mul_f32_cl = clCreateKernel(program, "mul_f32", &err), err));
}
static cl_kernel* ggml_get_to_fp32_cl(ggml_type type) {
@@ -644,6 +675,98 @@ static cl_int ggml_cl_h2d_tensor_2d(cl_command_queue queue, cl_mem dst, size_t o
return err;
}
+static void ggml_cl_mul_f32(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
+ GGML_ASSERT(src1->backend == GGML_BACKEND_CL);
+ const int64_t ne00 = src0->ne[0];
+ const int64_t ne01 = src0->ne[1];
+ const int64_t ne02 = src0->ne[2];
+ const int64_t ne03 = src0->ne[2];
+ const int64_t ne0 = ne00 * ne01 * ne02 * ne03;
+ const int64_t ne10 = src1->ne[0];
+ const int64_t ne11 = src1->ne[1];
+ const int64_t ne12 = src1->ne[2];
+ const int64_t ne13 = src1->ne[3];
+ const int64_t nb10 = src1->nb[0];
+ const int nb2 = dst->nb[2];
+ const int nb3 = dst->nb[3];
+ size_t x_size;
+ size_t d_size;
+
+ cl_mem d_X = ggml_cl_pool_malloc(ne0 * sizeof(float), &x_size, CL_MEM_READ_ONLY); // src0
+ cl_mem d_Y = (cl_mem) src1->data; // src1 is already on device, broadcasted.
+ cl_mem d_D = ggml_cl_pool_malloc(ne0 * sizeof(float), &d_size, CL_MEM_WRITE_ONLY); // dst
+
+ for (int64_t i03 = 0; i03 < ne03; i03++) {
+ for (int64_t i02 = 0; i02 < ne02; i02++) {
+ const int i0 = i03*ne02 + i02;
+
+ cl_event ev;
+
+ // copy src0 to device
+ CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_X, i0, src0, i03, i02, &ev));
+
+ if (nb10 == sizeof(float)) {
+ // Contiguous, avoid overhead from queueing many kernel runs
+ const int64_t i13 = i03%ne13;
+ const int64_t i12 = i02%ne12;
+ const int i1 = i13*ne12*ne11 + i12*ne11;
+
+ cl_int x_offset = 0;
+ cl_int y_offset = i1*ne10;
+ cl_int d_offset = 0;
+
+ size_t global = ne00 * ne01;
+ cl_int ky = ne10;
+ CL_CHECK(clSetKernelArg(mul_f32_cl, 0, sizeof(cl_mem), &d_X));
+ CL_CHECK(clSetKernelArg(mul_f32_cl, 1, sizeof(cl_int), &x_offset));
+ CL_CHECK(clSetKernelArg(mul_f32_cl, 2, sizeof(cl_mem), &d_Y));
+ CL_CHECK(clSetKernelArg(mul_f32_cl, 3, sizeof(cl_int), &y_offset));
+ CL_CHECK(clSetKernelArg(mul_f32_cl, 4, sizeof(cl_mem), &d_D));
+ CL_CHECK(clSetKernelArg(mul_f32_cl, 5, sizeof(cl_int), &d_offset));
+ CL_CHECK(clSetKernelArg(mul_f32_cl, 6, sizeof(cl_int), &ky));
+ CL_CHECK(clEnqueueNDRangeKernel(queue, mul_f32_cl, 1, NULL, &global, NULL, 1, &ev, NULL));
+ } else {
+ for (int64_t i01 = 0; i01 < ne01; i01++) {
+ const int64_t i13 = i03%ne13;
+ const int64_t i12 = i02%ne12;
+ const int64_t i11 = i01%ne11;
+ const int i1 = i13*ne12*ne11 + i12*ne11 + i11;
+
+ cl_int x_offset = i01*ne00;
+ cl_int y_offset = i1*ne10;
+ cl_int d_offset = i01*ne00;
+
+ // compute
+ size_t global = ne00;
+ cl_int ky = ne10;
+ CL_CHECK(clSetKernelArg(mul_f32_cl, 0, sizeof(cl_mem), &d_X));
+ CL_CHECK(clSetKernelArg(mul_f32_cl, 1, sizeof(cl_int), &x_offset));
+ CL_CHECK(clSetKernelArg(mul_f32_cl, 2, sizeof(cl_mem), &d_Y));
+ CL_CHECK(clSetKernelArg(mul_f32_cl, 3, sizeof(cl_int), &y_offset));
+ CL_CHECK(clSetKernelArg(mul_f32_cl, 4, sizeof(cl_mem), &d_D));
+ CL_CHECK(clSetKernelArg(mul_f32_cl, 5, sizeof(cl_int), &d_offset));
+ CL_CHECK(clSetKernelArg(mul_f32_cl, 6, sizeof(cl_int), &ky));
+ CL_CHECK(clEnqueueNDRangeKernel(queue, mul_f32_cl, 1, NULL, &global, NULL, 1, &ev, NULL));
+ }
+ }
+
+ CL_CHECK(clReleaseEvent(ev));
+ CL_CHECK(clFinish(queue));
+
+ // copy dst to host
+ float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
+ CL_CHECK(clEnqueueReadBuffer(queue, d_D, true, 0, sizeof(float) * ne00*ne01, d, 0, NULL, NULL));
+ }
+ }
+ ggml_cl_pool_free(d_X, x_size);
+ ggml_cl_pool_free(d_D, d_size);
+}
+
+void ggml_cl_mul(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) {
+ GGML_ASSERT(src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32);
+ ggml_cl_mul_f32(src0, src1, dst);
+}
+
static void ggml_cl_mul_mat_f32(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
const int64_t ne00 = src0->ne[0];
const int64_t ne01 = src0->ne[1];
@@ -860,13 +983,15 @@ static void ggml_cl_mul_mat_q_f32(const ggml_tensor * src0, const ggml_tensor *
cl_kernel* dmmv = ggml_get_dequantize_mul_mat_vec_cl(type);
GGML_ASSERT(to_fp32_cl != nullptr);
+ size_t ev_idx = 0;
+ std::vector<cl_event> events;
+
for (int64_t i03 = 0; i03 < ne03; i03++) {
for (int64_t i02 = 0; i02 < ne02; i02++) {
- cl_event ev_sgemm;
-
// copy src0 to device if necessary
if (src0->backend == GGML_BACKEND_CPU) {
- CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Q, 0, src0, i03, i02, NULL));
+ events.emplace_back();
+ CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Q, 0, src0, i03, i02, events.data() + ev_idx++));
} else if (src0->backend == GGML_BACKEND_CL) {
d_Q = (cl_mem) src0->data;
} else {
@@ -874,30 +999,32 @@ static void ggml_cl_mul_mat_q_f32(const ggml_tensor * src0, const ggml_tensor *
}
if (mul_mat_vec) { // specialized dequantize_mul_mat_vec kernel
// copy src1 to device
- CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Y, 0, src1, i03, i02, NULL));
+ events.emplace_back();
+ CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Y, 0, src1, i03, i02, events.data() + ev_idx++));
// compute
const size_t global = ne01 * CL_DMMV_BLOCK_SIZE;
const size_t local = CL_DMMV_BLOCK_SIZE;
const cl_int ncols = ne00;
+ events.emplace_back();
CL_CHECK(clSetKernelArg(*dmmv, 0, sizeof(cl_mem), &d_Q));
CL_CHECK(clSetKernelArg(*dmmv, 1, sizeof(float) * local, NULL));
CL_CHECK(clSetKernelArg(*dmmv, 2, sizeof(cl_mem), &d_Y));
CL_CHECK(clSetKernelArg(*dmmv, 3, sizeof(cl_mem), &d_D));
CL_CHECK(clSetKernelArg(*dmmv, 4, sizeof(cl_int), &ncols));
- CL_CHECK(clFinish(queue));
- CL_CHECK(clEnqueueNDRangeKernel(queue, *dmmv, 1, NULL, &global, &local, 0, NULL, &ev_sgemm));
+ CL_CHECK(clEnqueueNDRangeKernel(queue, *dmmv, 1, NULL, &global, &local, events.size() - 1, events.data(), events.data() + ev_idx++));
} else { // general dequantization kernel + CLBlast matrix matrix multiplication
// convert src0 to fp32 on device
const size_t global = x_ne;
CL_CHECK(clSetKernelArg(*to_fp32_cl, 0, sizeof(cl_mem), &d_Q));
CL_CHECK(clSetKernelArg(*to_fp32_cl, 1, sizeof(cl_mem), &d_X));
- CL_CHECK(clFinish(queue));
- CL_CHECK(clEnqueueNDRangeKernel(queue, *to_fp32_cl, 1, NULL, &global, NULL, 0, NULL, NULL));
+ CL_CHECK(clEnqueueNDRangeKernel(queue, *to_fp32_cl, 1, NULL, &global, NULL, events.size(), !events.empty() ? events.data() : NULL, NULL));
// copy src1 to device
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Y, 0, src1, i03, i02, NULL));
+ events.emplace_back();
+
// wait for conversion
CL_CHECK(clFinish(queue));
@@ -910,7 +1037,7 @@ static void ggml_cl_mul_mat_q_f32(const ggml_tensor * src0, const ggml_tensor *
d_Y, 0, ne10,
beta,
d_D, 0, ne01,
- &queue, &ev_sgemm);
+ &queue, events.data() + ev_idx++);
if (status != clblast::StatusCode::kSuccess) {
GGML_ASSERT(false);
@@ -919,8 +1046,13 @@ static void ggml_cl_mul_mat_q_f32(const ggml_tensor * src0, const ggml_tensor *
// copy dst to host
float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
- CL_CHECK(clEnqueueReadBuffer(queue, d_D, true, 0, sizeof(float) * d_ne, d, 1, &ev_sgemm, NULL));
- clReleaseEvent(ev_sgemm);
+ CL_CHECK(clEnqueueReadBuffer(queue, d_D, true, 0, sizeof(float) * d_ne, d, 1, &events[events.size() - 1], NULL));
+ for (auto *event : events) {
+ clReleaseEvent(event);
+ }
+
+ ev_idx = 0;
+ events.clear();
}
}
@@ -1026,3 +1158,33 @@ void ggml_cl_transform_tensor(ggml_tensor * tensor) {
tensor->data = dst;
tensor->backend = GGML_BACKEND_CL;
}
+
+void ggml_cl_load_data(const char * fname, struct ggml_tensor * tensor, const size_t offset) {
+ cl_int err;
+ FILE * fp = fopen(fname, "rb");
+
+ const size_t size = ggml_nbytes(tensor);
+
+ cl_mem dst;
+ CL_CHECK((dst = clCreateBuffer(context, CL_MEM_READ_ONLY, size, nullptr, &err), err));
+ void * buf_host = malloc(size);
+
+#ifdef _WIN32
+ int ret = _fseeki64(fp, (__int64) offset, SEEK_SET);
+#else
+ int ret = fseek(fp, (long) offset, SEEK_SET);
+#endif
+ GGML_ASSERT(ret == 0); // same
+
+ size_t ret2 = fread(buf_host, size, 1, fp);
+ if (ret2 != 1) {
+ fprintf(stderr, "unexpectedly reached end of file");
+ exit(1);
+ }
+
+ clEnqueueWriteBuffer(queue, dst, CL_TRUE, 0, size, buf_host, 0, nullptr, nullptr);
+
+ tensor->data = dst;
+ free(buf_host);
+ fclose(fp);
+}