aboutsummaryrefslogtreecommitdiff
path: root/ggml.c
diff options
context:
space:
mode:
authorxaedes <xaedes@gmail.com>2023-06-13 21:04:40 +0200
committerGitHub <noreply@github.com>2023-06-13 22:04:40 +0300
commite32089b2c20b1b87b22912f4a8b93fe01647d5b9 (patch)
treedeff08b10e5630c455fc53cb64f90568202d6420 /ggml.c
parent2347e45e7bdb09c9a7d74b2c0bc86c2b65f0c343 (diff)
train : improved training-from-scratch example (#1652)
* add python wrapper https://gist.github.com/abetlen/2b90e5f153f6efd00931d098de5c73ce * fix decoding error. adds errors=ignore parameter * add python bindings for functions to get and set the whole llama state (rng, logits, embedding and kv_cache) * update python bindings * add text generating baby-llama from scratch example * fix race condition bug in ggml_compute_forward_diag_mask_f32 * implement ggml_soft_max_back for more performant backward pass of soft_max avoids creating big intermediate matrices of size n_embd x n_embd for llama layers and n_vocab x n_vocab for cross entropy loss * improve softmax backward pass go from quadratic runtime to linear runtime by simplifying the formulas * fix race condition bug in non-inplace ggml_compute_forward_diag_mask_f32 memcpy needs to be synchronized across threads to avoid race conditions. => do it in INIT phase * fix bug in ggml_compute_forward_soft_max_back_f32 on DEBUG build * improve performance of mul_mat backward pass avoid transpose by using mul_mat with swapped arguments * avoid printing too much newlines in baby-llama-text * activate threading in baby-llama-text * add ggml_out_prod and use it for mul_mat backward pass for improved performance performance stats report improvement from 37 seconds to 16 seconds runtime during my training tests * better weight initialization improves training convergence at start * better weight initialization improves training convergence at start * improve ggml_out_prod performance - change iteration order (>15s -> 10s runtime) - parallelize over one more dimension: over dst matrix rows (10s -> <5s runtime) * add llama sampler, shuffle samples and constrain sampling to tokens occurring in train data * fix get_samples call, add model tensor names, increase model size, start training samples after newline * save train trained model to checkpoint and load model to be trained from checkpoint * use inplace functions where possible * initialize rng with srand * use different arguments for input and output checkpoint * ggml fixes to support backward pass on inplace operations * remove duplicate include * fix cross entropy loss - add target probabilities for each sample which is then used in cross entropy loss * print used memory before and after optimization * sample with non-greedy sampling parameters at the end of training * add cmake target for baby-llama-text * add ggml_add1_inplace to header * enable gradient propagation for inplace add1 and scale operations those functions backward passes don't need the original src0, so they also work when forward is inplace * implement AdamW in ggml_opt_adam by adding weight decay parameter (default 0.001f) also add a schedule parameter (default 1.0f) that can be used to scale alpha and decay according to learning schedule. setting the decay parameter to zero disables AdamW resulting in normal Adam optimizer. since the difference between Adam and AdamW is minimal it is not implemented as another optimizer, but integrated into the existing Adam optimizer. * use inplace operations in cross_entropy_loss * fix random weight initialization scale * add missing default parameters for adam optimizer * add ggml_opt_context, so that we can properly resume training otherwise the optimizer states, tracking statistics about the error function and its derivates, will reset to zero each time ggml_opt is called, hindering convergence on resumed training. now the optimizer context and all its memory is stored in a separate struct. * fix bug in llama_sample_token_mirostat_v2 when all candidates are filtered out through mu threshold, the following soft_max operation will fail. so keep at least one. * add forward function without using cache, for more performant training during training on whole samples no cache is required. removing the cache and simplifying the remaining code results in performance and memory usage improvement. * print suppressed newline tokens as string "\n" printing too much actual newlines is suppressed to avoid flooding the console. * store optimizer state in training checkpoint and add learning schedule persistent optimizer state allows to resume training without resetting the optimizer learning schedule consists of linear warmup ramp followed by cosine decay with restarts * remove unused functions * fix bug in get_samples which corrupted training targets * save checkpoint only when it was trained * simplify code * remove trailing whitespace * simplify backward pass for SQRT * replace inefficient repeat backward pass with dedicated repeat_back operation * add ggml_cross_entropy_loss with backward pass for faster training cross entropy loss can also be implemented using softmax and log, but as dedicated operation it is faster and especially avoids unnecessary memory overhead. * add tests for cross_entropy_loss backward pass finite differences regularly results in estimated gradient of zero, despite the backward pass giving non zero gradient. _probably_ the finite differences fails due to numerical issues * use ggml_cross_entropy_loss in text training example * remove trailing whitespace * slightly improve how cross entropy loss is compute btw: directly implemented cross entropy loss seems to have way lower magnitudes than when implemented with softmax and log. probably the input to log gets closer to zero due to float numerics. maybe the multiplication by (1.0-eps)/sum is more accurate.. * add llama_get_vocab to get the vocabulary as output parameters * set default model.type for unknown models with few layers * add export of training checkpoint to llama compatible model file * get vocabulary for exporting training checkpoint to llama compatible model file * implement backward pass of flash attention * bugfixes for backward pass of flash attention * test flash attention backward pass need to set loose error bounds to pass. the finitie differences are close to numeric limits and often return quite different values than the backward pass. reducing eps further lets the gradients vanish completely. likewise setting eps to big results in wronger values. the softmax in the middle of the function is probably the most responsible for the numeric issues using finite differences. * add option to train with flash attention and move options to the top of the main function training from scratch also works with flash attention training convergence and generation results after fix number of iterations are worse than when not using flash attention. maybe there still lingers a bug in the flash attention backward pass? but training works, just with slower convergence. flash attention is still worth to use, because it requires way less memory and is faster with high n_ctx * add train_params and command line option parser * remove unnecessary comments * add train params to specify memory size * remove python bindings * rename baby-llama-text to train-text-from-scratch * replace auto parameters in lambda function * add #include <climits> * add explicit cast to fix compile error "error: non-constant-expression cannot be narrowed from type 'int64_t' (aka 'long long') to 'uint32_t' (aka 'unsigned int') in initializer list [-Wc++11-narrowing]" * remove trailing whitespace * add ggml_opt_resume_g which accepts forward and backward cgraphs * fix formulas in comments * bug fix for ggml_compute_forward_get_rows_back_f32 the result should be set to zero, not to whatever data is in opt0 * improve training memory usage with scratch buffers instead of relying on the automatic backward pass, we manually create the graph for the backward pass. it turns out that all backward pass operations need only temporary memory which can be reused after each layer. will compute backward pass for ALL model parameters * add option to use scratch buffers in training or not make it configurable because currently training with scratch buffers implies flash attention and optimization over all parameters. * ci : disable temporary * store view offset and permute axes in opt[0] instead of storing it in padding use memcpy to store offset, because offset is of type size_t. when storing it as int32_t offset would have to be smaller than 2^31 which is not necessarily true. * minor : fix compile warnings + minor style changes * fix bug in threaded indices calculation of ggml_compute_forward_flash_attn_back_f32 * store view offset like in master branch * bug fix in forward_batch_wo_cache_flash_attn_train * scratch buffer bug fixes in forward_batch_wo_cache_flash_attn_train data of permute and reshape is the same as their input. if we want to preserve the output of permute/reshape, we also need to preserve their inputs. replace reshape(src0, src1) with reshape_nd calls so that we don't need src1. replace (temporary) t03 with ggml_repeat(ctx0, layer.attention_norm, t02). in the future we could also use the new broadcasting ggml_mul to avoid these repeat calls. for this we need backward pass of broadcasting ggml_mul. * remove unnecessary scratch buffer 0 buf 0 is persistent memory, so we can just disable scratch for this by using buf -1 * avoid creating unnecessary grad tensors previously we need to create grads for model parameters, so that expand(..) correctly populates cgraph->leafs & cgraph->grads this wasted memory, because unnecessary grad for each op were automatically created: the automatically generated grad was unnecessary because we later manually set the grad (e.g. t35->grad = expand(gb, ...) ). this discarded the automatically generated grad resulting in wasted memory. improved this by changing expand(..) to not use ggml_build_forward_expand. expand set cgraph->nodes but not the leafs. cgraph->leafs & cgraph->grads are set in another pass after the last expand call. * print used training seed * zero initialize gfbuf and gbbuf * ci : re-enable workflows + add README for training --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Diffstat (limited to 'ggml.c')
-rw-r--r--ggml.c2081
1 files changed, 1832 insertions, 249 deletions
diff --git a/ggml.c b/ggml.c
index 252edd5..32c1913 100644
--- a/ggml.c
+++ b/ggml.c
@@ -3603,6 +3603,7 @@ static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
"SUM_ROWS",
"MEAN",
"REPEAT",
+ "REPEAT_BACK",
"ABS",
"SGN",
"NEG",
@@ -3616,6 +3617,7 @@ static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
"RMS_NORM_BACK",
"MUL_MAT",
+ "OUT_PROD",
"SCALE",
"SET",
@@ -3631,6 +3633,7 @@ static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
"DIAG_MASK_INF",
"DIAG_MASK_ZERO",
"SOFT_MAX",
+ "SOFT_MAX_BACK",
"ROPE",
"ROPE_BACK",
"ALIBI",
@@ -3640,13 +3643,16 @@ static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
"FLASH_ATTN",
"FLASH_FF",
+ "FLASH_ATTN_BACK",
"MAP_UNARY",
"MAP_BINARY",
-};
-static_assert(GGML_OP_COUNT == 51, "GGML_OP_COUNT != 51");
+ "CROSS_ENTROPY_LOSS",
+ "CROSS_ENTROPY_LOSS_BACK",
+};
+static_assert(GGML_OP_COUNT == 57, "GGML_OP_COUNT != 57");
static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
"none",
@@ -3665,6 +3671,7 @@ static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
"Σx_k",
"Σx/n",
"repeat(x)",
+ "repeat_back(x)",
"abs(x)",
"sgn(x)",
"-x",
@@ -3678,6 +3685,7 @@ static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
"rms_norm_back(x)",
"X*Y",
+ "X*Y",
"x*v",
"y-\\>view(x)",
@@ -3693,6 +3701,7 @@ static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
"diag_mask_inf(x)",
"diag_mask_zero(x)",
"soft_max(x)",
+ "soft_max_back(x)",
"rope(x)",
"rope_back(x)",
"alibi(x)",
@@ -3702,12 +3711,16 @@ static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
"flash_attn(x)",
"flash_ff(x)",
+ "flash_attn_back(x)",
"f(x)",
"f(x,y)",
+
+ "cross_entropy_loss(x,y)",
+ "cross_entropy_loss_back(x,y)",
};
-static_assert(GGML_OP_COUNT == 51, "GGML_OP_COUNT != 51");
+static_assert(GGML_OP_COUNT == 57, "GGML_OP_COUNT != 57");
static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
@@ -3870,6 +3883,15 @@ static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct
(t0->ne[3] == t1->ne[3]);
}
+static inline bool ggml_can_out_prod(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
+ static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
+
+ return
+ (t0->ne[1] == t1->ne[1]) &&
+ (t0->ne[2] == t1->ne[2]) &&
+ (t0->ne[3] == t1->ne[3]);
+}
+
bool ggml_is_quantized(enum ggml_type type) {
return GGML_IS_QUANTIZED[type];
}
@@ -4693,7 +4715,7 @@ struct ggml_tensor * ggml_add_impl(
bool is_node = false;
- if (!inplace && (a->grad || b->grad)) {
+ if (a->grad || b->grad) {
is_node = true;
}
@@ -4733,7 +4755,7 @@ struct ggml_tensor * ggml_add1_impl(
bool is_node = false;
- if (!inplace && (a->grad || b->grad)) {
+ if (a->grad || b->grad) {
is_node = true;
}
@@ -5159,6 +5181,34 @@ struct ggml_tensor * ggml_repeat(
return result;
}
+// ggml_repeat_back
+
+struct ggml_tensor * ggml_repeat_back(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b) {
+ GGML_ASSERT(ggml_can_repeat(b, a));
+
+ bool is_node = false;
+
+ if (a->grad) {
+ is_node = true;
+ }
+
+ if (ggml_are_same_shape(a, b) && !is_node) {
+ return a;
+ }
+
+ struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
+
+ result->op = GGML_OP_REPEAT_BACK;
+ result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
+ result->src0 = a;
+ result->src1 = b;
+
+ return result;
+}
+
// ggml_abs
struct ggml_tensor * ggml_abs_impl(
@@ -5536,6 +5586,32 @@ struct ggml_tensor * ggml_mul_mat(
return result;
}
+// ggml_out_prod
+
+struct ggml_tensor * ggml_out_prod(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b) {
+ GGML_ASSERT(ggml_can_out_prod(a, b));
+ GGML_ASSERT(!ggml_is_transposed(a));
+
+ bool is_node = false;
+
+ if (a->grad || b->grad) {
+ is_node = true;
+ }
+
+ const int64_t ne[4] = { a->ne[0], b->ne[0], a->ne[2], b->ne[3] };
+ struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MIN(a->n_dims, b->n_dims), ne);
+
+ result->op = GGML_OP_OUT_PROD;
+ result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
+ result->src0 = a;
+ result->src1 = b;
+
+ return result;
+}
+
// ggml_scale
struct ggml_tensor * ggml_scale_impl(
@@ -5548,7 +5624,7 @@ struct ggml_tensor * ggml_scale_impl(
bool is_node = false;
- if (!inplace && (a->grad || b->grad)) {
+ if (a->grad || b->grad) {
is_node = true;
}
@@ -5591,7 +5667,7 @@ struct ggml_tensor * ggml_set_impl(
bool is_node = false;
- if (!inplace && (a->grad || b->grad)) {
+ if (a->grad || b->grad) {
is_node = true;
}
@@ -5913,10 +5989,6 @@ struct ggml_tensor * ggml_view_1d(
result->src1 = NULL;
result->opt[0] = offs;
- if (is_node) {
- memcpy(result->padding, &offset, sizeof(offset));
- }
-
return result;
}
@@ -5957,10 +6029,6 @@ struct ggml_tensor * ggml_view_2d(
result->src1 = NULL;
result->opt[0] = offs;
- if (is_node) {
- memcpy(result->padding, &offset, sizeof(offset));
- }
-
return result;
}
@@ -6003,10 +6071,6 @@ struct ggml_tensor * ggml_view_3d(
result->src1 = NULL;
result->opt[0] = offs;
- if (is_node) {
- memcpy(result->padding, &offset, sizeof(offset));
- }
-
return result;
}
@@ -6051,10 +6115,6 @@ struct ggml_tensor * ggml_view_4d(
result->src1 = NULL;
result->opt[0] = offs;
- if (is_node) {
- memcpy(result->padding, &offset, sizeof(offset));
- }
-
return result;
}
@@ -6116,10 +6176,18 @@ struct ggml_tensor * ggml_permute(
result->src1 = NULL;
if (is_node) {
- result->padding[0] = axis0;
- result->padding[1] = axis1;
- result->padding[2] = axis2;
- result->padding[3] = axis3;
+ ggml_scratch_save(ctx);
+
+ struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 4);
+
+ ((int32_t *) b->data)[0] = axis0;
+ ((int32_t *) b->data)[1] = axis1;
+ ((int32_t *) b->data)[2] = axis2;
+ ((int32_t *) b->data)[3] = axis3;
+
+ ggml_scratch_load(ctx);
+
+ result->opt[0] = b;
}
return result;
@@ -6359,6 +6427,44 @@ struct ggml_tensor * ggml_soft_max_inplace(
return ggml_soft_max_impl(ctx, a, true);
}
+
+// ggml_soft_max_back
+
+struct ggml_tensor * ggml_soft_max_back_impl(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b,
+ bool inplace) {
+ bool is_node = false;
+
+ if (a->grad || b->grad) {
+ is_node = true; // TODO : implement backward pass
+ }
+
+ struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
+
+ result->op = GGML_OP_SOFT_MAX_BACK;
+ result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
+ result->src0 = a;
+ result->src1 = b;
+
+ return result;
+}
+
+struct ggml_tensor * ggml_soft_max_back(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b) {
+ return ggml_soft_max_back_impl(ctx, a, b, false);
+}
+
+struct ggml_tensor * ggml_soft_max_back_inplace(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b) {
+ return ggml_soft_max_back_impl(ctx, a, b, true);
+}
+
// ggml_rope
struct ggml_tensor * ggml_rope_impl(
@@ -6371,7 +6477,7 @@ struct ggml_tensor * ggml_rope_impl(
GGML_ASSERT(n_past >= 0);
bool is_node = false;
- if (!inplace && a->grad) {
+ if (a->grad) {
is_node = true;
}
@@ -6425,8 +6531,7 @@ struct ggml_tensor * ggml_rope_back(
bool is_node = false;
if (a->grad) {
- GGML_ASSERT(false); // TODO: implement backward
- is_node = true;
+ is_node = false; // TODO: implement backward
}
struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
@@ -6591,7 +6696,6 @@ struct ggml_tensor * ggml_flash_attn(
bool is_node = false;
if (q->grad || k->grad || v->grad) {
- GGML_ASSERT(false); // TODO: implement backward
is_node = true;
}
@@ -6623,7 +6727,6 @@ struct ggml_tensor * ggml_flash_ff(
bool is_node = false;
if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
- GGML_ASSERT(false); // TODO: implement backward
is_node = true;
}
@@ -6641,6 +6744,71 @@ struct ggml_tensor * ggml_flash_ff(
return result;
}
+// ggml_flash_attn_back
+
+struct ggml_tensor * ggml_flash_attn_back(
+ struct ggml_context * ctx,
+ struct ggml_tensor * q,
+ struct ggml_tensor * k,
+ struct ggml_tensor * v,
+ struct ggml_tensor * d,
+ bool masked) {
+ GGML_ASSERT(ggml_can_mul_mat(k, q));
+ // TODO: check if vT can be multiplied by (k*qT)
+
+ // d shape [D,N,ne2,ne3]
+ // q shape [D,N,ne2,ne3]
+ // k shape [D,M,ne2,ne3]
+ // v shape [M,D,ne2,ne3]
+
+ const int64_t D = q->ne[0];
+ const int64_t N = q->ne[1];
+ const int64_t M = k->ne[1];
+ const int64_t ne2 = q->ne[2];
+ const int64_t ne3 = q->ne[3];
+
+ GGML_ASSERT(k->ne[0] == D);
+ GGML_ASSERT(v->ne[0] == M);
+ GGML_ASSERT(v->ne[1] == D);
+ GGML_ASSERT(d->ne[0] == D);
+ GGML_ASSERT(d->ne[1] == N);
+ GGML_ASSERT(k->ne[2] == ne2);
+ GGML_ASSERT(k->ne[3] == ne3);
+ GGML_ASSERT(v->ne[2] == ne2);
+ GGML_ASSERT(v->ne[3] == ne3);
+ GGML_ASSERT(d->ne[2] == ne2);
+ GGML_ASSERT(d->ne[3] == ne3);
+
+ bool is_node = false;
+
+ if (q->grad || k->grad || v->grad) {
+ // when using this operation (in backwards pass) these grads are set.
+ // we don't want to create (big) grad of our result, so is_node is false.
+ is_node = false;
+ }
+
+ // store gradients of q, k and v as continuous tensors concatenated in result.
+ // q shape[D,N,ne2,ne3] ; k shape [D,M,ne2,ne3] ; v shape [M,D,ne2,ne3]
+ // gradq->data = result->data
+ // gradk->data = result->data + nb0*D*N*ne2*ne3
+ // gradv->data = result->data + nb0*D*N*ne2*ne3 + nb0*D*M*ne2*ne3
+ // note: v and gradv are actually transposed, i.e. v->ne[0] != D.
+ int64_t ne[4] = {D,M+N+M,ne2,ne3};
+
+ struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
+
+ result->op = GGML_OP_FLASH_ATTN_BACK;
+ result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
+ result->src0 = q;
+ result->src1 = k;
+ result->opt[0] = v;
+ result->opt[1] = d;
+ result->opt[2] = ggml_new_i32(ctx, masked ? 1 : 0);
+
+ return result;
+}
+
+
// ggml_map_unary
struct ggml_tensor * ggml_map_unary_impl_f32(
@@ -6725,6 +6893,50 @@ struct ggml_tensor * ggml_map_binary_inplace_f32(
return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
}
+// ggml_cross_entropy_loss
+
+struct ggml_tensor * ggml_cross_entropy_loss(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b) {
+ GGML_ASSERT(ggml_are_same_shape(a, b));
+ bool is_node = false;
+
+ if (a->grad || b->grad) {
+ is_node = true;
+ }
+
+ struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
+
+ result->op = GGML_OP_CROSS_ENTROPY_LOSS;
+ result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
+ result->src0 = a;
+ result->src1 = b;
+
+ return result;
+}
+
+// ggml_cross_entropy_loss_back
+
+struct ggml_tensor * ggml_cross_entropy_loss_back(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ struct ggml_tensor * b,
+ struct ggml_tensor * c) {
+ GGML_ASSERT(ggml_are_same_shape(a, b));
+ GGML_ASSERT(ggml_is_scalar(c));
+
+ struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
+
+ result->op = GGML_OP_CROSS_ENTROPY_LOSS_BACK;
+ result->grad = NULL;
+ result->src0 = a;
+ result->src1 = b;
+ result->opt[0] = c;
+
+ return result;
+}
+
////////////////////////////////////////////////////////////////////////////////
void ggml_set_param(
@@ -8875,6 +9087,99 @@ static void ggml_compute_forward_repeat(
}
}
+// ggml_compute_forward_repeat_back
+
+static void ggml_compute_forward_repeat_back_f32(
+ const struct ggml_compute_params * params,
+ const struct ggml_tensor * src0,
+ struct ggml_tensor * dst) {
+ GGML_ASSERT(params->ith == 0);
+ GGML_ASSERT(ggml_can_repeat(dst, src0));
+
+ if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
+ return;
+ }
+
+ const int64_t ne0 = dst->ne[0];
+ const int64_t ne1 = dst->ne[1];
+ const int64_t ne2 = dst->ne[2];
+ const int64_t ne3 = dst->ne[3];
+
+ const int64_t ne00 = src0->ne[0];
+ const int64_t ne01 = src0->ne[1];
+ const int64_t ne02 = src0->ne[2];
+ const int64_t ne03 = src0->ne[3];
+
+ const size_t nb0 = dst->nb[0];
+ const size_t nb1 = dst->nb[1];
+ const size_t nb2 = dst->nb[2];
+ const size_t nb3 = dst->nb[3];
+
+ const size_t nb00 = src0->nb[0];
+ const size_t nb01 = src0->nb[1];
+ const size_t nb02 = src0->nb[2];
+ const size_t nb03 = src0->nb[3];
+
+ // guaranteed to be an integer due to the check in ggml_can_repeat
+ const int nr0 = (int)(ne00/ne0);
+ const int nr1 = (int)(ne01/ne1);
+ const int nr2 = (int)(ne02/ne2);
+ const int nr3 = (int)(ne03/ne3);
+
+ // TODO: support for transposed / permuted tensors
+ GGML_ASSERT(nb0 == sizeof(float));
+ GGML_ASSERT(nb00 == sizeof(float));
+
+ if (ggml_is_contiguous(dst)) {
+ ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
+ } else {
+ for (int k3 = 0; k3 < ne3; k3++) {
+ for (int k2 = 0; k2 < ne2; k2++) {
+ for (int k1 = 0; k1 < ne1; k1++) {
+ ggml_vec_set_f32(ne0,
+ (float *) ((char *) dst->data + k1*nb1 + k2*nb2 + k3*nb3),
+ 0);
+ }
+ }
+ }
+ }
+
+ // TODO: maybe this is not optimal?
+ for (int i3 = 0; i3 < nr3; i3++) {
+ for (int k3 = 0; k3 < ne3; k3++) {
+ for (int i2 = 0; i2 < nr2; i2++) {
+ for (int k2 = 0; k2 < ne2; k2++) {
+ for (int i1 = 0; i1 < nr1; i1++) {
+ for (int k1 = 0; k1 < ne1; k1++) {
+ for (int i0 = 0; i0 < nr0; i0++) {
+ ggml_vec_acc_f32(ne0,
+ (float *) ((char *) dst->data + ( k3)*nb3 + ( k2)*nb2 + ( k1)*nb1),
+ (float *) ((char *) src0->data + (i3*ne3 + k3)*nb03 + (i2*ne2 + k2)*nb02 + (i1*ne1 + k1)*nb01 + (i0*ne0)*nb00));
+ }
+ }
+ }
+ }
+ }
+ }
+ }
+}
+
+static void ggml_compute_forward_repeat_back(
+ const struct ggml_compute_params * params,
+ const struct ggml_tensor * src0,
+ struct ggml_tensor * dst) {
+ switch (src0->type) {
+ case GGML_TYPE_F32:
+ {
+ ggml_compute_forward_repeat_back_f32(params, src0, dst);
+ } break;
+ default:
+ {
+ GGML_ASSERT(false);
+ } break;
+ }
+}
+
// ggml_compute_forward_abs
static void ggml_compute_forward_abs_f32(
@@ -10249,6 +10554,176 @@ static void ggml_compute_forward_mul_mat(
}
}
+// ggml_compute_forward_out_prod
+
+
+static void ggml_compute_forward_out_prod_f32(
+ const struct ggml_compute_params * params,
+ const struct ggml_tensor * src0,
+ const struct ggml_tensor * src1,
+ struct ggml_tensor * dst) {
+ int64_t t0 = ggml_perf_time_us();
+ UNUSED(t0);
+
+ const int64_t ne00 = src0->ne[0];
+ const int64_t ne01 = src0->ne[1];
+ const int64_t ne02 = src0->ne[2];
+ const int64_t ne03 = src0->ne[3];
+
+ const int64_t ne10 = src1->ne[0];
+ //const int64_t ne11 = src1->ne[1];
+ const int64_t ne12 = src1->ne[2];
+ const int64_t ne13 = src1->ne[3];
+
+ const int64_t ne0 = dst->ne[0];
+ const int64_t ne1 = dst->ne[1];
+ const int64_t ne2 = dst->ne[2];
+ const int64_t ne3 = dst->ne[3];
+
+ const int nb00 = src0->nb[0];
+ const int nb01 = src0->nb[1];
+ const int nb02 = src0->nb[2];
+ const int nb03 = src0->nb[3];
+
+ const int nb10 = src1->nb[0];
+ const int nb11 = src1->nb[1];
+ const int nb12 = src1->nb[2];
+ const int nb13 = src1->nb[3];
+
+ const int nb0 = dst->nb[0];
+ const int nb1 = dst->nb[1];
+ const int nb2 = dst->nb[2];
+ const int nb3 = dst->nb[3];
+
+ const int ith = params->ith;
+ const int nth = params->nth;
+
+ GGML_ASSERT(ne02 == ne12);
+ GGML_ASSERT(ne03 == ne13);
+ GGML_ASSERT(ne2 == ne12);
+ GGML_ASSERT(ne3 == ne13);
+
+ // we don't support permuted src0 or src1
+ GGML_ASSERT(nb00 == sizeof(float));
+
+ // dst cannot be transposed or permuted
+ GGML_ASSERT(nb0 == sizeof(float));
+ // GGML_ASSERT(nb0 <= nb1);
+ // GGML_ASSERT(nb1 <= nb2);
+ // GGML_ASSERT(nb2 <= nb3);
+
+ GGML_ASSERT(ne0 == ne00);
+ GGML_ASSERT(ne1 == ne10);
+ GGML_ASSERT(ne2 == ne02);
+ GGML_ASSERT(ne3 == ne03);
+
+ // nb01 >= nb00 - src0 is not transposed
+ // compute by src0 rows
+
+ // TODO: #if defined(GGML_USE_CUBLAS) ggml_cuda_out_prod
+ // TODO: #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
+
+ if (params->type == GGML_TASK_INIT) {
+ ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
+ return;
+ }
+
+ if (params->type == GGML_TASK_FINALIZE) {
+ return;
+ }
+
+ // parallelize by last three dimensions
+
+ // total rows in dst
+ const int64_t nr = ne1*ne2*ne3;
+
+ // rows per thread
+ const int64_t dr = (nr + nth - 1)/nth;
+
+ // row range for this thread
+ const int64_t ir0 = dr*ith;
+ const int64_t ir1 = MIN(ir0 + dr, nr);
+
+ // dst[:,:,:,:] = 0
+ // for i2,i3:
+ // for i1:
+ // for i01:
+ // for i0:
+ // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
+
+ for (int64_t ir = ir0; ir < ir1; ++ir) {
+ // dst indices
+ const int64_t i3 = ir/(ne2*ne1);
+ const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
+ const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
+
+ const int64_t i02 = i2;
+ const int64_t i03 = i3;
+
+ //const int64_t i10 = i1;
+ const int64_t i12 = i2;
+ const int64_t i13 = i3;
+
+ for (int64_t i01 = 0; i01 < ne01; ++i01) {
+ const int64_t i11 = i01;
+
+ float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
+ float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
+ float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
+
+ ggml_vec_mad_f32(ne0, d, s0, *s1);
+ // for (int64_t i0 = 0; i0 < ne0; ++i0) {
+ // d[i0] += s0[i0] * s1[i1];
+ // }
+ }
+ }
+
+ //int64_t t1 = ggml_perf_time_us();
+ //static int64_t acc = 0;
+ //acc += t1 - t0;
+ //if (t1 - t0 > 10) {
+ // printf("\n");
+ // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
+ // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
+ // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
+ // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
+
+ // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
+ //}
+}
+
+static void ggml_compute_forward_out_prod(
+ const struct ggml_compute_params * params,
+ const struct ggml_tensor * src0,
+ const struct ggml_tensor * src1,
+ struct ggml_tensor * dst) {
+ switch (src0->type) {
+ case GGML_TYPE_Q4_0:
+ case GGML_TYPE_Q4_1:
+ case GGML_TYPE_Q5_0:
+ case GGML_TYPE_Q5_1:
+ case GGML_TYPE_Q8_0:
+ case GGML_TYPE_Q8_1:
+ {
+ GGML_ASSERT(false); // todo
+ // ggml_compute_forward_out_prod_q_f32(params, src0, src1, dst);
+ } break;
+ case GGML_TYPE_F16:
+ {
+ GGML_ASSERT(false); // todo
+ // ggml_compute_forward_out_prod_f16_f32(params, src0, src1, dst);
+ } break;
+ case GGML_TYPE_F32:
+ {
+ ggml_compute_forward_out_prod_f32(params, src0, src1, dst);
+ } break;
+ default:
+ {
+ GGML_ASSERT(false);
+ } break;
+ }
+}
+
// ggml_compute_forward_scale
static void ggml_compute_forward_scale_f32(
@@ -10671,7 +11146,11 @@ static void ggml_compute_forward_get_rows_back_f32(
GGML_ASSERT(ggml_is_contiguous(opt0));
GGML_ASSERT(ggml_is_contiguous(dst));
- ggml_compute_forward_dup_same_cont(params, opt0, dst);
+ // ggml_compute_forward_dup_same_cont(params, opt0, dst);
+
+ if (params->type == GGML_TASK_INIT) {
+ memset(dst->data, 0, ggml_nbytes(dst));
+ }
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
return;
@@ -10815,8 +11294,8 @@ static void ggml_compute_forward_diag_mask_f32(
const struct ggml_tensor * src1,
struct ggml_tensor * dst,
const float value) {
- assert(src1->type == GGML_TYPE_I32);
- assert(ggml_nelements(src1) == 2);
+ GGML_ASSERT(src1->type == GGML_TYPE_I32);
+ GGML_ASSERT(ggml_nelements(src1) == 2);
const int ith = params->ith;
const int nth = params->nth;
@@ -10824,7 +11303,7 @@ static void ggml_compute_forward_diag_mask_f32(
const int n_past = ((int32_t *) src1->data)[0];
const bool inplace = (bool)((int32_t *) src1->data)[1];
- assert(n_past >= 0);
+ GGML_ASSERT(n_past >= 0);
if (!inplace && (params->type == GGML_TASK_INIT)) {
// memcpy needs to be synchronized across threads to avoid race conditions.
@@ -10848,8 +11327,8 @@ static void ggml_compute_forward_diag_mask_f32(
const int nr = src0->ne[1];
const int nz = n/nr;
- assert( dst->nb[0] == sizeof(float));
- assert(src0->nb[0] == sizeof(float));
+ GGML_ASSERT( dst->nb[0] == sizeof(float));
+ GGML_ASSERT(src0->nb[0] == sizeof(float));
for (int k = 0; k < nz; k++) {
for (int j = ith; j < nr; j += nth) {
@@ -10985,6 +11464,101 @@ static void ggml_compute_forward_soft_max(
}
}
+// ggml_compute_forward_soft_max_back
+
+static void ggml_compute_forward_soft_max_back_f32(
+ const struct ggml_compute_params * params,
+ const struct ggml_tensor * src0,
+ const struct ggml_tensor * src1,
+ struct ggml_tensor * dst) {
+ GGML_ASSERT(ggml_is_contiguous(src0));
+ GGML_ASSERT(ggml_is_contiguous(src1));
+ GGML_ASSERT(ggml_is_contiguous(dst));
+ GGML_ASSERT(ggml_are_same_shape(src0, dst));
+ GGML_ASSERT(ggml_are_same_shape(src1, dst));
+
+ if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
+ return;
+ }
+
+ // TODO: handle transposed/permuted matrices
+
+ const int ith = params->ith;
+ const int nth = params->nth;
+
+ const int nc = src0->ne[0];
+ const int nr = ggml_nrows(src0);
+
+ // rows per thread
+ const int dr = (nr + nth - 1)/nth;
+
+ // row range for this thread
+ const int ir0 = dr*ith;
+ const int ir1 = MIN(ir0 + dr, nr);
+
+ for (int i1 = ir0; i1 < ir1; i1++) {
+ float *dy = (float *)((char *) src0->data + i1*src0->nb[1]);
+ float *y = (float *)((char *) src1->data + i1*src1->nb[1]);
+ float *dx = (float *)((char *) dst->data + i1*dst->nb[1]);
+
+#ifndef NDEBUG
+ for (int i = 0; i < nc; ++i) {
+ //printf("p[%d] = %f\n", i, p[i]);
+ assert(!isnan(dy[i]));
+ assert(!isnan(y[i]));
+ }
+#endif
+ // Jii = yi - yi*yi
+ // Jij = -yi*yj
+ // J = diag(y)-y.T*y
+ // dx = J * dy
+ // dxk = sum_i(Jki * dyi)
+ // dxk = sum_i(-yk*yi * dyi) - (-yk*yk)*dyk + (yk - yk*yk)*dyk
+ // dxk = sum_i(-yk*yi * dyi) + yk*dyk
+ // dxk = -yk * sum_i(yi * dyi) + yk*dyk
+ // dxk = -yk * dot(y, dy) + yk*dyk
+ // dxk = yk * (- dot(y, dy) + dyk)
+ // dxk = yk * (dyk - dot(y, dy))
+ //
+ // post-order:
+ // dot_y_dy := dot(y, dy)
+ // dx := dy
+ // dx := dx - dot_y_dy
+ // dx := dx * y
+
+ // linear runtime, no additional memory
+ float dot_y_dy = 0;
+ ggml_vec_dot_f32 (nc, &dot_y_dy, y, dy);
+ ggml_vec_cpy_f32 (nc, dx, dy);
+ ggml_vec_acc1_f32(nc, dx, -dot_y_dy);
+ ggml_vec_mul_f32 (nc, dx, dx, y);
+
+#ifndef NDEBUG
+ for (int i = 0; i < nc; ++i) {
+ assert(!isnan(dx[i]));
+ assert(!isinf(dx[i]));
+ }
+#endif
+ }
+}
+
+static void ggml_compute_forward_soft_max_back(
+ const struct ggml_compute_params * params,
+ const struct ggml_tensor * src0,
+ const struct ggml_tensor * src1,
+ struct ggml_tensor * dst) {
+ switch (src0->type) {
+ case GGML_TYPE_F32:
+ {
+ ggml_compute_forward_soft_max_back_f32(params, src0, src1, dst);
+ } break;
+ default:
+ {
+ GGML_ASSERT(false);
+ } break;
+ }
+}
+
// ggml_compute_forward_alibi
static void ggml_compute_forward_alibi_f32(
@@ -12938,6 +13512,414 @@ static void ggml_compute_forward_flash_ff(
}
}
+// ggml_compute_forward_flash_attn_back
+
+static void ggml_compute_forward_flash_attn_back_f32(
+ const struct ggml_compute_params * params,
+ const struct ggml_tensor * q,
+ const struct ggml_tensor * k,
+ const struct ggml_tensor * v,
+ const struct ggml_tensor * d,
+ const bool masked,
+ struct ggml_tensor * dst) {
+ int64_t t0 = ggml_perf_time_us();
+ UNUSED(t0);
+
+ const int64_t neq0 = q->ne[0];
+ const int64_t neq1 = q->ne[1];
+ const int64_t neq2 = q->ne[2];
+ const int64_t neq3 = q->ne[3];
+
+ const int64_t nek0 = k->ne[0];
+ const int64_t nek1 = k->ne[1];
+ //const int64_t nek2 = k->ne[2];
+ //const int64_t nek3 = k->ne[3];
+
+ const int64_t nev0 = v->ne[0];
+ const int64_t nev1 = v->ne[1];
+ //const int64_t nev2 = v->ne[2];
+ //const int64_t nev3 = v->ne[3];
+
+ const int64_t ned0 = d->ne[0];
+ const int64_t ned1 = d->ne[1];
+ //const int64_t ned2 = d->ne[2];
+ //const int64_t ned3 = d->ne[3];
+
+ const int64_t ne0 = dst->ne[0];
+ const int64_t ne1 = dst->ne[1];
+ const int64_t ne2 = dst->ne[2];
+ const int64_t ne3 = dst->ne[3];
+
+ const int nbk0 = k->nb[0];
+ const int nbk1 = k->nb[1];
+ const int nbk2 = k->nb[2];
+ const int nbk3 = k->nb[3];
+
+ const int nbq0 = q->nb[0];
+ const int nbq1 = q->nb[1];
+ const int nbq2 = q->nb[2];
+ const int nbq3 = q->nb[3];
+
+ const int nbv0 = v->nb[0];
+ const int nbv1 = v->nb[1];
+ const int nbv2 = v->nb[2];
+ const int nbv3 = v->nb[3];
+
+ const int nbd0 = d->nb[0];
+ const int nbd1 = d->nb[1];
+ const int nbd2 = d->nb[2];
+ const int nbd3 = d->nb[3];
+
+ const int nb0 = dst->nb[0];
+ const int nb1 = dst->nb[1];
+ const int nb2 = dst->nb[2];
+ const int nb3 = dst->nb[3];
+
+ const int ith = params->ith;
+ const int nth = params->nth;
+
+ const int64_t D = neq0;
+ const int64_t N = neq1;
+ const int64_t P = nek1 - N;
+ const int64_t M = P + N;
+
+ const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
+ const int mxDM = MAX(D, Mup);
+
+ // GGML_ASSERT(ne0 == D);
+ // GGML_ASSERT(ne1 == N);
+ GGML_ASSERT(P >= 0);
+
+ GGML_ASSERT(nbq0 == sizeof(float));
+ GGML_ASSERT(nbk0 == sizeof(float));
+ GGML_ASSERT(nbv0 == sizeof(float));
+
+ GGML_ASSERT(neq0 == D);
+ GGML_ASSERT(nek0 == D);
+ GGML_ASSERT(nev1 == D);
+ GGML_ASSERT(ned0 == D);
+
+ GGML_ASSERT(neq1 == N);
+ GGML_ASSERT(nek1 == N + P);
+ GGML_ASSERT(nev1 == D);
+ GGML_ASSERT(ned1 == N);
+
+ // dst cannot be transposed or permuted
+ GGML_ASSERT(nb0 == sizeof(float));
+ GGML_ASSERT(nb0 <= nb1);
+ GGML_ASSERT(nb1 <= nb2);
+ GGML_ASSERT(nb2 <= nb3);
+
+ if (params->type == GGML_TASK_INIT) {
+ if (ith == 0) {
+ memset(dst->data, 0, nb0*ne0*ne1*ne2*ne3);
+ }
+ return;
+ }
+
+ if (params->type == GGML_TASK_FINALIZE) {
+ return;
+ }
+
+ // parallelize by q rows using ggml_vec_dot_f32
+
+ // total rows in q
+ const int nr = neq2*neq3;
+
+ // rows per thread
+ const int dr = (nr + nth - 1)/nth;
+
+ // row range for this thread
+ const int ir0 = dr*ith;
+ const int ir1 = MIN(ir0 + dr, nr);
+
+ const float scale = 1.0f/sqrtf(D);
+
+ //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
+
+ for (int ir = ir0; ir < ir1; ++ir) {
+ // q indices
+ const int iq3 = ir/(neq2);
+ const int iq2 = ir - iq3*neq2;
+ for ( int iq1 = 0; iq1 < neq1; ++iq1) {
+
+
+ // not sure about CACHE_LINE_SIZE_F32..
+ // - maybe it must not be multiplied by 2 and excluded from .. in SM 1*(..) offset?
+ float * S = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 0*(mxDM+CACHE_LINE_SIZE_F32);
+ float * SM = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 1*(mxDM+CACHE_LINE_SIZE_F32);
+
+ for (int i = M; i < Mup; ++i) {
+ S[i] = -INFINITY;
+ }
+
+ for (int64_t ic = 0; ic < nek1; ++ic) {
+ // k indices
+ const int ik3 = iq3;
+ const int ik2 = iq2;
+ const int ik1 = ic;
+
+ // S indices
+ const int i1 = ik1;
+
+ ggml_vec_dot_f32(neq0,
+ S + i1,
+ (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
+ (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
+ }
+
+ // scale
+ ggml_vec_scale_f32(nek1, S, scale);
+
+ if (masked) {
+ for (int64_t i = P; i < M; i++) {
+ if (i > P + iq1) {
+ S[i] = -INFINITY;
+ }
+ }
+ }
+
+ // softmax
+ {
+ float max = -INFINITY;
+ ggml_vec_max_f32(M, &max, S);
+
+ ggml_float sum = 0.0;
+ {
+#ifdef GGML_SOFT_MAX_ACCELERATE
+ max = -max;
+ vDSP_vsadd(SM, 1, &max, SM, 1, Mup);
+ vvexpf(SM, SM, &Mup);
+ ggml_vec_sum_f32(Mup, &sum, SM);
+#else
+ uint16_t scvt[GGML_SOFT_MAX_UNROLL];
+ ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
+
+ for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
+ float * SR = S + i;
+ float * SW = SM + i;
+
+ for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
+ if (SR[j] == -INFINITY) {
+ SW[j] = 0.0f;
+ } else {
+ ggml_fp16_t s = GGML_FP32_TO_FP16(SR[j] - max);
+ memcpy(&scvt[j], &s, sizeof(uint16_t));
+ const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
+ sump[j] += (ggml_float)val;
+ SW[j] = val;
+ }
+ }
+ }
+
+ for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
+ sum += sump[i];
+ }
+#endif
+ }
+
+ assert(sum > 0.0);
+
+ sum = 1.0/sum;
+ ggml_vec_scale_f32(M, SM, sum);
+
+ }
+
+ // step-by-step explanation
+ {
+ // forward-process shape grads from backward process
+ // parallel_for iq2,iq3:
+ // k[:D,:M,:,:] [D,M,:,:] grad[k][:D,:M,iq2,iq3] += grad[kcur]
+ // q[:D,:N,:,:] [D,N,:,:] grad[q][:D,iq1,iq2,iq3] += grad[qcur]
+ // v[:M,:D,:,:] [M,D,:,:] grad[v][:M,:D,iq2,iq3] += grad[vcur]
+ // for iq1:
+ // kcur = k[:D,:M,iq2,iq3] [D,M,1,1] grad[kcur] = grad[S1].T @ qcur
+ // qcur = q[:D,iq1,iq2,iq3] [D,1,1,1] grad[qcur] = grad[S1] @ kcur
+ // vcur = v[:M,:D,iq2,iq3] [M,D,1,1] grad[vcur] = grad[S5].T @ S4
+ // S0 = -Inf [D,1,1,1]
+ // ~S1[i] = dot(kcur[:D,i], qcur)
+ // S1 = qcur @ kcur.T [M,1,1,1] grad[S1] = grad[S2] * scale
+ // S2 = S1 * scale [M,1,1,1] grad[S2] = diag_mask_zero(grad[S3], P)
+ // S3 = diag_mask_inf(S2, P) [M,1,1,1] grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
+ // S4 = softmax(S3) [M,1,1,1] grad[S4] = grad[S5] @ vcur
+ // ~S5[i] = dot(vcur[:,i], S4)
+ // S5 = S4 @ vcur.T [D,1,1,1] grad[S5] = d[:D,iq1,iq2,iq3]
+ // ~dst[i,iq1,iq2,iq3] = S5[i] ^
+ // dst[:D,iq1,iq2,iq3] = S5 | grad[dst[:D,iq1,iq2,iq3]] = d[:D,iq1,iq2,iq3]
+ // dst backward-/ grad[dst] = d
+ //
+ // output gradients with their dependencies:
+ //
+ // grad[kcur] = grad[S1].T @ qcur
+ // grad[S1] = diag_mask_zero(grad[S3], P) * scale
+ // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
+ // grad[S4] = grad[S5] @ vcur
+ // grad[S4] = d[:D,iq1,iq2,iq3] @ vcur
+ // grad[qcur] = grad[S1] @ kcur
+ // grad[vcur] = grad[S5].T @ S4
+ // grad[vcur] = d[:D,iq1,iq2,iq3].T @ S4
+ //
+ // in post-order:
+ //
+ // S1 = qcur @ kcur.T
+ // S2 = S1 * scale
+ // S3 = diag_mask_inf(S2, P)
+ // S4 = softmax(S3)
+ // grad[S4] = d[:D,iq1,iq2,iq3] @ vcur
+ // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
+ // grad[S1] = diag_mask_zero(grad[S3], P) * scale
+ // grad[qcur] = grad[S1] @ kcur
+ // grad[kcur] = grad[S1].T @ qcur
+ // grad[vcur] = d[:D,iq1,iq2,iq3].T @ S4
+ //
+ // using less variables (SM=S4):
+ //
+ // S = diag_mask_inf(qcur @ kcur.T * scale, P)
+ // SM = softmax(S)
+ // S = d[:D,iq1,iq2,iq3] @ vcur
+ // dot_SM_gradSM = dot(SM, S)
+ // S = SM * (S - dot(SM, S))
+ // S = diag_mask_zero(S, P) * scale
+ //
+ // grad[q][:D,iq1,iq2,iq3] += S @ kcur
+ // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
+ // grad[v][:M,:D,iq2,iq3] += d[:D,iq1,iq2,iq3].T @ SM
+ }
+
+ // S = gradSM = d[:D,iq1,iq2,iq3] @ vcur
+ // S = d[:D,iq1,iq2,iq3] @ vcur
+ // S[:M] += vcur[:M,ic] * d[ic,iq1,iq2,iq3]
+ ggml_vec_set_f32(M, S, 0);
+ for (int64_t ic = 0; ic < D; ++ic) {
+ // dst indices
+ const int i1 = iq1;
+ const int i2 = iq2;
+ const int i3 = iq3;
+
+ ggml_vec_mad_f32(M,
+ S,
+ (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
+ *(float *) ((char *) d->data + (ic*nbd0 + i1*nbd1 + i2*nbd2 + i3*nbd3)));
+ }
+
+ // S = SM * (S - dot(SM, S))
+ float dot_SM_gradSM = 0;
+ ggml_vec_dot_f32 (M, &dot_SM_gradSM, SM, S);
+ ggml_vec_acc1_f32(M, S, -dot_SM_gradSM);
+ ggml_vec_mul_f32 (M, S, S, SM);
+
+ // S = diag_mask_zero(S, P) * scale
+ if (masked) {
+ // for (int64_t i = P + iq1 + 1; i < M; i++) {
+ // S[i] = 0;
+ // }
+ for (int64_t i = P; i < M; i++) {
+ if (i > P + iq1) {
+ S[i] = 0;
+ }
+ }
+ }
+ ggml_vec_scale_f32(M, S, scale);
+
+ void * grad_q = (char *) dst->data;
+ void * grad_k = (char *) dst->data + nb0*D*N*neq2*neq3;
+ void * grad_v = (char *) dst->data + nb0*D*N*neq2*neq3 + nb0*D*M*neq2*neq3;
+
+ const size_t nbgq1 = nb0*neq0;
+ const size_t nbgq2 = nb0*neq0*neq1;
+ const size_t nbgq3 = nb0*neq0*neq1*neq2;
+
+ const size_t nbgk1 = nb0*nek0;
+ const size_t nbgk2 = nb0*nek0*nek1;
+ const size_t nbgk3 = nb0*nek0*nek1*neq2;
+
+ const size_t nbgv1 = nb0*nev0;
+ const size_t nbgv2 = nb0*nev0*nev1;
+ const size_t nbgv3 = nb0*nev0*nev1*neq2;
+
+ // S shape [M,1]
+ // SM shape [M,1]
+ // kcur shape [D,M]
+ // qcur shape [D,1]
+ // vcur shape [M,D]
+ //
+ // grad[q][:D,iq1,iq2,iq3] += S @ kcur
+ // grad[q][:D,iq1,iq2,iq3] += shape[M,1] @ shape[D,M]
+ // grad[q][:D,iq1,iq2,iq3] += S[ic] * kcur[:D,ic]
+ //
+ //// grad[q][ic,iq1,iq2,iq3] += dot(kcur[:,ic],S.T)
+ //// grad[q][ic,iq1,iq2,iq3] += dot(k[:D,ic,iq2,iq3],S.T)
+ for (int64_t ic = 0; ic < M; ++ic) {
+ // dst indices
+ const int i1 = iq1;
+ const int i2 = iq2;
+ const int i3 = iq3;
+
+ ggml_vec_mad_f32(D,
+ (float *) ((char *) grad_q + (i1*nbgq1 + i2*nbgq2 + i3*nbgq3)),
+ (float *) ((char *) k->data + (ic*nbk1 + i2*nbk2 + i3*nbk3)),
+ S[ic]);
+ }
+
+ // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
+ // grad[k][:D,ic,iq2,iq3] += S.T[0,ic] * qcur[:D,0]
+ // grad[k][:D,ic,iq2,iq3] += S[ic] * qcur[:D,0]
+ for (int64_t ic = 0; ic < M; ++ic) {
+ // dst indices
+ const int i1 = iq1;
+ const int i2 = iq2;
+ const int i3 = iq3;
+
+ // ggml_vec_set_f32(D,
+ // (float *) ((char *) grad_k + (ic*nbgk1 + i2*nbgk2 + i3*nbgk3)),
+ // 0);
+ ggml_vec_mad_f32(D,
+ (float *) ((char *) grad_k + (ic*nbgk1 + i2*nbgk2 + i3*nbgk3)),
+ (float *) ((char *) q->data + (i1*nbq1 + i2*nbq2 + i3*nbq3)),
+ S[ic]);
+ }
+
+ // grad[v][:M,:D,iq2,iq3] += d[:D,iq1,iq2,iq3].T @ SM
+ // grad[v][:M,ic,iq2,iq3] += d[:D,iq1,iq2,iq3].T[0,ic] * SM[:M]
+ // grad[v][:M,ic,iq2,iq3] += d[ic,iq1,iq2,iq3] * SM[:M]
+ for (int64_t ic = 0; ic < D; ++ic) {
+ // dst indices
+ const int i1 = iq1;
+ const int i2 = iq2;
+ const int i3 = iq3;
+
+ // ggml_vec_set_f32(M,
+ // (float *) ((char *) grad_v + ( ic*nbgv1 + i2*nbgv2 + i3*nbgv3)),
+ // 0);
+ ggml_vec_mad_f32(M,
+ (float *) ((char *) grad_v + ( ic*nbgv1 + i2*nbgv2 + i3*nbgv3)),
+ SM,
+ *(float *) ((char *) d->data + (ic*nbd0 + i1*nbd1 + i2*nbd2 + i3*nbd3)));
+ }
+ }
+ }
+}
+
+static void ggml_compute_forward_flash_attn_back(
+ const struct ggml_compute_params * params,
+ const struct ggml_tensor * q,
+ const struct ggml_tensor * k,
+ const struct ggml_tensor * v,
+ const struct ggml_tensor * d,
+ const bool masked,
+ struct ggml_tensor * dst) {
+ switch (q->type) {
+ case GGML_TYPE_F32:
+ {
+ ggml_compute_forward_flash_attn_back_f32(params, q, k, v, d, masked, dst);
+ } break;
+ default:
+ {
+ GGML_ASSERT(false);
+ } break;
+ }
+}
+
// ggml_compute_forward_map_unary
static void ggml_compute_forward_map_unary_f32(
@@ -13031,6 +14013,286 @@ static void ggml_compute_forward_map_binary(
}
}
+// ggml_compute_forward_cross_entropy_loss
+
+static void ggml_compute_forward_cross_entropy_loss_f32(
+ const struct ggml_compute_params * params,
+ const struct ggml_tensor * src0,
+ const struct ggml_tensor * src1,
+ struct ggml_tensor * dst) {
+ GGML_ASSERT(ggml_is_contiguous(src0));
+ GGML_ASSERT(ggml_is_contiguous(src1));
+ GGML_ASSERT(ggml_is_scalar(dst));
+ GGML_ASSERT(ggml_are_same_shape(src0, src1));
+
+ const int ith = params->ith;
+ const int nth = params->nth;
+
+ float * sums = (float *) params->wdata;
+
+ // TODO: handle transposed/permuted matrices
+ const int nc = src0->ne[0];
+ const int nr = ggml_nrows(src0);
+
+ if (params->type == GGML_TASK_INIT) {
+ if (ith == 0) {
+ memset(sums, 0, sizeof(float) * (nth + nth * nc));
+ }
+ return;
+ }
+
+ if (params->type == GGML_TASK_FINALIZE) {
+ if (ith == 0) {
+ float * dp = (float *) dst->data;
+ ggml_vec_sum_f32(nth, dp, sums);
+ dp[0] *= -1.0f;
+ }
+ return;
+ }
+
+ const double eps = 1e-9;
+
+ // rows per thread
+ const int dr = (nr + nth - 1)/nth;
+
+ // row range for this thread
+ const int ir0 = dr*ith;
+ const int ir1 = MIN(ir0 + dr, nr);
+
+ for (int i1 = ir0; i1 < ir1; i1++) {
+ float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
+ float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
+ float * st = (float *) params->wdata + nth + ith*nc;
+
+#ifndef NDEBUG
+ for (int i = 0; i < nc; ++i) {
+ //printf("p[%d] = %f\n", i, p[i]);
+ assert(!isnan(s0[i]));
+ assert(!isnan(s1[i]));
+ }
+#endif
+ // soft_max
+ ggml_float sum = 0.0;
+ {
+ float max = -INFINITY;
+ ggml_vec_max_f32(nc, &max, s0);
+
+ uint16_t scvt;
+ for (int i = 0; i < nc; i++) {
+ if (s0[i] == -INFINITY) {
+ st[i] = 0.0f;
+ } else {
+ // const float val = (s0[i] == -INFINITY) ? 0.0 : exp(s0[i] - max);
+ ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
+ memcpy(&scvt, &s, sizeof(scvt));
+ const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
+ sum += (ggml_float)val;
+ st[i] = val;
+ }
+ }
+
+ assert(sum > 0.0);
+ // sum = 1.0/sum;
+ }
+ // avoid log(0) by rescaling from [0..1] to [eps..1]
+ sum = (1.0 - eps) / sum;
+ ggml_vec_scale_f32(nc, st, sum);
+ ggml_vec_add1_f32(nc, st, st, eps);
+ ggml_vec_log_f32(nc, st, st);
+ ggml_vec_mul_f32(nc, st, st, s1);
+
+ ggml_vec_sum_f32(nc, sums + ith, st);
+
+#ifndef NDEBUG
+ for (int i = 0; i < nc; ++i) {
+ assert(!isnan(st[i]));
+ assert(!isinf(st[i]));
+ }
+#endif
+ }
+
+}
+
+static void ggml_compute_forward_cross_entropy_loss(
+ const struct ggml_compute_params * params,
+ const struct ggml_tensor * src0,
+ const struct ggml_tensor * src1,
+ struct ggml_tensor * dst) {
+ switch (src0->type) {
+ case GGML_TYPE_F32:
+ {
+ ggml_compute_forward_cross_entropy_loss_f32(params, src0, src1, dst);
+ } break;
+ default:
+ {
+ GGML_ASSERT(false);
+ } break;
+ }
+}
+
+// ggml_compute_forward_cross_entropy_loss_back
+
+static void ggml_compute_forward_cross_entropy_loss_back_f32(
+ const struct ggml_compute_params * params,
+ const struct ggml_tensor * src0,
+ const struct ggml_tensor * src1,
+ const struct ggml_tensor * opt0,
+ struct ggml_tensor * dst) {
+ GGML_ASSERT(ggml_is_contiguous(dst));
+ GGML_ASSERT(ggml_is_contiguous(src0));
+ GGML_ASSERT(ggml_is_contiguous(src1));
+ GGML_ASSERT(ggml_is_contiguous(opt0));
+ GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
+
+ const int64_t ith = params->ith;
+ const int64_t nth = params->nth;
+
+ if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
+ return;
+ }
+
+ const float eps = 1e-9f;
+
+ // TODO: handle transposed/permuted matrices
+ const int64_t nc = src0->ne[0];
+ const int64_t nr = ggml_nrows(src0);
+
+ // rows per thread
+ const int64_t dr = (nr + nth - 1)/nth;
+
+ // row range for this thread
+ const int64_t ir0 = dr*ith;
+ const int64_t ir1 = MIN(ir0 + dr, nr);
+
+ float * d = (float *) opt0->data;
+
+ for (int64_t i1 = ir0; i1 < ir1; i1++) {
+ float * ds0 = (float *)((char *) dst->data + i1*dst->nb[1]);
+ float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
+ float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
+ float * sm = (float *) params->wdata + ith*nc;
+
+#ifndef NDEBUG
+ for (int i = 0; i < nc; ++i) {
+ //printf("p[%d] = %f\n", i, p[i]);
+ assert(!isnan(s0[i]));
+ assert(!isnan(s1[i]));
+ }
+#endif
+ // step by step explanation:
+ {
+ //float * sums = (float *) params->wdata;
+
+ // forward pass with annotated gradients from backward pass
+ // (built by going in reverse operation order, adding to gradients of current operation args)
+ // st0 = exp(s0-max(s0)) grad[st0] = grad[st1]*(1.0 - eps)/sum
+ // from softmax_back: grad[s0] = st1_k * (grad[st1]_k - dot(st1, grad[st1]))
+ // ggml_vec_scale_f32(nc, st, sum); // st1 = st0*/sum = softmax(s0) grad[st1] = grad[st2]*(1.0 - eps)
+ // ggml_vec_scale_f32(nc, st, (1.0f - eps)); // st2 = st1*(1.0 - eps) grad[st2] = grad[st3]
+ // ggml_vec_add1_f32(nc, st, st, eps); // st3 = st2 + eps grad[st3] = grad[st4]/st3
+ // ggml_vec_log_f32(nc, st, st); // st4 = log(st3) grad[st4] = grad[st5] * s1
+ // ggml_vec_mul_f32(nc, st, st, s1); // st5 = st4 * s1 grad[st5] = grad[sums[ith]]
+ // ggml_vec_sum_f32(nc, sums + ith, st); // sums[ith] = st5 grad[sums[ith]] = grad[cross_entropy_loss] = -grad[cel]
+
+ // substitute into grad[st1], because we can reuse softmax_back from this point on
+ // grad[st1] = -grad[cel]*s1*(1.0 - eps)/(eps + softmax(s0)*(1.0 - eps))
+ // postorder:
+ // grad[st1] := softmax(s0)
+ // grad[st1] := grad[st1]*(1.0 - eps)
+ // grad[st1] := grad[st1] + eps
+ // grad[st1] := s1 / grad[st1]
+ // grad[st1] := grad[st1]*(1.0-eps)*-grad[cel]
+
+ // src0 gradients by going through softmax_back
+ // grad[s0] = st1_k * (grad[st1]_k - dot(st1, grad[st1]))
+ // from softmax_back:
+ // dxk = yk * (dyk - dot(y, dy))
+ // dot_y_dy := dot(y, dy)
+ // dx := dy
+ // dx := dx - dot_y_dy
+ // dx := dx * y
+ // postorder:
+ // dot_st1_dst1 := dot(st1, grad[st1])
+ // grad[s0] := grad[st1]
+ // grad[s0] := grad[s0] - dot_st1_dst1
+ // grad[s0] := grad[s0] * st1
+
+ // prepend postorder from grad[st1] directly using grad[s0] as memory location, as we will grad[s0] := grad[st1]
+ // sm := softmax(s0)
+ // grad[s0] := sm*(1.0 - eps)
+ // grad[s0] := grad[s0] + eps
+ // grad[s0] := s1 / grad[s0]
+ // grad[s0] := grad[s0]*(1.0-eps)*-grad[cel]
+ // dot_st1_dst1 := dot(sm, grad[s0])
+ // grad[s0] := grad[s0] - dot_st1_dst1
+ // grad[s0] := grad[s0] * sm
+ }
+
+ // soft_max
+ ggml_float sum = 0.0;
+ {
+ float max = -INFINITY;
+ ggml_vec_max_f32(nc, &max, s0);
+
+ uint16_t scvt;
+ for (int i = 0; i < nc; i++) {
+ if (s0[i] == -INFINITY) {
+ sm[i] = 0.0f;
+ } else {
+ // const float val = (s0[i] == -INFINITY) ? 0.0 : exp(s0[i] - max);
+ ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
+ memcpy(&scvt, &s, sizeof(scvt));
+ const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
+ sum += (ggml_float)val;
+ sm[i] = val;
+ }
+ }
+
+ assert(sum > 0.0);
+ sum = 1.0/sum;
+ }
+
+ float dot_st1_dst1 = 0;
+ ggml_vec_scale_f32(nc, sm, sum);
+ ggml_vec_cpy_f32 (nc, ds0, sm);
+ ggml_vec_scale_f32(nc, ds0, (1.0f - eps));
+ ggml_vec_add1_f32 (nc, ds0, ds0, eps);
+ ggml_vec_div_f32 (nc, ds0, s1, ds0);
+ ggml_vec_scale_f32(nc, ds0, -(1.0f - eps)*d[0]);
+ ggml_vec_dot_f32 (nc, &dot_st1_dst1, sm, ds0);
+ ggml_vec_acc1_f32 (nc, ds0, -dot_st1_dst1);
+ ggml_vec_mul_f32 (nc, ds0, ds0, sm);
+
+#ifndef NDEBUG
+ for (int i = 0; i < nc; ++i) {
+ assert(!isnan(sm[i]));
+ assert(!isinf(sm[i]));
+ assert(!isnan(ds0[i]));
+ assert(!isinf(ds0[i]));
+ }
+#endif
+ }
+}
+
+static void ggml_compute_forward_cross_entropy_loss_back(
+ const struct ggml_compute_params * params,
+ const struct ggml_tensor * src0,
+ const struct ggml_tensor * src1,
+ const struct ggml_tensor * opt0,
+ struct ggml_tensor * dst) {
+ switch (src0->type) {
+ case GGML_TYPE_F32:
+ {
+ ggml_compute_forward_cross_entropy_loss_back_f32(params, src0, src1, opt0, dst);
+ } break;
+ default:
+ {
+ GGML_ASSERT(false);
+ } break;
+ }
+}
+
+
/////////////////////////////////
static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
@@ -13102,6 +14364,10 @@ static void ggml_compute_forward(struct ggml_compute_params * params, struct ggm
{
ggml_compute_forward_repeat(params, tensor->src0, tensor);
} break;
+ case GGML_OP_REPEAT_BACK:
+ {
+ ggml_compute_forward_repeat_back(params, tensor->src0, tensor);
+ } break;
case GGML_OP_ABS:
{
ggml_compute_forward_abs(params, tensor->src0, tensor);
@@ -13150,6 +14416,10 @@ static void ggml_compute_forward(struct ggml_compute_params * params, struct ggm
{
ggml_compute_forward_mul_mat(params, tensor->src0, tensor->src1, tensor);
} break;
+ case GGML_OP_OUT_PROD:
+ {
+ ggml_compute_forward_out_prod(params, tensor->src0, tensor->src1, tensor);
+ } break;
case GGML_OP_SCALE:
{
ggml_compute_forward_scale(params, tensor->src0, tensor->src1, tensor);
@@ -13206,6 +14476,10 @@ static void ggml_compute_forward(struct ggml_compute_params * params, struct ggm
{
ggml_compute_forward_soft_max(params, tensor->src0, tensor);
} break;
+ case GGML_OP_SOFT_MAX_BACK:
+ {
+ ggml_compute_forward_soft_max_back(params, tensor->src0, tensor->src1, tensor);
+ } break;
case GGML_OP_ROPE:
{
ggml_compute_forward_rope(params, tensor->src0, tensor->src1, tensor);
@@ -13241,6 +14515,13 @@ static void ggml_compute_forward(struct ggml_compute_params * params, struct ggm
{
ggml_compute_forward_flash_ff(params, tensor->src0, tensor->src1, tensor->opt[0], tensor->opt[1], tensor->opt[2], tensor);
} break;
+ case GGML_OP_FLASH_ATTN_BACK:
+ {
+ int32_t t = ggml_get_i32_1d(tensor->opt[2], 0);
+ GGML_ASSERT(t == 0 || t == 1);
+ bool masked = t != 0;
+ ggml_compute_forward_flash_attn_back(params, tensor->src0, tensor->src1, tensor->opt[0], tensor->opt[1], masked, tensor);
+ } break;
case GGML_OP_MAP_UNARY:
{
const ggml_unary_op_f32_t fun = *((ggml_unary_op_f32_t *)tensor->opt[0]->data);
@@ -13253,6 +14534,16 @@ static void ggml_compute_forward(struct ggml_compute_params * params, struct ggm
ggml_compute_forward_map_binary(params, tensor->src0, tensor->src1, tensor, fun);
}
break;
+ case GGML_OP_CROSS_ENTROPY_LOSS:
+ {
+ ggml_compute_forward_cross_entropy_loss(params, tensor->src0, tensor->src1, tensor);
+ }
+ break;
+ case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
+ {
+ ggml_compute_forward_cross_entropy_loss_back(params, tensor->src0, tensor->src1, tensor->opt[0], tensor);
+ }
+ break;
case GGML_OP_NONE:
{
// nop
@@ -13391,11 +14682,11 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor
src0->grad =
ggml_add_impl(ctx,
src0->grad,
- ggml_mul(ctx,
- tensor->grad, // this was not catched by test_grad because in test_grad tensor->grad is 1
+ ggml_scale(ctx,
ggml_div(ctx,
- ggml_repeat(ctx, ggml_new_f32(ctx, 0.5f), tensor),
- tensor)),
+ tensor->grad,
+ tensor),
+ ggml_new_f32(ctx, 0.5f)),
inplace);
}
} break;
@@ -13441,43 +14732,20 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor
{
// necessary for llama
if (src0->grad) {
- GGML_ASSERT(src0->n_dims == 1 || src0->n_dims == 2);
- const int nc = tensor->ne[0];
- const int nr = tensor->ne[1];
- const int nc0 = src0->ne[0];
- const int nr0 = src0->ne[1];
- const int ncr = nc/nc0; // guaranteed to be an integer due to the check in ggml_can_repeat
- const int nrr = nr/nr0; // guaranteed to be an integer due to the check in ggml_can_repeat
- // tensor->grad [nc,nr,1,1]
- // reshape [nc0,nc/nc0,nr0,nr/nr0]
- // permute [nc0,nr0,nc/nc0,nr/nr0]
- // substitute [nc0,nr0,ncr,nrr]
- // reshape [nc0*nr0,ncr*nrr,1,1]
- // transpose [ncr*nrr,nc0*nr0,1,1]
- // sum rows [1,nc0*nr0,1,1]
- // transpose [nc0*nr0,1,1]
- // reshape [nc0,nr0,1,1] reshape_1d or reshape_2d
- // add to src0->grad
-
- int64_t ne[4] = {nc0,ncr,nr0,nrr};
-
- struct ggml_tensor* F00 = tensor->grad;
- struct ggml_tensor* F01 = ggml_reshape (ctx, F00, ggml_new_tensor(ctx,tensor->grad->type,4,ne));
- struct ggml_tensor* F02 = ggml_permute (ctx, F01, 0,2,1,3);
- struct ggml_tensor* F03 = ggml_cont (ctx, F02);
- struct ggml_tensor* F04 = ggml_reshape_2d(ctx, F03, nc0*nr0, ncr*nrr);
- struct ggml_tensor* F05 = ggml_transpose (ctx, F04);
- struct ggml_tensor* F06 = ggml_cont (ctx, F05);
- struct ggml_tensor* F07 = ggml_sum_rows (ctx, F06);
- struct ggml_tensor* F08 = ggml_transpose (ctx, F07);
- struct ggml_tensor* F09 = ggml_cont (ctx, F08);
- struct ggml_tensor* F10 = ggml_reshape (ctx, F09, src0->grad);
-
- src0->grad =
- ggml_add_impl(ctx,
- src0->grad,
- F10,
- inplace);
+ src0->grad = ggml_add_impl(ctx,
+ src0->grad,
+ ggml_repeat_back(ctx, tensor->grad, src0->grad),
+ inplace);
+ }
+ } break;
+ case GGML_OP_REPEAT_BACK:
+ {
+ if (src0->grad) {
+ // TODO: test this
+ src0->grad = ggml_add_impl(ctx,
+ src0->grad,
+ ggml_repeat(ctx, tensor->grad, src0->grad),
+ inplace);
}
} break;
case GGML_OP_ABS:
@@ -13584,38 +14852,37 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor
// necessary for llama
if (src0->grad) {
- // TODO: this requires outer product - ggml_out_prod(ctx, src1, tensor->grad);
src0->grad =
ggml_add_impl(ctx,
src0->grad,
- // ds0 = dt.dot(s1.T)
- // ggml_out_prod(ctx, // [n,m]
- // src1, // [n,p]
- // tensor->grad), // [m,p]
- // for now just using A*B==(B.T*A.T).T
- ggml_cont(ctx, // [n,m]
- ggml_transpose(ctx, // [n,m]
- ggml_mul_mat(ctx, // [m,n]
- ggml_cont(ctx, // [p,m]
- ggml_transpose(ctx, // [p,m]
- tensor->grad)), // [m,p]
- ggml_cont(ctx, // [p,n]
- ggml_transpose(ctx, // [p,n]
- src1))))), // [n,p]
+ ggml_out_prod(ctx, // [n,m]
+ src1, // [n,p]
+ tensor->grad), // [m,p]
inplace);
}
if (src1->grad) {
src1->grad =
ggml_add_impl(ctx,
src1->grad,
- // ds1 = s0.T.dot(dt):
- ggml_mul_mat(ctx, // [n,p]
- ggml_cont(ctx, // [m,n]
- ggml_transpose(ctx, src0)), // [m,n]
- tensor->grad), // [m,p]
+ // ggml_mul_mat(ctx, // [n,p]
+ // ggml_cont(ctx, // [m,n]
+ // ggml_transpose(ctx, src0)), // [m,n]
+ // tensor->grad), // [m,p]
+
+ // // when src0 is bigger than tensor->grad (this is mostly the case in llama),
+ // // avoid transpose of src0, rather transpose smaller tensor->grad
+ // // and then use ggml_out_prod
+ ggml_out_prod(ctx, // [n,p]
+ src0, // [n,m]
+ ggml_transpose(ctx, // [p,m]
+ tensor->grad)), // [m,p]
inplace);
}
} break;
+ case GGML_OP_OUT_PROD:
+ {
+ GGML_ASSERT(false); // TODO: not implemented
+ } break;
case GGML_OP_SCALE:
{
// necessary for llama
@@ -13717,7 +14984,9 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor
// necessary for llama
if (src0->grad) {
size_t offset;
- memcpy(&offset, tensor->padding, sizeof(offset));
+
+ GGML_ASSERT(sizeof(offset) <= ggml_nbytes(tensor->opt[0]));
+ memcpy(&offset, tensor->opt[0]->data, sizeof(offset));
size_t nb1 = tensor->nb[1];
size_t nb2 = tensor->nb[2];
@@ -13744,10 +15013,11 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor
{
// necessary for llama
if (src0->grad) {
- int axis0 = tensor->padding[0] & 0x3;
- int axis1 = tensor->padding[1] & 0x3;
- int axis2 = tensor->padding[2] & 0x3;
- int axis3 = tensor->padding[3] & 0x3;
+ int32_t * axes = (int32_t *) tensor->opt[0]->data;
+ int axis0 = axes[0] & 0x3;
+ int axis1 = axes[1] & 0x3;
+ int axis2 = axes[2] & 0x3;
+ int axis3 = axes[3] & 0x3;
int axes_backward[4] = {0,0,0,0};
axes_backward[axis0] = 0;
axes_backward[axis1] = 1;
@@ -13831,50 +15101,16 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor
{
// necessary for llama
if (src0->grad) {
- // y = softmax(x)
- //
- // Jii = yi - yi*yi
- // Jij = -yi*yj
- // J = diag(y)-y.*y
- // dx = J * dy
- // dxk = sum(Jkj * dyk)
-
- int64_t ne2[4] = {
- tensor->ne[0],
- 1,
- tensor->ne[1]*tensor->ne[2],
- tensor->ne[3]
- };
- struct ggml_tensor * tensor2 = ggml_cont(ctx,
- ggml_reshape_4d(ctx,
- ggml_cont(ctx, tensor),
- ne2[0], ne2[1], ne2[2], ne2[3]));
-
- struct ggml_tensor * grad2 = ggml_cont(ctx,
- ggml_reshape_4d(ctx,
- ggml_cont(ctx, tensor->grad),
- ne2[0], ne2[1], ne2[2], ne2[3]));
-
- struct ggml_tensor * tensor2_t = ggml_cont(ctx, // [1,ne0,ne1*ne2,ne3]
- ggml_permute(ctx, // [1,ne0,ne1*ne2,ne3]
- tensor2, // [ne0,1,ne1*ne2,ne3]
- 1, 0, 2, 3));
-
src0->grad =
- ggml_add_impl(ctx,
- src0->grad, // [ne0,ne1,ne2,ne3]
- ggml_reshape(ctx, // [ne0,ne1,ne2,ne3]
- ggml_mul_mat(ctx, // [ne0,1,ne1*ne2,ne3]
- ggml_sub(ctx, // [ne0,ne0,ne1*ne2,ne3]
- ggml_diag(ctx, // [ne0,ne0,ne1*ne2,ne3]
- tensor2), // [ne0,1,ne1*ne2,ne3]
- ggml_mul_mat(ctx, // [ne0,ne0,ne1*ne2,ne3]
- tensor2_t, // [1,ne0,ne1*ne2,ne3]
- tensor2_t)), // [1,ne0,ne1*ne2,ne3]
- grad2), // [ne0,1,ne1*ne2,ne3]
- src0->grad),
- inplace);
+ ggml_add_impl(ctx, src0->grad,
+ ggml_soft_max_back(ctx, tensor->grad, tensor),
+ inplace);
}
+
+ } break;
+ case GGML_OP_SOFT_MAX_BACK:
+ {
+ GGML_ASSERT(false); // TODO: not implemented
} break;
case GGML_OP_ROPE:
{
@@ -13929,17 +15165,190 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor
} break;
case GGML_OP_FLASH_ATTN:
{
- GGML_ASSERT(false); // not supported
+ struct ggml_tensor * flash_grad = NULL;
+ if (src0->grad || src1->grad || tensor->opt[0]->grad) {
+ int32_t t = ggml_get_i32_1d(tensor->opt[1], 0);
+ GGML_ASSERT(t == 0 || t == 1);
+ bool masked = t != 0;
+ flash_grad =
+ ggml_flash_attn_back(ctx,
+ src0,
+ src1,
+ tensor->opt[0],
+ tensor->grad,
+ masked);
+ }
+
+ if (src0->grad) {
+ struct ggml_tensor * grad_q = NULL;
+ const size_t nb0 = flash_grad->nb[0];
+ const size_t offset = 0;
+ switch(src0->n_dims) {
+ case 2:
+ {
+ grad_q = ggml_view_2d(ctx,
+ flash_grad,
+ src0->ne[0],
+ src0->ne[1],
+ nb0*src0->ne[0],
+ offset);
+ } break;
+ case 3:
+ {
+ grad_q = ggml_view_3d(ctx,
+ flash_grad,
+ src0->ne[0],
+ src0->ne[1],
+ src0->ne[2],
+ nb0*src0->ne[0],
+ nb0*src0->ne[0]*src0->ne[1],
+ offset);
+ } break;
+ case 4:
+ {
+ grad_q = ggml_view_4d(ctx,
+ flash_grad,
+ src0->ne[0],
+ src0->ne[1],
+ src0->ne[2],
+ src0->ne[3],
+ nb0*src0->ne[0],
+ nb0*src0->ne[0]*src0->ne[1],
+ nb0*src0->ne[0]*src0->ne[1]*src0->ne[2],
+ offset);
+ } break;
+ }
+
+ src0->grad = ggml_add_impl(ctx,
+ src0->grad,
+ grad_q,
+ inplace);
+ }
+
+ if (src1->grad) {
+ struct ggml_tensor * grad_k = NULL;
+ const size_t nb0 = flash_grad->nb[0];
+ const size_t offset = nb0*src0->ne[0]*src0->ne[1]*src0->ne[2]*src0->ne[3];
+ switch(src1->n_dims) {
+ case 2:
+ {
+ grad_k = ggml_view_2d(ctx,
+ flash_grad,
+ src1->ne[0],
+ src1->ne[1],
+ nb0*src1->ne[0],
+ offset);
+ } break;
+ case 3:
+ {
+ grad_k = ggml_view_3d(ctx,
+ flash_grad,
+ src1->ne[0],
+ src1->ne[1],
+ src1->ne[2],
+ nb0*src1->ne[0],
+ nb0*src1->ne[0]*src1->ne[1],
+ offset);
+ } break;
+ case 4:
+ {
+ grad_k = ggml_view_4d(ctx,
+ flash_grad,
+ src1->ne[0],
+ src1->ne[1],
+ src1->ne[2],
+ src1->ne[3],
+ nb0*src1->ne[0],
+ nb0*src1->ne[0]*src1->ne[1],
+ nb0*src1->ne[0]*src1->ne[1]*src1->ne[2],
+ offset);
+ } break;
+ }
+
+ src1->grad = ggml_add_impl(ctx,
+ src1->grad,
+ grad_k,
+ inplace);
+ }
+
+ struct ggml_tensor * opt0 = tensor->opt[0];
+
+ if (opt0->grad) {
+ struct ggml_tensor * grad_v = NULL;
+ const size_t nb0 = flash_grad->nb[0];
+ const size_t offset = nb0*src0->ne[0]*src0->ne[1]*src0->ne[2]*src0->ne[3]
+ + nb0*src1->ne[0]*src1->ne[1]*src1->ne[2]*src1->ne[3];
+ switch(opt0->n_dims) {
+ case 2:
+ {
+ grad_v = ggml_view_2d(ctx,
+ flash_grad,
+ opt0->ne[0],
+ opt0->ne[1],
+ nb0*opt0->ne[0],
+ offset);
+ } break;
+ case 3:
+ {
+ grad_v = ggml_view_3d(ctx,
+ flash_grad,
+ opt0->ne[0],
+ opt0->ne[1],
+ opt0->ne[2],
+ nb0*opt0->ne[0],
+ nb0*opt0->ne[0]*opt0->ne[1],
+ offset);
+ } break;
+ case 4:
+ {
+ grad_v = ggml_view_4d(ctx,
+ flash_grad,
+ opt0->ne[0],
+ opt0->ne[1],
+ opt0->ne[2],
+ opt0->ne[3],
+ nb0*opt0->ne[0],
+ nb0*opt0->ne[0]*opt0->ne[1],
+ nb0*opt0->ne[0]*opt0->ne[1]*opt0->ne[2],
+ offset);
+ } break;
+ }
+
+ opt0->grad = ggml_add_impl(ctx,
+ opt0->grad,
+ grad_v,
+ inplace);
+ }
} break;
case GGML_OP_FLASH_FF:
{
GGML_ASSERT(false); // not supported
} break;
+ case GGML_OP_FLASH_ATTN_BACK:
+ {
+ GGML_ASSERT(false); // not supported
+ } break;
case GGML_OP_MAP_UNARY:
case GGML_OP_MAP_BINARY:
{
GGML_ASSERT(false); // not supported
} break;
+ case GGML_OP_CROSS_ENTROPY_LOSS:
+ {
+ if (src0->grad) {
+ src0->grad = ggml_add_impl(ctx,
+ src0->grad,
+ ggml_cross_entropy_loss_back(ctx,
+ src0,
+ src1,
+ tensor->grad),
+ inplace);
+ }
+ } break;
+ case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
+ {
+ GGML_ASSERT(false); // not supported
+ } break;
case GGML_OP_NONE:
{
// nop
@@ -14316,6 +15725,7 @@ void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph)
case GGML_OP_SUM_ROWS:
case GGML_OP_MEAN:
case GGML_OP_REPEAT:
+ case GGML_OP_REPEAT_BACK:
case GGML_OP_ABS:
case GGML_OP_SGN:
case GGML_OP_NEG:
@@ -14335,6 +15745,7 @@ void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph)
node->n_tasks = n_threads;
} break;
case GGML_OP_MUL_MAT:
+ case GGML_OP_OUT_PROD:
{
node->n_tasks = n_threads;
@@ -14417,6 +15828,7 @@ void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph)
} break;
case GGML_OP_DIAG_MASK_INF:
case GGML_OP_SOFT_MAX:
+ case GGML_OP_SOFT_MAX_BACK:
case GGML_OP_ROPE:
case GGML_OP_ROPE_BACK:
{
@@ -14498,11 +15910,48 @@ void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph)
work_size = MAX(work_size, cur);
} break;
+ case GGML_OP_FLASH_ATTN_BACK:
+ {
+ node->n_tasks = n_threads;
+
+ size_t cur = 0;
+
+ const int64_t D = node->src0->ne[0];
+ const int64_t ne11 = ggml_up(node->src1->ne[1], GGML_SOFT_MAX_UNROLL);
+ const int64_t mxDn = MAX(D, ne11) * 2; // *2 because of S and SM in ggml_compute_forward_flash_attn_back
+ if (node->src1->type == GGML_TYPE_F32) {
+ cur = sizeof(float)*mxDn*node->n_tasks; // TODO: this can become (n_tasks-1)
+ cur += sizeof(float)*mxDn*node->n_tasks; // this is overestimated by x2
+ }
+
+ if (node->src1->type == GGML_TYPE_F16) {
+ cur = sizeof(float)*mxDn*node->n_tasks; // TODO: this can become (n_tasks-1)
+ cur += sizeof(float)*mxDn*node->n_tasks; // this is overestimated by x2
+ }
+
+ work_size = MAX(work_size, cur);
+ } break;
case GGML_OP_MAP_UNARY:
case GGML_OP_MAP_BINARY:
{
node->n_tasks = 1;
} break;
+ case GGML_OP_CROSS_ENTROPY_LOSS:
+ {
+ node->n_tasks = n_threads;
+
+ size_t cur = ggml_type_size(node->type)*(node->n_tasks + node->src0->ne[0]*node->n_tasks);
+
+ work_size = MAX(work_size, cur);
+ } break;
+ case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
+ {
+ node->n_tasks = n_threads;
+
+ size_t cur = ggml_type_size(node->type)*node->src0->ne[0]*node->n_tasks;
+
+ work_size = MAX(work_size, cur);
+ } break;
case GGML_OP_NONE:
{
node->n_tasks = 1;
@@ -15478,6 +16927,7 @@ static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g
static enum ggml_opt_result ggml_opt_adam(
struct ggml_context * ctx,
+ struct ggml_opt_context * opt,
struct ggml_opt_params params,
struct ggml_tensor * f,
struct ggml_cgraph * gf,
@@ -15503,25 +16953,29 @@ static enum ggml_opt_result ggml_opt_adam(
}
}
+ if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past)) {
+ int iter = opt->iter;
+ ggml_opt_init(opt->ctx, opt, params, nx);
+ opt->iter = iter;
+ }
+
// constants
- const float alpha = params.adam.alpha;
+ const float sched = params.adam.sched;
+ const float decay = params.adam.decay * sched;
+ const float alpha = params.adam.alpha * sched;
const float beta1 = params.adam.beta1;
const float beta2 = params.adam.beta2;
const float eps = params.adam.eps;
- float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // view of the parameters
- float * g1 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient
- float * g2 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient squared
- float * m = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment
- float * v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment
- float * mh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment hat
- float * vh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment hat
+ float * x = opt->adam.x->data; // view of the parameters
+ float * g1 = opt->adam.g1->data; // gradient
+ float * g2 = opt->adam.g2->data; // gradient squared
+ float * m = opt->adam.m->data; // first moment
+ float * v = opt->adam.v->data; // second moment
+ float * mh = opt->adam.mh->data; // first moment hat
+ float * vh = opt->adam.vh->data; // second moment hat
- float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
-
- // initialize
- ggml_vec_set_f32(nx, m, 0.0f);
- ggml_vec_set_f32(nx, v, 0.0f);
+ float * pf = params.past > 0 ? opt->adam.pf->data : NULL; // past function values
// update view
ggml_opt_get_params(np, ps, x);
@@ -15531,16 +16985,27 @@ static enum ggml_opt_result ggml_opt_adam(
ggml_set_f32 (f->grad, 1.0f);
ggml_graph_compute(ctx, gb);
- float fx_prev = ggml_get_f32_1d(f, 0);
+ opt->adam.fx_prev = ggml_get_f32_1d(f, 0);
+ opt->adam.fx_best = opt->adam.fx_prev;
if (pf) {
- pf[0] = fx_prev;
+ pf[opt->iter % params.past] = opt->adam.fx_prev;
+ }
+
+ // initialize
+ if (opt->just_initialized) {
+ opt->adam.n_no_improvement = 0;
+ opt->just_initialized = false;
}
- int n_no_improvement = 0;
- float fx_best = fx_prev;
+ float * fx_best = &opt->adam.fx_best;
+ float * fx_prev = &opt->adam.fx_prev;
+ int * n_no_improvement = &opt->adam.n_no_improvement;
+
+ int iter0 = opt->iter;
// run the optimizer
for (int t = 0; t < params.adam.n_iter; ++t) {
+ opt->iter = iter0 + t + 1;
GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
@@ -15574,17 +17039,22 @@ static enum ggml_opt_result ggml_opt_adam(
// m^hat = m_t / (1 - beta1^t)
// v^hat = v_t / (1 - beta2^t)
- // x_t = x_t-1 - alpha*m^hat/(sqrt(v^hat) + eps)
+ // x_t = x_t-1 - sched*(alpha*m^hat/(sqrt(v^hat) + eps) + decay*x_t-1)
+ // x_t = x_t-1 - sched*alpha*m^hat/(sqrt(v^hat) + eps) - sched*decay*x_t-1
+ // x_t = x_t-1*(1-sched*decay) - sched*alpha*m^hat/(sqrt(v^hat) + eps)
+ // x_t = x_t-1*(1-sched*decay) + sched*decay*(-alpha/decay)*m^hat/(sqrt(v^hat) + eps)
+ // x_t = mix(x_t-1, (-alpha/decay)*m^hat/(sqrt(v^hat) + eps), sched*decay)
ggml_vec_cpy_f32 (nx, mh, m);
ggml_vec_cpy_f32 (nx, vh, v);
- ggml_vec_scale_f32(nx, mh, alpha/(1.0f - powf(beta1, t + 1)));
- ggml_vec_scale_f32(nx, vh, 1.0f/(1.0f - powf(beta2, t + 1)));
+ ggml_vec_scale_f32(nx, mh, alpha/(1.0f - powf(beta1, opt->iter)));
+ ggml_vec_scale_f32(nx, vh, 1.0f/(1.0f - powf(beta2, opt->iter)));
ggml_vec_sqrt_f32 (nx, vh, vh);
ggml_vec_acc1_f32 (nx, vh, eps);
ggml_vec_div_f32 (nx, mh, mh, vh);
+ ggml_vec_scale_f32(nx, x, 1.0f - decay);
ggml_vec_sub_f32 (nx, x, x, mh);
// update the parameters
@@ -15598,7 +17068,7 @@ static enum ggml_opt_result ggml_opt_adam(
const float fx = ggml_get_f32_1d(f, 0);
// check convergence
- if (fabsf(fx - fx_prev)/fx < params.adam.eps_f) {
+ if (fabsf(fx - fx_prev[0])/fx < params.adam.eps_f) {
GGML_PRINT_DEBUG("converged\n");
return GGML_OPT_OK;
@@ -15607,32 +17077,32 @@ static enum ggml_opt_result ggml_opt_adam(
// delta-based convergence test
if (pf != NULL) {
// need at least params.past iterations to start checking for convergence
- if (params.past <= t) {
- const float rate = (pf[t%params.past] - fx)/fx;
+ if (params.past <= iter0 + t) {
+ const float rate = (pf[(iter0 + t)%params.past] - fx)/fx;
if (fabsf(rate) < params.delta) {
return GGML_OPT_OK;
}
}
- pf[t%params.past] = fx;
+ pf[(iter0 + t)%params.past] = fx;
}
// check for improvement
if (params.max_no_improvement > 0) {
- if (fx_best > fx) {
- fx_best = fx;
- n_no_improvement = 0;
+ if (fx_best[0] > fx) {
+ fx_best[0] = fx;
+ n_no_improvement[0] = 0;
} else {
- ++n_no_improvement;
+ ++n_no_improvement[0];
- if (n_no_improvement >= params.max_no_improvement) {
+ if (n_no_improvement[0] >= params.max_no_improvement) {
return GGML_OPT_OK;
}
}
}
- fx_prev = fx;
+ fx_prev[0] = fx;
{
const int64_t t_end_cpu = ggml_cycles();
@@ -15771,6 +17241,7 @@ static enum ggml_opt_result linesearch_backtracking(
static enum ggml_opt_result ggml_opt_lbfgs(
struct ggml_context * ctx,
+ struct ggml_opt_context * opt,
struct ggml_opt_params params,
struct ggml_tensor * f,
struct ggml_cgraph * gf,
@@ -15803,31 +17274,32 @@ static enum ggml_opt_result ggml_opt_lbfgs(
}
}
- float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current parameters
- float * xp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous parameters
- float * g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current gradient
- float * gp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous gradient
- float * d = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // search direction
+ if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past) || (opt->params.lbfgs.m != params.lbfgs.m)) {
+ int iter = opt->iter;
+ ggml_opt_init(ctx, opt, params, nx);
+ opt->iter = iter;
+ }
+
+ float * x = opt->lbfgs.x->data; // current parameters
+ float * xp = opt->lbfgs.xp->data; // previous parameters
+ float * g = opt->lbfgs.g->data; // current gradient
+ float * gp = opt->lbfgs.gp->data; // previous gradient
+ float * d = opt->lbfgs.d->data; // search direction
- float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
+ float * pf = params.past > 0 ? opt->lbfgs.pf->data : NULL; // past function values
float fx = 0.0f; // cost function value
float xnorm = 0.0f; // ||x||
float gnorm = 0.0f; // ||g||
- float step = 0.0f;
// initialize x from the graph nodes
ggml_opt_get_params(np, ps, x);
// the L-BFGS memory
- struct ggml_lbfgs_iteration_data * lm = alloca(sizeof(struct ggml_lbfgs_iteration_data)*m);
-
- for (int i = 0; i < m; ++i) {
- lm[i].alpha = 0.0f;
- lm[i].ys = 0.0f;
- lm[i].s = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
- lm[i].y = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
- }
+ float * lm_alpha = opt->lbfgs.lmal->data;
+ float * lm_ys = opt->lbfgs.lmys->data;
+ float * lm_s = opt->lbfgs.lms->data;
+ float * lm_y = opt->lbfgs.lmy->data;
// evaluate the function value and its gradient
{
@@ -15842,12 +17314,6 @@ static enum ggml_opt_result ggml_opt_lbfgs(
fx = ggml_get_f32_1d(f, 0);
}
- if (pf) {
- pf[0] = fx;
- }
-
- float fx_best = fx;
-
// search direction = -gradient
ggml_vec_neg_f32(nx, d, g);
@@ -15864,26 +17330,43 @@ static enum ggml_opt_result ggml_opt_lbfgs(
return GGML_OPT_OK;
}
- // initial step
- ggml_vec_norm_inv_f32(nx, &step, d);
+ if (opt->just_initialized) {
+ if (pf) {
+ pf[0] = fx;
+ }
+ opt->lbfgs.fx_best = fx;
+
+ // initial step
+ ggml_vec_norm_inv_f32(nx, &opt->lbfgs.step, d);
+ opt->lbfgs.j = 0;
+ opt->lbfgs.k = 1;
+ opt->lbfgs.end = 0;
+ opt->lbfgs.n_no_improvement = 0;
+ opt->just_initialized = false;
+ }
+
+ float * fx_best = &opt->lbfgs.fx_best;
+ float * step = &opt->lbfgs.step;
+ int * j = &opt->lbfgs.j;
+ int * k = &opt->lbfgs.k;
+ int * end = &opt->lbfgs.end;
+ int * n_no_improvement = &opt->lbfgs.n_no_improvement;
- int j = 0;
- int k = 1;
- int ls = 0;
- int end = 0;
- int bound = 0;
- int n_no_improvement = 0;
+ int ls = 0;
+ int bound = 0;
float ys = 0.0f;
float yy = 0.0f;
float beta = 0.0f;
+ int it = 0;
+
while (true) {
// store the current position and gradient vectors
ggml_vec_cpy_f32(nx, xp, x);
ggml_vec_cpy_f32(nx, gp, g);
- ls = linesearch_backtracking(ctx, &params, nx, x, &fx, g, d, &step, xp, f, gf, gb, np, ps);
+ ls = linesearch_backtracking(ctx, &params, nx, x, &fx, g, d, step, xp, f, gf, gb, np, ps);
if (ls < 0) {
// linesearch failed - go back to the previous point and return
@@ -15909,32 +17392,32 @@ static enum ggml_opt_result ggml_opt_lbfgs(
// delta-based convergence test
if (pf != NULL) {
// need at least params.past iterations to start checking for convergence
- if (params.past <= k) {
- const float rate = (pf[k%params.past] - fx)/fx;
+ if (params.past <= k[0]) {
+ const float rate = (pf[k[0]%params.past] - fx)/fx;
if (fabsf(rate) < params.delta) {
return GGML_OPT_OK;
}
}
- pf[k%params.past] = fx;
+ pf[k[0]%params.past] = fx;
}
// check for improvement
if (params.max_no_improvement > 0) {
- if (fx < fx_best) {
- fx_best = fx;
- n_no_improvement = 0;
+ if (fx < fx_best[0]) {
+ fx_best[0] = fx;
+ n_no_improvement[0] = 0;
} else {
- n_no_improvement++;
+ n_no_improvement[0]++;
- if (n_no_improvement >= params.max_no_improvement) {
+ if (n_no_improvement[0] >= params.max_no_improvement) {
return GGML_OPT_OK;
}
}
}
- if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < k + 1) {
+ if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < it + 1) {
// reached the maximum number of iterations
return GGML_OPT_DID_NOT_CONVERGE;
}
@@ -15943,50 +17426,51 @@ static enum ggml_opt_result ggml_opt_lbfgs(
// s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
// y_{k+1} = g_{k+1} - g_{k}.
//
- ggml_vec_sub_f32(nx, lm[end].s, x, xp);
- ggml_vec_sub_f32(nx, lm[end].y, g, gp);
+ ggml_vec_sub_f32(nx, &lm_s[end[0]*nx], x, xp);
+ ggml_vec_sub_f32(nx, &lm_y[end[0]*nx], g, gp);
// compute scalars ys and yy:
// ys = y^t \cdot s -> 1 / \rho.
// yy = y^t \cdot y.
//
- ggml_vec_dot_f32(nx, &ys, lm[end].y, lm[end].s);
- ggml_vec_dot_f32(nx, &yy, lm[end].y, lm[end].y);
+ ggml_vec_dot_f32(nx, &ys, &lm_y[end[0]*nx], &lm_s[end[0] *nx]);
+ ggml_vec_dot_f32(nx, &yy, &lm_y[end[0]*nx], &lm_y[end[0]*nx]);
- lm[end].ys = ys;
+ lm_ys[end[0]] = ys;
// find new search direction
// ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
- bound = (m <= k) ? m : k;
- k++;
- end = (end + 1)%m;
+ bound = (m <= k[0]) ? m : k[0];
+ k[0]++;
+ it++;
+ end[0] = (end[0] + 1)%m;
// initialize search direction with -g
ggml_vec_neg_f32(nx, d, g);
- j = end;
+ j[0] = end[0];
for (int i = 0; i < bound; ++i) {
- j = (j + m - 1) % m;
+ j[0] = (j[0] + m - 1) % m;
// \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
- ggml_vec_dot_f32(nx, &lm[j].alpha, lm[j].s, d);
- lm[j].alpha /= lm[j].ys;
+ ggml_vec_dot_f32(nx, &lm_alpha[j[0]], &lm_s[j[0]*nx], d);
+ lm_alpha[j[0]] /= lm_ys[j[0]];
// q_{i} = q_{i+1} - \alpha_{i} y_{i}
- ggml_vec_mad_f32(nx, d, lm[j].y, -lm[j].alpha);
+ ggml_vec_mad_f32(nx, d, &lm_y[j[0]*nx], -lm_alpha[j[0]]);
}
ggml_vec_scale_f32(nx, d, ys/yy);
for (int i = 0; i < bound; ++i) {
// \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
- ggml_vec_dot_f32(nx, &beta, lm[j].y, d);
- beta /= lm[j].ys;
+ ggml_vec_dot_f32(nx, &beta, &lm_y[j[0]*nx], d);
+ beta /= lm_ys[j[0]];
// \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
- ggml_vec_mad_f32(nx, d, lm[j].s, lm[j].alpha - beta);
- j = (j + 1)%m;
+ ggml_vec_mad_f32(nx, d, &lm_s[j[0]*nx], lm_alpha[j[0]] - beta);
+ j[0] = (j[0] + 1)%m;
}
- step = 1.0;
+ step[0] = 1.0;
}
return GGML_OPT_DID_NOT_CONVERGE;
@@ -16011,6 +17495,8 @@ struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
.adam = {
.n_iter = 10000,
+ .sched = 1.000f,
+ .decay = 0.001f,
.alpha = 0.001f,
.beta1 = 0.9f,
.beta2 = 0.999f,
@@ -16053,6 +17539,71 @@ struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
return result;
}
+GGML_API void ggml_opt_init(
+ struct ggml_context * ctx,
+ struct ggml_opt_context * opt,
+ struct ggml_opt_params params,
+ int64_t nx) {
+ opt->ctx = ctx;
+ opt->params = params;
+ opt->iter = 0;
+ opt->nx = nx;
+ opt->just_initialized = true;
+ switch (opt->params.type) {
+ case GGML_OPT_ADAM:
+ {
+ opt->adam.x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
+ opt->adam.g1 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
+ opt->adam.g2 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
+ opt->adam.m = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
+ opt->adam.v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
+ opt->adam.mh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
+ opt->adam.vh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
+ opt->adam.pf = params.past > 0
+ ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)
+ : NULL;
+ ggml_set_zero(opt->adam.x);
+ ggml_set_zero(opt->adam.g1);
+ ggml_set_zero(opt->adam.g2);
+ ggml_set_zero(opt->adam.m);
+ ggml_set_zero(opt->adam.v);
+ ggml_set_zero(opt->adam.mh);
+ ggml_set_zero(opt->adam.vh);
+ if (opt->adam.pf) {
+ ggml_set_zero(opt->adam.pf);
+ }
+ } break;
+ case GGML_OPT_LBFGS:
+ {
+ opt->lbfgs.x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
+ opt->lbfgs.xp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
+ opt->lbfgs.g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
+ opt->lbfgs.gp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
+ opt->lbfgs.d = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
+ opt->lbfgs.pf = params.past > 0
+ ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)
+ : NULL;
+ opt->lbfgs.lmal = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.lbfgs.m);
+ opt->lbfgs.lmys = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.lbfgs.m);
+ opt->lbfgs.lms = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
+ opt->lbfgs.lmy = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
+ ggml_set_zero(opt->lbfgs.x);
+ ggml_set_zero(opt->lbfgs.xp);
+ ggml_set_zero(opt->lbfgs.g);
+ ggml_set_zero(opt->lbfgs.gp);
+ ggml_set_zero(opt->lbfgs.d);
+ ggml_set_zero(opt->lbfgs.pf);
+ if (opt->lbfgs.pf) {
+ ggml_set_zero(opt->lbfgs.pf);
+ }
+ ggml_set_zero(opt->lbfgs.lmal);
+ ggml_set_zero(opt->lbfgs.lmys);
+ ggml_set_zero(opt->lbfgs.lms);
+ ggml_set_zero(opt->lbfgs.lmy);
+ } break;
+ }
+}
+
enum ggml_opt_result ggml_opt(
struct ggml_context * ctx,
struct ggml_opt_params params,
@@ -16075,33 +17626,65 @@ enum ggml_opt_result ggml_opt(
enum ggml_opt_result result = GGML_OPT_OK;
+ struct ggml_opt_context * opt = (struct ggml_opt_context *) alloca(sizeof(struct ggml_opt_context));
+
+ ggml_opt_init(ctx, opt, params, 0);
+ result = ggml_opt_resume(ctx, opt, f);
+
+ if (free_ctx) {
+ ggml_free(ctx);
+ }
+
+ return result;
+}
+
+enum ggml_opt_result ggml_opt_resume(
+ struct ggml_context * ctx,
+ struct ggml_opt_context * opt,
+ struct ggml_tensor * f) {
+
+ // build forward + backward compute graphs
+ struct ggml_tensor * gfbuf = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(struct ggml_cgraph) / GGML_TYPE_SIZE[GGML_TYPE_I32]+ (sizeof(struct ggml_cgraph) % GGML_TYPE_SIZE[GGML_TYPE_I32] ? 1 : 0));
+ struct ggml_tensor * gbbuf = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(struct ggml_cgraph) / GGML_TYPE_SIZE[GGML_TYPE_I32]+ (sizeof(struct ggml_cgraph) % GGML_TYPE_SIZE[GGML_TYPE_I32] ? 1 : 0));
+
+ struct ggml_cgraph * gf = (struct ggml_cgraph *) gfbuf->data;
+ struct ggml_cgraph * gb = (struct ggml_cgraph *) gbbuf->data;
+
+ *gf = ggml_build_forward (f);
+ *gb = ggml_build_backward(ctx, gf, true);
+
+ return ggml_opt_resume_g(ctx, opt, f, gf, gb);
+}
+
+enum ggml_opt_result ggml_opt_resume_g(
+ struct ggml_context * ctx,
+ struct ggml_opt_context * opt,
+ struct ggml_tensor * f,
+ struct ggml_cgraph * gf,
+ struct ggml_cgraph * gb) {
+
// build forward + backward compute graphs
- struct ggml_cgraph gf = ggml_build_forward (f);
- struct ggml_cgraph gb = ggml_build_backward(ctx, &gf, true);
+ enum ggml_opt_result result = GGML_OPT_OK;
- switch (params.type) {
+ switch (opt->params.type) {
case GGML_OPT_ADAM:
{
- result = ggml_opt_adam(ctx, params, f, &gf, &gb);
+ result = ggml_opt_adam(ctx, opt, opt->params, f, gf, gb);
} break;
case GGML_OPT_LBFGS:
{
- result = ggml_opt_lbfgs(ctx, params, f, &gf, &gb);
+ result = ggml_opt_lbfgs(ctx, opt, opt->params, f, gf, gb);
} break;
}
- if (params.print_forward_graph) {
- ggml_graph_print (&gf);
- ggml_graph_dump_dot(&gf, NULL, "opt-forward.dot");
+ if (opt->params.print_forward_graph) {
+ ggml_graph_print (gf);
+ ggml_graph_dump_dot(gf, NULL, "opt-forward.dot");
}
- if (params.print_backward_graph) {
- ggml_graph_print (&gb);
- ggml_graph_dump_dot(&gb, &gf, "opt-backward.dot");
- }
-
- if (free_ctx) {
- ggml_free(ctx);
+ if (opt->params.print_backward_graph) {
+ ggml_graph_print (gb);
+ ggml_graph_dump_dot(gb, gf, "opt-backward.dot");
}
return result;