aboutsummaryrefslogtreecommitdiff
path: root/main.cpp
diff options
context:
space:
mode:
authorGeorgi Gerganov <ggerganov@gmail.com>2023-03-22 07:32:36 +0200
committerGitHub <noreply@github.com>2023-03-22 07:32:36 +0200
commitf5a77a629bd0f37ae1696747633ab42a5530ec15 (patch)
treeb3d147dd228ce67661ed497a6dc61b444a38e0f9 /main.cpp
parentda0e9fe90ccf6e73597eb19dd0cfc0a28363fb3b (diff)
Introduce C-style API (#370)
* Major refactoring - introduce C-style API * Clean up * Add <cassert> * Add <iterator> * Add <algorithm> .... * Fix timing reporting and accumulation * Measure eval time only for single-token calls * Change llama_tokenize return meaning
Diffstat (limited to 'main.cpp')
-rw-r--r--main.cpp912
1 files changed, 61 insertions, 851 deletions
diff --git a/main.cpp b/main.cpp
index fe9e583..7db3df7 100644
--- a/main.cpp
+++ b/main.cpp
@@ -1,6 +1,6 @@
-#include "ggml.h"
-
#include "utils.h"
+#include "ggml.h"
+#include "llama.h"
#include <cassert>
#include <cinttypes>
@@ -40,7 +40,7 @@ enum console_state {
CONSOLE_STATE_DEFAULT=0,
CONSOLE_STATE_PROMPT,
CONSOLE_STATE_USER_INPUT
-};
+};
static console_state con_st = CONSOLE_STATE_DEFAULT;
static bool con_use_color = false;
@@ -65,765 +65,6 @@ void set_console_state(console_state new_st)
}
}
-static const int EOS_TOKEN_ID = 2;
-
-// determine number of model parts based on the dimension
-static const std::unordered_map<int, int> LLAMA_N_PARTS = {
- { 4096, 1 },
- { 5120, 2 },
- { 6656, 4 },
- { 8192, 8 },
-};
-
-// default hparams (LLaMA 7B)
-struct llama_hparams {
- int32_t n_vocab = 32000;
- int32_t n_ctx = 512; // this is provided as user input?
- int32_t n_embd = 4096;
- int32_t n_mult = 256;
- int32_t n_head = 32;
- int32_t n_layer = 32;
- int32_t n_rot = 64;
- int32_t f16 = 1;
-};
-
-struct llama_layer {
- // normalization
- struct ggml_tensor * attention_norm;
-
- // attention
- struct ggml_tensor * wq;
- struct ggml_tensor * wk;
- struct ggml_tensor * wv;
- struct ggml_tensor * wo;
-
- // normalization
- struct ggml_tensor * ffn_norm;
-
- // ff
- struct ggml_tensor * w1;
- struct ggml_tensor * w2;
- struct ggml_tensor * w3;
-};
-
-struct llama_model {
- llama_hparams hparams;
-
- struct ggml_tensor * tok_embeddings;
-
- struct ggml_tensor * norm;
- struct ggml_tensor * output;
-
- std::vector<llama_layer> layers;
-
- // key + value memory
- struct ggml_tensor * memory_k;
- struct ggml_tensor * memory_v;
-
- //
- struct ggml_context * ctx;
- std::unordered_map<std::string, struct ggml_tensor *> tensors;
-};
-
-// load the model's weights from a file
-
-bool llama_model_load(const std::string & fname, llama_model & model, llama_vocab & vocab, int n_ctx, int n_parts, ggml_type memory_type = GGML_TYPE_F32) {
- fprintf(stderr, "%s: loading model from '%s' - please wait ...\n", __func__, fname.c_str());
-
- std::vector<char> f_buf(1024*1024);
-
- auto fin = std::ifstream(fname, std::ios::binary);
- fin.rdbuf()->pubsetbuf(f_buf.data(), f_buf.size());
- if (!fin) {
- fprintf(stderr, "%s: failed to open '%s'\n", __func__, fname.c_str());
- return false;
- }
-
- // verify magic
- {
- uint32_t magic;
- fin.read((char *) &magic, sizeof(magic));
- if (magic == FILE_MAGIC_UNVERSIONED) {
- fprintf(stderr, "%s: invalid model file '%s' (too old, regenerate your model files!)\n",
- __func__, fname.c_str());
- return false;
- }
- if (magic != FILE_MAGIC) {
- fprintf(stderr, "%s: invalid model file '%s' (bad magic)\n", __func__, fname.c_str());
- return false;
- }
-
- uint32_t format_version;
- fin.read((char *) &format_version, sizeof(format_version));
-
- if (format_version != FILE_VERSION) {
- fprintf(stderr, "%s: invalid model file '%s' (unsupported format version %" PRIu32 ", expected %d)\n",
- __func__, fname.c_str(), format_version, FILE_VERSION);
- return false;
- }
- }
-
- int n_ff = 0;
-
- // load hparams
- {
- auto & hparams = model.hparams;
-
- fin.read((char *) &hparams.n_vocab, sizeof(hparams.n_vocab));
- //fin.read((char *) &hparams.n_ctx, sizeof(hparams.n_ctx));
- fin.read((char *) &hparams.n_embd, sizeof(hparams.n_embd));
- fin.read((char *) &hparams.n_mult, sizeof(hparams.n_mult));
- fin.read((char *) &hparams.n_head, sizeof(hparams.n_head));
- fin.read((char *) &hparams.n_layer, sizeof(hparams.n_layer));
- fin.read((char *) &hparams.n_rot, sizeof(hparams.n_rot));
- fin.read((char *) &hparams.f16, sizeof(hparams.f16));
-
- hparams.n_ctx = n_ctx;
-
- n_ff = ((2*(4*hparams.n_embd)/3 + hparams.n_mult - 1)/hparams.n_mult)*hparams.n_mult;
-
- if (n_parts < 1) {
- n_parts = LLAMA_N_PARTS.at(hparams.n_embd);
- }
-
- // temp warning to tell the user to use "--n_parts"
- if (hparams.f16 == 4 && n_parts != 1) {
- fprintf(stderr, "%s: GPTQ model detected - are you sure n_parts should be %d? we normally expect it to be 1\n", __func__, n_parts);
- fprintf(stderr, "%s: use '--n_parts 1' if necessary\n", __func__);
- }
-
- fprintf(stderr, "%s: n_vocab = %d\n", __func__, hparams.n_vocab);
- fprintf(stderr, "%s: n_ctx = %d\n", __func__, hparams.n_ctx);
- fprintf(stderr, "%s: n_embd = %d\n", __func__, hparams.n_embd);
- fprintf(stderr, "%s: n_mult = %d\n", __func__, hparams.n_mult);
- fprintf(stderr, "%s: n_head = %d\n", __func__, hparams.n_head);
- fprintf(stderr, "%s: n_layer = %d\n", __func__, hparams.n_layer);
- fprintf(stderr, "%s: n_rot = %d\n", __func__, hparams.n_rot);
- fprintf(stderr, "%s: f16 = %d\n", __func__, hparams.f16);
- fprintf(stderr, "%s: n_ff = %d\n", __func__, n_ff);
- fprintf(stderr, "%s: n_parts = %d\n", __func__, n_parts);
- }
-
- // load vocab
- {
- std::string word;
- vocab.id_to_token.resize(model.hparams.n_vocab);
- std::vector<char> tmp(64);
-
- for (int i = 0; i < model.hparams.n_vocab; i++) {
- uint32_t len;
- fin.read((char *) &len, sizeof(len));
-
- word.resize(len);
- if (len > 0) {
- tmp.resize(len);
- fin.read(tmp.data(), len);
- word.assign(tmp.data(), len);
- } else {
- word.clear();
- }
-
- float score;
- fin.read((char *) &score, sizeof(score));
-
- vocab.token_to_id[word] = i;
-
- auto &tok_score = vocab.id_to_token[i];
- tok_score.tok = word;
- tok_score.score = score;
- }
- }
-
- // for the big tensors, we have the option to store the data in 16-bit floats or quantized
- // in order to save memory and also to speed up the computation
- // wtype is for per-layer weights, while vtype is for other weights
- ggml_type wtype, vtype;
- switch (model.hparams.f16) {
- case 0: wtype = vtype = GGML_TYPE_F32; break;
- case 1: wtype = vtype = GGML_TYPE_F16; break;
- case 2: wtype = vtype = GGML_TYPE_Q4_0; break;
- case 3: wtype = vtype = GGML_TYPE_Q4_1; break;
- case 4: wtype = GGML_TYPE_Q4_1; vtype = GGML_TYPE_F16; break;
- default:
- {
- fprintf(stderr, "%s: invalid model file '%s' (bad f16 value %d)\n",
- __func__, fname.c_str(), model.hparams.f16);
- return false;
- }
- }
-
- auto & ctx = model.ctx;
-
- size_t ctx_size = 0;
-
- {
- const auto & hparams = model.hparams;
-
- const int n_embd = hparams.n_embd;
- const int n_layer = hparams.n_layer;
- const int n_ctx = hparams.n_ctx;
- const int n_vocab = hparams.n_vocab;
-
- ctx_size += n_embd*n_vocab*ggml_type_sizef(vtype); // tok_embeddings
-
- ctx_size += n_embd*ggml_type_sizef(GGML_TYPE_F32); // norm
-
- ctx_size += n_embd*n_vocab*ggml_type_sizef(vtype); // output
-
- ctx_size += n_layer*(n_embd*ggml_type_sizef(GGML_TYPE_F32)); // attention_norm
-
- ctx_size += n_layer*(n_embd*n_embd*ggml_type_sizef(wtype)); // wq
- ctx_size += n_layer*(n_embd*n_embd*ggml_type_sizef(wtype)); // wk
- ctx_size += n_layer*(n_embd*n_embd*ggml_type_sizef(wtype)); // wv
- ctx_size += n_layer*(n_embd*n_embd*ggml_type_sizef(wtype)); // wo
-
- ctx_size += n_layer*(n_embd*ggml_type_sizef(GGML_TYPE_F32)); // ffn_norm
-
- ctx_size += n_layer*(n_ff*n_embd*ggml_type_sizef(wtype)); // w1
- ctx_size += n_layer*(n_ff*n_embd*ggml_type_sizef(wtype)); // w2
- ctx_size += n_layer*(n_ff*n_embd*ggml_type_sizef(wtype)); // w3
-
- ctx_size += n_ctx*n_layer*n_embd*ggml_type_sizef(memory_type); // memory_k
- ctx_size += n_ctx*n_layer*n_embd*ggml_type_sizef(memory_type); // memory_v
-
- ctx_size += (5 + 10*n_layer)*256; // object overhead
-
- fprintf(stderr, "%s: ggml ctx size = %6.2f MB\n", __func__, ctx_size/(1024.0*1024.0));
- }
-
- // create the ggml context
- {
- struct ggml_init_params params = {
- /*.mem_size =*/ ctx_size,
- /*.mem_buffer =*/ NULL,
- };
-
- model.ctx = ggml_init(params);
- if (!model.ctx) {
- fprintf(stderr, "%s: ggml_init() failed\n", __func__);
- return false;
- }
- }
-
- // prepare memory for the weights
- {
- const auto & hparams = model.hparams;
-
- const int n_embd = hparams.n_embd;
- const int n_layer = hparams.n_layer;
- const int n_vocab = hparams.n_vocab;
-
- model.layers.resize(n_layer);
-
- model.tok_embeddings = ggml_new_tensor_2d(ctx, vtype, n_embd, n_vocab);
-
- model.norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
- model.output = ggml_new_tensor_2d(ctx, vtype, n_embd, n_vocab);
-
- // map by name
- model.tensors["tok_embeddings.weight"] = model.tok_embeddings;
-
- model.tensors["norm.weight"] = model.norm;
- model.tensors["output.weight"] = model.output;
-
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = model.layers[i];
-
- layer.attention_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
-
- layer.wq = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd);
- layer.wk = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd);
- layer.wv = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd);
- layer.wo = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd);
-
- layer.ffn_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
-
- layer.w1 = ggml_new_tensor_2d(ctx, wtype, n_embd, n_ff);
- layer.w2 = ggml_new_tensor_2d(ctx, wtype, n_ff, n_embd);
- layer.w3 = ggml_new_tensor_2d(ctx, wtype, n_embd, n_ff);
-
- // map by name
- model.tensors["layers." + std::to_string(i) + ".attention_norm.weight"] = layer.attention_norm;
-
- model.tensors["layers." + std::to_string(i) + ".attention.wq.weight"] = layer.wq;
- model.tensors["layers." + std::to_string(i) + ".attention.wk.weight"] = layer.wk;
- model.tensors["layers." + std::to_string(i) + ".attention.wv.weight"] = layer.wv;
- model.tensors["layers." + std::to_string(i) + ".attention.wo.weight"] = layer.wo;
-
- model.tensors["layers." + std::to_string(i) + ".ffn_norm.weight"] = layer.ffn_norm;
-
- model.tensors["layers." + std::to_string(i) + ".feed_forward.w1.weight"] = layer.w1;
- model.tensors["layers." + std::to_string(i) + ".feed_forward.w2.weight"] = layer.w2;
- model.tensors["layers." + std::to_string(i) + ".feed_forward.w3.weight"] = layer.w3;
- }
- }
-
- // key + value memory
- {
- const auto & hparams = model.hparams;
-
- const int n_embd = hparams.n_embd;
- const int n_layer = hparams.n_layer;
- const int n_ctx = hparams.n_ctx;
-
- const int n_mem = n_layer*n_ctx;
- const int n_elements = n_embd*n_mem;
-
- model.memory_k = ggml_new_tensor_1d(ctx, memory_type, n_elements);
- model.memory_v = ggml_new_tensor_1d(ctx, memory_type, n_elements);
-
- const size_t memory_size = ggml_nbytes(model.memory_k) + ggml_nbytes(model.memory_v);
-
- fprintf(stderr, "%s: memory_size = %8.2f MB, n_mem = %d\n", __func__, memory_size/1024.0/1024.0, n_mem);
- }
-
- const size_t file_offset = fin.tellg();
-
- fin.close();
-
- std::vector<uint8_t> tmp;
-
- for (int i = 0; i < n_parts; ++i) {
- const int part_id = i;
- //const int part_id = n_parts - i - 1;
-
- std::string fname_part = fname;
- if (i > 0) {
- fname_part += "." + std::to_string(i);
- }
-
- fprintf(stderr, "%s: loading model part %d/%d from '%s'\n", __func__, i+1, n_parts, fname_part.c_str());
-
- fin = std::ifstream(fname_part, std::ios::binary);
- fin.rdbuf()->pubsetbuf(f_buf.data(), f_buf.size());
- fin.seekg(file_offset);
-
- // load weights
- {
- int n_tensors = 0;
- size_t total_size = 0;
-
- fprintf(stderr, "%s: ", __func__);
-
- while (true) {
- int32_t n_dims;
- int32_t length;
- int32_t ftype;
-
- fin.read(reinterpret_cast<char *>(&n_dims), sizeof(n_dims));
- fin.read(reinterpret_cast<char *>(&length), sizeof(length));
- fin.read(reinterpret_cast<char *>(&ftype), sizeof(ftype));
-
- if (fin.eof()) {
- break;
- }
-
- int32_t nelements = 1;
- int32_t ne[2] = { 1, 1 };
- for (int i = 0; i < n_dims; ++i) {
- fin.read(reinterpret_cast<char *>(&ne[i]), sizeof(ne[i]));
- nelements *= ne[i];
- }
-
- std::string name(length, 0);
- fin.read(&name[0], length);
-
- if (model.tensors.find(name.data()) == model.tensors.end()) {
- fprintf(stderr, "%s: unknown tensor '%s' in model file\n", __func__, name.data());
- return false;
- }
-
- // split_type = 0: split by columns
- // split_type = 1: split by rows
- int split_type = 0;
-
- // split_type = 0:
- // regex:
- // - tok_embeddings.*
- // - layers.*.attention.wo.weight
- // - layers.*.feed_forward.w2.weight
-
- // split_type = 1:
- // regex:
- // - output.*
- // - layers.*.attention.wq.weight
- // - layers.*.attention.wk.weight
- // - layers.*.attention.wv.weight
- // - layers.*.feed_forward.w1.weight
- // - layers.*.feed_forward.w3.weight
- if (name.find("tok_embeddings") != std::string::npos) {
- split_type = 0;
- } else if (name.find("layers") != std::string::npos) {
- if (name.find("attention.wo.weight") != std::string::npos) {
- split_type = 0;
- } else if (name.find("feed_forward.w2.weight") != std::string::npos) {
- split_type = 0;
- } else {
- split_type = 1;
- }
- } else if (name.find("output") != std::string::npos) {
- split_type = 1;
- }
-
- auto tensor = model.tensors[name.data()];
-
- if (n_dims == 1) {
- if (ggml_nelements(tensor) != nelements) {
- fprintf(stderr, "%s: tensor '%s' has wrong size in model file\n", __func__, name.data());
- return false;
- }
- } else {
- if (ggml_nelements(tensor)/n_parts != nelements) {
- fprintf(stderr, "%s: tensor '%s' has wrong size in model file\n", __func__, name.data());
- return false;
- }
- }
-
- if (n_dims == 1) {
- if (tensor->ne[0] != ne[0] || tensor->ne[1] != ne[1]) {
- fprintf(stderr, "%s: tensor '%s' has wrong shape in model file: got [%d, %d], expected [%d, %d]\n",
- __func__, name.data(), tensor->ne[0], tensor->ne[1], ne[0], ne[1]);
- return false;
- }
- } else {
- if (split_type == 0) {
- if (tensor->ne[0]/n_parts != ne[0] || tensor->ne[1] != ne[1]) {
- fprintf(stderr, "%s: tensor '%s' has wrong shape in model file: got [%d, %d], expected [%d, %d]\n",
- __func__, name.data(), tensor->ne[0]/n_parts, tensor->ne[1], ne[0], ne[1]);
- return false;
- }
- } else {
- if (tensor->ne[0] != ne[0] || tensor->ne[1]/n_parts != ne[1]) {
- fprintf(stderr, "%s: tensor '%s' has wrong shape in model file: got [%d, %d], expected [%d, %d]\n",
- __func__, name.data(), tensor->ne[0], tensor->ne[1]/n_parts, ne[0], ne[1]);
- return false;
- }
- }
- }
-
- if (0) {
- static const char * ftype_str[] = { "f32", "f16", "q4_0", "q4_1", };
- fprintf(stderr, "%24s - [%5d, %5d], type = %6s, split = %d\n", name.data(), ne[0], ne[1], ftype_str[ftype], split_type);
- }
-
- size_t bpe = 0;
-
- switch (ftype) {
- case 0: bpe = ggml_type_size(GGML_TYPE_F32); break;
- case 1: bpe = ggml_type_size(GGML_TYPE_F16); break;
- case 2: bpe = ggml_type_size(GGML_TYPE_Q4_0); assert(ne[0] % 64 == 0); break;
- case 3: bpe = ggml_type_size(GGML_TYPE_Q4_1); assert(ne[0] % 64 == 0); break;
- default:
- {
- fprintf(stderr, "%s: unknown ftype %d in model file\n", __func__, ftype);
- return false;
- }
- };
-
- if (n_dims == 1 || n_parts == 1) {
- if ((nelements*bpe)/ggml_blck_size(tensor->type) != ggml_nbytes(tensor)) {
- fprintf(stderr, "%s: tensor '%s' has wrong size in model file: got %zu, expected %zu\n",
- __func__, name.data(), ggml_nbytes(tensor), nelements*bpe);
- return false;
- }
-
- if (part_id == 0) {
- fin.read(reinterpret_cast<char *>(tensor->data), ggml_nbytes(tensor));
- } else {
- fin.seekg(ggml_nbytes(tensor), std::ios::cur);
- }
-
- total_size += ggml_nbytes(tensor);
- } else {
- if ((nelements*bpe)/ggml_blck_size(tensor->type) != ggml_nbytes(tensor)/n_parts) {
- fprintf(stderr, "%s: tensor '%s' has wrong size in model file: got %zu, expected %zu\n",
- __func__, name.data(), ggml_nbytes(tensor)/n_parts, nelements*bpe);
- return false;
- }
-
- if (split_type == 0) {
- const int np0 = ne[0];
-
- const size_t row_size = (tensor->ne[0]/ggml_blck_size(tensor->type))*ggml_type_size(tensor->type);
- assert(row_size == tensor->nb[1]);
-
- for (int i1 = 0; i1 < ne[1]; ++i1) {
- const size_t offset_row = i1*row_size;
- const size_t offset = offset_row + ((part_id*np0)/ggml_blck_size(tensor->type))*ggml_type_size(tensor->type);
- fin.read(reinterpret_cast<char *>(tensor->data) + offset, row_size/n_parts);
- }
- } else {
- const int np1 = ne[1];
-
- const size_t row_size = (tensor->ne[0]/ggml_blck_size(tensor->type))*ggml_type_size(tensor->type);
-
- for (int i1 = 0; i1 < ne[1]; ++i1) {
- const size_t offset_row = (i1 + part_id*np1)*row_size;
- fin.read(reinterpret_cast<char *>(tensor->data) + offset_row, row_size);
- }
- }
-
- total_size += ggml_nbytes(tensor)/n_parts;
- }
-
- //fprintf(stderr, "%42s - [%5d, %5d], type = %6s, %6.2f MB\n", name.data(), ne[0], ne[1], ftype == 0 ? "float" : "f16", ggml_nbytes(tensor)/1024.0/1024.0);
- if (++n_tensors % 8 == 0) {
- fprintf(stderr, ".");
- fflush(stderr);
- }
- }
-
- fprintf(stderr, " done\n");
-
- fprintf(stderr, "%s: model size = %8.2f MB / num tensors = %d\n", __func__, total_size/1024.0/1024.0, n_tensors);
- }
-
- fin.close();
- }
-
- return true;
-}
-
-// evaluate the transformer
-//
-// - model: the model
-// - n_threads: number of threads to use
-// - n_past: the context size so far
-// - embd_inp: the embeddings of the tokens in the context
-// - embd_w: the predicted logits for the next token
-//
-// The GPT-J model requires about 16MB of memory per input token.
-//
-bool llama_eval(
- const llama_model & model,
- const int n_threads,
- const int n_past,
- const std::vector<llama_vocab::id> & embd_inp,
- std::vector<float> & embd_w,
- size_t & mem_per_token,
- bool return_all_logits = false) {
- const int N = embd_inp.size();
-
- const auto & hparams = model.hparams;
-
- const int n_embd = hparams.n_embd;
- const int n_layer = hparams.n_layer;
- const int n_ctx = hparams.n_ctx;
- const int n_head = hparams.n_head;
- const int n_vocab = hparams.n_vocab;
- const int n_rot = hparams.n_embd/hparams.n_head;
-
- // TODO: check if this size scales with n_ctx linearly and remove constant. somehow I feel it wasn't the case
- // static size_t buf_size = hparams.n_ctx*1024*1024;
- static size_t buf_size = 512u*1024*1024;
- static void * buf = malloc(buf_size);
-
- if (mem_per_token > 0 && mem_per_token*N > buf_size) {
- const size_t buf_size_new = 1.3*(mem_per_token*N); // add 30% to account for ggml object overhead
- //fprintf(stderr, "\n%s: reallocating buffer from %zu to %zu bytes\n", __func__, buf_size, buf_size_new);
-
- // reallocate
- buf_size = buf_size_new;
- buf = realloc(buf, buf_size);
- if (buf == nullptr) {
- fprintf(stderr, "%s: failed to allocate %zu bytes\n", __func__, buf_size);
- return false;
- }
- }
-
- struct ggml_init_params params = {
- /*.mem_size =*/ buf_size,
- /*.mem_buffer =*/ buf,
- };
-
- struct ggml_context * ctx0 = ggml_init(params);
- ggml_cgraph gf = {};
- gf.n_threads = n_threads;
-
- struct ggml_tensor * embd = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
- memcpy(embd->data, embd_inp.data(), N*ggml_element_size(embd));
-
- struct ggml_tensor * inpL = ggml_get_rows(ctx0, model.tok_embeddings, embd);
-
- for (int il = 0; il < n_layer; ++il) {
- struct ggml_tensor * inpSA = inpL;
-
- struct ggml_tensor * cur;
-
- // norm
- {
- cur = ggml_rms_norm(ctx0, inpL);
-
- // cur = attention_norm*cur
- cur = ggml_mul(ctx0,
- ggml_repeat(ctx0, model.layers[il].attention_norm, cur),
- cur);
- }
-
- // self-attention
- {
- struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
- struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
- struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
-
- // store key and value to memory
- if (N >= 1) {
- struct ggml_tensor * k = ggml_view_1d(ctx0, model.memory_k, N*n_embd, (ggml_element_size(model.memory_k)*n_embd)*(il*n_ctx + n_past));
- struct ggml_tensor * v = ggml_view_1d(ctx0, model.memory_v, N*n_embd, (ggml_element_size(model.memory_v)*n_embd)*(il*n_ctx + n_past));
-
- ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Kcur, k));
- ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Vcur, v));
- }
-
- // Q = Qcur.contiguous().view(n_embd/n_head, n_head, N).permute(0, 2, 1, 3)
- struct ggml_tensor * Q =
- ggml_permute(ctx0,
- ggml_rope(ctx0,
- ggml_cpy(ctx0,
- Qcur,
- ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_embd/n_head, n_head, N)),
- n_past, n_rot, 0),
- 0, 2, 1, 3);
-
- // K = Kmem.view(n_embd/n_head, n_head, n_past + N).permute(0, 2, 1, 3)
- struct ggml_tensor * K =
- ggml_permute(ctx0,
- ggml_rope(ctx0,
- ggml_reshape_3d(ctx0,
- ggml_view_1d(ctx0, model.memory_k, (n_past + N)*n_embd, il*n_ctx*ggml_element_size(model.memory_k)*n_embd),
- n_embd/n_head, n_head, n_past + N),
- n_past, n_rot, 1),
- 0, 2, 1, 3);
-
- // K * Q
- struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
-
- // KQ_scaled = KQ / sqrt(n_embd/n_head)
- struct ggml_tensor * KQ_scaled =
- ggml_scale(ctx0,
- KQ,
- ggml_new_f32(ctx0, 1.0f/sqrt(float(n_embd)/n_head))
- );
-
- // KQ_masked = mask_past(KQ_scaled)
- struct ggml_tensor * KQ_masked = ggml_diag_mask_inf(ctx0, KQ_scaled, n_past);
-
- // KQ = soft_max(KQ_masked)
- struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctx0, KQ_masked);
-
- // V_trans = Vmem.view(n_embd/n_head, n_head, n_past + N).permute(1, 2, 0, 3).contiguous()
- struct ggml_tensor * V_trans =
- ggml_permute(ctx0,
- ggml_reshape_3d(ctx0,
- ggml_view_1d(ctx0, model.memory_v, (n_past + N)*n_embd, il*n_ctx*ggml_element_size(model.memory_v)*n_embd),
- n_embd/n_head, n_head, n_past + N),
- 1, 2, 0, 3);
-
- // KQV = transpose(V) * KQ_soft_max
- struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V_trans, KQ_soft_max);
-
- // KQV_merged = KQV.permute(0, 2, 1, 3)
- struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
-
- // cur = KQV_merged.contiguous().view(n_embd, N)
- cur = ggml_cpy(ctx0,
- KQV_merged,
- ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N));
-
- // projection (no bias)
- cur = ggml_mul_mat(ctx0,
- model.layers[il].wo,
- cur);
- }
-
- struct ggml_tensor * inpFF = ggml_add(ctx0, cur, inpSA);
-
- // feed-forward network
- {
- // norm
- {
- cur = ggml_rms_norm(ctx0, inpFF);
-
- // cur = ffn_norm*cur
- cur = ggml_mul(ctx0,
- ggml_repeat(ctx0, model.layers[il].ffn_norm, cur),
- cur);
- }
-
- struct ggml_tensor * tmp = ggml_mul_mat(ctx0,
- model.layers[il].w3,
- cur);
-
-
- cur = ggml_mul_mat(ctx0,
- model.layers[il].w1,
- cur);
-
- // SILU activation
- cur = ggml_silu(ctx0, cur);
-
- cur = ggml_mul(ctx0, cur, tmp);
-
- cur = ggml_mul_mat(ctx0,
- model.layers[il].w2,
- cur);
- }
-
- cur = ggml_add(ctx0, cur, inpFF);
-
- // input for next layer
- inpL = cur;
- }
-
- // norm
- {
- inpL = ggml_rms_norm(ctx0, inpL);
-
- // inpL = norm*inpL
- inpL = ggml_mul(ctx0,
- ggml_repeat(ctx0, model.norm, inpL),
- inpL);
- }
-
- // lm_head
- {
- inpL = ggml_mul_mat(ctx0, model.output, inpL);
- }
-
- // logits -> probs
- //inpL = ggml_soft_max(ctx0, inpL);
-
- // run the computation
- ggml_build_forward_expand(&gf, inpL);
- ggml_graph_compute (ctx0, &gf);
-
- //if (n_past%100 == 0) {
- // ggml_graph_print (&gf);
- // ggml_graph_dump_dot(&gf, NULL, "gpt-2.dot");
- //}
-
- //embd_w.resize(n_vocab*N);
- //memcpy(embd_w.data(), ggml_get_data(inpL), sizeof(float)*n_vocab*N);
-
- if (return_all_logits) {
- embd_w.resize(n_vocab * N);
- memcpy(embd_w.data(), (float *) ggml_get_data(inpL), sizeof(float)*n_vocab*N);
- } else {
- // return result for just the last token
- embd_w.resize(n_vocab);
- memcpy(embd_w.data(), (float *) ggml_get_data(inpL) + (n_vocab*(N-1)), sizeof(float)*n_vocab);
- }
-
- if (mem_per_token == 0) {
- mem_per_token = ggml_used_mem(ctx0)/N;
- }
- //fprintf(stderr, "used_mem = %zu\n", ggml_used_mem(ctx0));
-
- ggml_free(ctx0);
-
- return true;
-}
-
std::vector<double> softmax(const std::vector<float>& logits) {
std::vector<double> probs(logits.size());
float max_logit = logits[0];
@@ -840,24 +81,25 @@ std::vector<double> softmax(const std::vector<float>& logits) {
return probs;
}
-void perplexity(const llama_vocab &vocab, const llama_model &model, const gpt_params &params, size_t mem_per_token) {
+void perplexity(llama_context * ctx, const gpt_params & params) {
// Download: https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-2-raw-v1.zip?ref=salesforce-research
// Run `./main --perplexity -m models/7B/ggml-model-q4_0.bin -f wiki.test.raw`
// Output: `perplexity: 13.5106 [114/114]`
- std::vector<llama_vocab::id> tokens = ::llama_tokenize(vocab, params.prompt, true);
+ auto tokens = ::llama_tokenize(ctx, params.prompt.c_str(), true);
int count = 0;
double nll = 0.0;
int seq_count = tokens.size() / params.n_ctx;
- printf("Calculating perplexity over %d chunks\n", seq_count);
+
+ fprintf(stderr, "%s : calculating perplexity over %d chunks\n", __func__, seq_count);
+
for (int i = 0; i < seq_count; ++i) {
int start = i * params.n_ctx;
int end = start + params.n_ctx - 1;
- std::vector<llama_vocab::id> embd(tokens.begin() + start, tokens.begin() + end);
- std::vector<float> logits;
+ std::vector<llama_token> embd(tokens.begin() + start, tokens.begin() + end);
auto start_t = std::chrono::high_resolution_clock::now();
- if (!llama_eval(model, params.n_threads, 0, embd, logits, mem_per_token, true)) {
- fprintf(stderr, "Failed to predict\n");
+ if (llama_eval(ctx, embd.data(), embd.size(), 0, params.n_threads)) {
+ fprintf(stderr, "%s : failed to eval\n", __func__);
return;
}
auto end_t = std::chrono::high_resolution_clock::now();
@@ -877,12 +119,14 @@ void perplexity(const llama_vocab &vocab, const llama_model &model, const gpt_pa
// Example, we have a context window of 512, we will compute perplexity for each of the
// last 256 tokens. Then, we split the input up into context window size chunks to
// process the entire prompt.
+
+ auto logits = llama_get_logits(ctx);
for (int j = params.n_ctx / 2; j < params.n_ctx - 1; ++j) {
// Calculate probability of next token, given the previous ones.
- int n_vocab = model.hparams.n_vocab;
+ int n_vocab = llama_n_vocab(ctx);
std::vector<float> tok_logits(
- logits.begin() + j * n_vocab,
- logits.begin() + (j + 1) * n_vocab);
+ logits + j * n_vocab,
+ logits + (j + 1) * n_vocab);
double prob = softmax(tok_logits)[tokens[start + j + 1]];
nll += -std::log(prob);
++count;
@@ -910,29 +154,9 @@ void sigint_handler(int signo) {
}
#endif
-const char * llama_print_system_info(void) {
- static std::string s;
-
- s = "";
- s += "AVX = " + std::to_string(ggml_cpu_has_avx()) + " | ";
- s += "AVX2 = " + std::to_string(ggml_cpu_has_avx2()) + " | ";
- s += "AVX512 = " + std::to_string(ggml_cpu_has_avx512()) + " | ";
- s += "FMA = " + std::to_string(ggml_cpu_has_fma()) + " | ";
- s += "NEON = " + std::to_string(ggml_cpu_has_neon()) + " | ";
- s += "ARM_FMA = " + std::to_string(ggml_cpu_has_arm_fma()) + " | ";
- s += "F16C = " + std::to_string(ggml_cpu_has_f16c()) + " | ";
- s += "FP16_VA = " + std::to_string(ggml_cpu_has_fp16_va()) + " | ";
- s += "WASM_SIMD = " + std::to_string(ggml_cpu_has_wasm_simd()) + " | ";
- s += "BLAS = " + std::to_string(ggml_cpu_has_blas()) + " | ";
- s += "SSE3 = " + std::to_string(ggml_cpu_has_sse3()) + " | ";
- s += "VSX = " + std::to_string(ggml_cpu_has_vsx()) + " | ";
-
- return s.c_str();
-}
-
int main(int argc, char ** argv) {
+ // has to be called once at the start of the program to init ggml stuff
ggml_time_init();
- const int64_t t_main_start_us = ggml_time_us();
gpt_params params;
params.model = "models/llama-7B/ggml-model.bin";
@@ -964,21 +188,21 @@ int main(int argc, char ** argv) {
// params.prompt = R"(// this function checks if the number n is prime
//bool is_prime(int n) {)";
- int64_t t_load_us = 0;
-
- llama_vocab vocab;
- llama_model model;
+ llama_context * ctx;
// load the model
{
- const ggml_type memory_type = params.memory_f16 ? GGML_TYPE_F16 : GGML_TYPE_F32;
- const int64_t t_start_us = ggml_time_us();
- if (!llama_model_load(params.model, model, vocab, params.n_ctx, params.n_parts, memory_type)) {
- fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, params.model.c_str());
+ auto lparams = llama_context_default_params();
+
+ lparams.f16_kv = params.memory_f16;
+ lparams.logits_all = params.perplexity;
+
+ ctx = llama_init_from_file(params.model.c_str(), lparams);
+
+ if (ctx == NULL) {
+ fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, params.model.c_str());
return 1;
}
-
- t_load_us = ggml_time_us() - t_start_us;
}
// print system information
@@ -988,32 +212,33 @@ int main(int argc, char ** argv) {
params.n_threads, std::thread::hardware_concurrency(), llama_print_system_info());
}
- std::vector<float> logits;
-
// determine the required inference memory per token:
- size_t mem_per_token = 0;
- llama_eval(model, params.n_threads, 0, { 0, 1, 2, 3 }, logits, mem_per_token);
+ // TODO: better way to do that
+ {
+ const std::vector<llama_token> tmp = { 0, 1, 2, 3 };
+ llama_eval(ctx, tmp.data(), tmp.size(), 0, params.n_threads);
+ }
if (params.perplexity) {
- perplexity(vocab, model, params, mem_per_token);
+ perplexity(ctx, params);
exit(0);
}
int n_past = 0;
- int64_t t_sample_us = 0;
- int64_t t_predict_us = 0;
-
// Add a space in front of the first character to match OG llama tokenizer behavior
params.prompt.insert(0, 1, ' ');
+
// tokenize the prompt
- std::vector<llama_vocab::id> embd_inp = ::llama_tokenize(vocab, params.prompt, true);
+ auto embd_inp = ::llama_tokenize(ctx, params.prompt, true);
- params.n_predict = std::min(params.n_predict, model.hparams.n_ctx - (int) embd_inp.size());
+ const int n_ctx = llama_n_ctx(ctx);
+
+ params.n_predict = std::min(params.n_predict, n_ctx - (int) embd_inp.size());
// prefix & suffix for instruct mode
- const std::vector<llama_vocab::id> inp_pfx = ::llama_tokenize(vocab, "\n\n### Instruction:\n\n", true);
- const std::vector<llama_vocab::id> inp_sfx = ::llama_tokenize(vocab, "\n\n### Response:\n\n", false);
+ const auto inp_pfx = ::llama_tokenize(ctx, "\n\n### Instruction:\n\n", true);
+ const auto inp_sfx = ::llama_tokenize(ctx, "\n\n### Response:\n\n", false);
// in instruct mode, we inject a prefix and a suffix to each input by the user
if (params.instruct) {
@@ -1030,7 +255,7 @@ int main(int argc, char ** argv) {
fprintf(stderr, "%s: prompt: '%s'\n", __func__, params.prompt.c_str());
fprintf(stderr, "%s: number of tokens in prompt = %zu\n", __func__, embd_inp.size());
for (int i = 0; i < (int) embd_inp.size(); i++) {
- fprintf(stderr, "%6d -> '%s'\n", embd_inp[i], vocab.id_to_token.at(embd_inp[i]).tok.c_str());
+ fprintf(stderr, "%6d -> '%s'\n", embd_inp[i], llama_token_to_str(ctx, embd_inp[i]));
}
fprintf(stderr, "\n");
if (params.interactive) {
@@ -1055,10 +280,10 @@ int main(int argc, char ** argv) {
fprintf(stderr, "sampling parameters: temp = %f, top_k = %d, top_p = %f, repeat_last_n = %i, repeat_penalty = %f\n", params.temp, params.top_k, params.top_p, params.repeat_last_n, params.repeat_penalty);
fprintf(stderr, "\n\n");
- std::vector<llama_vocab::id> embd;
+ std::vector<llama_token> embd;
int last_n_size = params.repeat_last_n;
- std::vector<llama_vocab::id> last_n_tokens(last_n_size);
+ std::vector<llama_token> last_n_tokens(last_n_size);
std::fill(last_n_tokens.begin(), last_n_tokens.end(), 0);
if (params.interactive) {
@@ -1092,14 +317,10 @@ int main(int argc, char ** argv) {
while (remaining_tokens > 0 || params.interactive) {
// predict
if (embd.size() > 0) {
- const int64_t t_start_us = ggml_time_us();
-
- if (!llama_eval(model, params.n_threads, n_past, embd, logits, mem_per_token)) {
- fprintf(stderr, "Failed to predict\n");
+ if (llama_eval(ctx, embd.data(), embd.size(), n_past, params.n_threads)) {
+ fprintf(stderr, "%s : failed to eval\n", __func__);
return 1;
}
-
- t_predict_us += ggml_time_us() - t_start_us;
}
n_past += embd.size();
@@ -1107,29 +328,28 @@ int main(int argc, char ** argv) {
if ((int) embd_inp.size() <= input_consumed) {
// out of user input, sample next token
- const float top_k = params.top_k;
- const float top_p = params.top_p;
- const float temp = params.temp;
+ const float top_k = params.top_k;
+ const float top_p = params.top_p;
+ const float temp = params.temp;
const float repeat_penalty = params.repeat_penalty;
- const int n_vocab = model.hparams.n_vocab;
-
- llama_vocab::id id = 0;
+ llama_token id = 0;
{
- const int64_t t_start_sample_us = ggml_time_us();
+ auto logits = llama_get_logits(ctx);
if (params.ignore_eos) {
// set the logit of the eos token to zero to avoid sampling it
- logits[logits.size() - n_vocab + EOS_TOKEN_ID] = 0;
+ //logits[logits.size() - n_vocab + EOS_TOKEN_ID] = 0;
+ // TODO: this does not work of params.logits_all == true
+ assert(params.perplexity == false);
+ logits[llama_token_eos()] = 0;
}
- id = llama_sample_top_p_top_k(vocab, logits.data() + (logits.size() - n_vocab), last_n_tokens, repeat_penalty, top_k, top_p, temp, rng);
+ id = llama_sample_top_p_top_k(ctx, last_n_tokens.data(), last_n_tokens.size(), top_k, top_p, temp, repeat_penalty);
last_n_tokens.erase(last_n_tokens.begin());
last_n_tokens.push_back(id);
-
- t_sample_us += ggml_time_us() - t_start_sample_us;
}
// add it to the context
@@ -1156,7 +376,7 @@ int main(int argc, char ** argv) {
// display text
if (!input_noecho) {
for (auto id : embd) {
- printf("%s", vocab.id_to_token[id].tok.c_str());
+ printf("%s", llama_token_to_str(ctx, id));
}
fflush(stdout);
}
@@ -1171,7 +391,7 @@ int main(int argc, char ** argv) {
// check for reverse prompt
std::string last_output;
for (auto id : last_n_tokens) {
- last_output += vocab.id_to_token[id].tok;
+ last_output += llama_token_to_str(ctx, id);
}
// Check if each of the reverse prompts appears at the end of the output.
@@ -1208,7 +428,7 @@ int main(int argc, char ** argv) {
// done taking input, reset color
set_console_state(CONSOLE_STATE_DEFAULT);
- std::vector<llama_vocab::id> line_inp = ::llama_tokenize(vocab, buffer, false);
+ auto line_inp = ::llama_tokenize(ctx, buffer, false);
embd_inp.insert(embd_inp.end(), line_inp.begin(), line_inp.end());
if (params.instruct) {
@@ -1223,7 +443,7 @@ int main(int argc, char ** argv) {
}
// end of text token
- if (embd.back() == EOS_TOKEN_ID) {
+ if (embd.back() == llama_token_eos()) {
if (params.interactive) {
is_interacting = true;
} else {
@@ -1243,19 +463,9 @@ int main(int argc, char ** argv) {
signal(SIGINT, SIG_DFL);
#endif
- // report timing
- {
- const int64_t t_main_end_us = ggml_time_us();
-
- fprintf(stderr, "\n\n");
- fprintf(stderr, "%s: mem per token = %8zu bytes\n", __func__, mem_per_token);
- fprintf(stderr, "%s: load time = %8.2f ms\n", __func__, t_load_us/1000.0f);
- fprintf(stderr, "%s: sample time = %8.2f ms\n", __func__, t_sample_us/1000.0f);
- fprintf(stderr, "%s: predict time = %8.2f ms / %.2f ms per token\n", __func__, t_predict_us/1000.0f, t_predict_us/1000.0f/n_past);
- fprintf(stderr, "%s: total time = %8.2f ms\n", __func__, (t_main_end_us - t_main_start_us)/1000.0f);
- }
+ llama_print_timings(ctx);
- ggml_free(model.ctx);
+ llama_free(ctx);
set_console_state(CONSOLE_STATE_DEFAULT);