diff options
-rw-r--r-- | examples/common.cpp | 22 | ||||
-rw-r--r-- | examples/common.h | 3 | ||||
-rw-r--r-- | examples/embedding/embedding.cpp | 6 | ||||
-rw-r--r-- | examples/main/main.cpp | 8 | ||||
-rw-r--r-- | examples/perplexity/perplexity.cpp | 6 | ||||
-rw-r--r-- | examples/quantize-stats/quantize-stats.cpp | 15 | ||||
-rw-r--r-- | examples/save-load-state/save-load-state.cpp | 29 | ||||
-rw-r--r-- | examples/server/server.cpp | 9 | ||||
-rw-r--r-- | examples/simple/simple.cpp | 8 | ||||
-rw-r--r-- | examples/train-text-from-scratch/train-text-from-scratch.cpp | 5 | ||||
-rw-r--r-- | llama.cpp | 172 | ||||
-rw-r--r-- | llama.h | 35 | ||||
-rw-r--r-- | tests/test-tokenizer-0.cpp | 16 |
13 files changed, 243 insertions, 91 deletions
diff --git a/examples/common.cpp b/examples/common.cpp index fed24e0..6ac4845 100644 --- a/examples/common.cpp +++ b/examples/common.cpp @@ -536,7 +536,7 @@ std::vector<llama_token> llama_tokenize(struct llama_context * ctx, const std::s return res; } -struct llama_context * llama_init_from_gpt_params(const gpt_params & params) { +std::tuple<struct llama_model *, struct llama_context *> llama_init_from_gpt_params(const gpt_params & params) { auto lparams = llama_context_default_params(); lparams.n_ctx = params.n_ctx; @@ -552,25 +552,33 @@ struct llama_context * llama_init_from_gpt_params(const gpt_params & params) { lparams.logits_all = params.perplexity; lparams.embedding = params.embedding; - llama_context * lctx = llama_init_from_file(params.model.c_str(), lparams); + llama_model * model = llama_load_model_from_file(params.model.c_str(), lparams); + if (model == NULL) { + fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, params.model.c_str()); + return std::make_tuple(nullptr, nullptr); + } + llama_context * lctx = llama_new_context_with_model(model, lparams); if (lctx == NULL) { - fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, params.model.c_str()); - return NULL; + fprintf(stderr, "%s: error: failed to create context with model '%s'\n", __func__, params.model.c_str()); + llama_free_model(model); + return std::make_tuple(nullptr, nullptr); } if (!params.lora_adapter.empty()) { - int err = llama_apply_lora_from_file(lctx, + int err = llama_model_apply_lora_from_file(model, params.lora_adapter.c_str(), params.lora_base.empty() ? NULL : params.lora_base.c_str(), params.n_threads); if (err != 0) { fprintf(stderr, "%s: error: failed to apply lora adapter\n", __func__); - return NULL; + llama_free(lctx); + llama_free_model(model); + return std::make_tuple(nullptr, nullptr); } } - return lctx; + return std::make_tuple(model, lctx); } void console_init(console_state & con_st) { diff --git a/examples/common.h b/examples/common.h index 6c2953c..7133201 100644 --- a/examples/common.h +++ b/examples/common.h @@ -9,6 +9,7 @@ #include <random> #include <thread> #include <unordered_map> +#include <tuple> #if !defined (_WIN32) #include <stdio.h> @@ -95,7 +96,7 @@ std::vector<llama_token> llama_tokenize(struct llama_context * ctx, const std::s // Model utils // -struct llama_context * llama_init_from_gpt_params(const gpt_params & params); +std::tuple<struct llama_model *, struct llama_context *> llama_init_from_gpt_params(const gpt_params & params); // // Console utils diff --git a/examples/embedding/embedding.cpp b/examples/embedding/embedding.cpp index 860f99f..369eac1 100644 --- a/examples/embedding/embedding.cpp +++ b/examples/embedding/embedding.cpp @@ -37,11 +37,12 @@ int main(int argc, char ** argv) { llama_init_backend(); + llama_model * model; llama_context * ctx; // load the model - ctx = llama_init_from_gpt_params(params); - if (ctx == NULL) { + std::tie(model, ctx) = llama_init_from_gpt_params(params); + if (model == NULL) { fprintf(stderr, "%s: error: unable to load model\n", __func__); return 1; } @@ -90,6 +91,7 @@ int main(int argc, char ** argv) { llama_print_timings(ctx); llama_free(ctx); + llama_free_model(model); return 0; } diff --git a/examples/main/main.cpp b/examples/main/main.cpp index 941312f..c1e6bf1 100644 --- a/examples/main/main.cpp +++ b/examples/main/main.cpp @@ -107,12 +107,13 @@ int main(int argc, char ** argv) { llama_init_backend(); + llama_model * model; llama_context * ctx; g_ctx = &ctx; // load the model and apply lora adapter, if any - ctx = llama_init_from_gpt_params(params); - if (ctx == NULL) { + std::tie(model, ctx) = llama_init_from_gpt_params(params); + if (model == NULL) { fprintf(stderr, "%s: error: unable to load model\n", __func__); return 1; } @@ -139,6 +140,7 @@ int main(int argc, char ** argv) { llama_print_timings(ctx); llama_free(ctx); + llama_free_model(model); return 0; } @@ -147,6 +149,7 @@ int main(int argc, char ** argv) { if (params.export_cgraph) { llama_eval_export(ctx, "llama.ggml"); llama_free(ctx); + llama_free_model(model); return 0; } @@ -666,6 +669,7 @@ int main(int argc, char ** argv) { llama_print_timings(ctx); llama_free(ctx); + llama_free_model(model); return 0; } diff --git a/examples/perplexity/perplexity.cpp b/examples/perplexity/perplexity.cpp index ae8cfe0..b59f597 100644 --- a/examples/perplexity/perplexity.cpp +++ b/examples/perplexity/perplexity.cpp @@ -149,11 +149,12 @@ int main(int argc, char ** argv) { llama_init_backend(); + llama_model * model; llama_context * ctx; // load the model and apply lora adapter, if any - ctx = llama_init_from_gpt_params(params); - if (ctx == NULL) { + std::tie(model, ctx) = llama_init_from_gpt_params(params); + if (model == NULL) { fprintf(stderr, "%s: error: unable to load model\n", __func__); return 1; } @@ -169,6 +170,7 @@ int main(int argc, char ** argv) { llama_print_timings(ctx); llama_free(ctx); + llama_free_model(model); return 0; } diff --git a/examples/quantize-stats/quantize-stats.cpp b/examples/quantize-stats/quantize-stats.cpp index 6b8018e..9cea472 100644 --- a/examples/quantize-stats/quantize-stats.cpp +++ b/examples/quantize-stats/quantize-stats.cpp @@ -320,6 +320,7 @@ int main(int argc, char ** argv) { fprintf(stderr, "Loading model\n"); const int64_t t_main_start_us = ggml_time_us(); + llama_model * model; llama_context * ctx; { @@ -330,12 +331,20 @@ int main(int argc, char ** argv) { lparams.f16_kv = false; lparams.use_mlock = false; - ctx = llama_init_from_file(params.model.c_str(), lparams); + model = llama_load_model_from_file(params.model.c_str(), lparams); - if (ctx == NULL) { + if (model == NULL) { fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, params.model.c_str()); return 1; } + + ctx = llama_new_context_with_model(model, lparams); + + if (ctx == NULL) { + fprintf(stderr, "%s: error: failed to create context with model '%s'\n", __func__, params.model.c_str()); + llama_free_model(model); + return 1; + } } const auto &tensors = llama_internal_get_tensor_map(ctx); @@ -357,6 +366,7 @@ int main(int argc, char ** argv) { fprintf(stderr, "%s: error: Quantization should be tested with a float model, " "this model contains already quantized layers (%s is type %d)\n", __func__, kv_tensor.first.c_str(), kv_tensor.second->type); llama_free(ctx); + llama_free_model(model); return 1; } included_layers++; @@ -415,6 +425,7 @@ int main(int argc, char ** argv) { llama_free(ctx); + llama_free_model(model); // report timing { const int64_t t_main_end_us = ggml_time_us(); diff --git a/examples/save-load-state/save-load-state.cpp b/examples/save-load-state/save-load-state.cpp index da4d37a..4c86885 100644 --- a/examples/save-load-state/save-load-state.cpp +++ b/examples/save-load-state/save-load-state.cpp @@ -35,12 +35,22 @@ int main(int argc, char ** argv) { auto last_n_tokens_data = std::vector<llama_token>(params.repeat_last_n, 0); // init - auto ctx = llama_init_from_file(params.model.c_str(), lparams); + auto model = llama_load_model_from_file(params.model.c_str(), lparams); + if (model == nullptr) { + return 1; + } + auto ctx = llama_new_context_with_model(model, lparams); + if (ctx == nullptr) { + llama_free_model(model); + return 1; + } auto tokens = std::vector<llama_token>(params.n_ctx); auto n_prompt_tokens = llama_tokenize(ctx, params.prompt.c_str(), tokens.data(), int(tokens.size()), true); if (n_prompt_tokens < 1) { fprintf(stderr, "%s : failed to tokenize prompt\n", __func__); + llama_free(ctx); + llama_free_model(model); return 1; } @@ -84,6 +94,8 @@ int main(int argc, char ** argv) { printf("%s", next_token_str); if (llama_eval(ctx, &next_token, 1, n_past, params.n_threads)) { fprintf(stderr, "\n%s : failed to evaluate\n", __func__); + llama_free(ctx); + llama_free_model(model); return 1; } n_past += 1; @@ -91,23 +103,27 @@ int main(int argc, char ** argv) { printf("\n\n"); - // free old model + // free old context llama_free(ctx); - // load new model - auto ctx2 = llama_init_from_file(params.model.c_str(), lparams); + // make new context + auto ctx2 = llama_new_context_with_model(model, lparams); // Load state (rng, logits, embedding and kv_cache) from file { FILE *fp_read = fopen("dump_state.bin", "rb"); if (state_size != llama_get_state_size(ctx2)) { fprintf(stderr, "\n%s : failed to validate state size\n", __func__); + llama_free(ctx2); + llama_free_model(model); return 1; } const size_t ret = fread(state_mem, 1, state_size, fp_read); if (ret != state_size) { fprintf(stderr, "\n%s : failed to read state\n", __func__); + llama_free(ctx2); + llama_free_model(model); return 1; } @@ -138,6 +154,8 @@ int main(int argc, char ** argv) { printf("%s", next_token_str); if (llama_eval(ctx2, &next_token, 1, n_past, params.n_threads)) { fprintf(stderr, "\n%s : failed to evaluate\n", __func__); + llama_free(ctx2); + llama_free_model(model); return 1; } n_past += 1; @@ -145,5 +163,8 @@ int main(int argc, char ** argv) { printf("\n\n"); + llama_free(ctx2); + llama_free_model(model); + return 0; } diff --git a/examples/server/server.cpp b/examples/server/server.cpp index c0984aa..de22d30 100644 --- a/examples/server/server.cpp +++ b/examples/server/server.cpp @@ -115,6 +115,7 @@ struct llama_server_context { std::vector<llama_token> embd; std::vector<llama_token> last_n_tokens; + llama_model * model = nullptr; llama_context * ctx = nullptr; gpt_params params; @@ -130,6 +131,10 @@ struct llama_server_context { llama_free(ctx); ctx = nullptr; } + if (model) { + llama_free_model(model); + model = nullptr; + } } void rewind() { @@ -150,8 +155,8 @@ struct llama_server_context { bool loadModel(const gpt_params & params_) { params = params_; - ctx = llama_init_from_gpt_params(params); - if (ctx == nullptr) { + std::tie(model, ctx) = llama_init_from_gpt_params(params); + if (model == nullptr) { LOG_ERROR("unable to load model", { { "model", params_.model } }); return false; } diff --git a/examples/simple/simple.cpp b/examples/simple/simple.cpp index 76f991c..fc45c93 100644 --- a/examples/simple/simple.cpp +++ b/examples/simple/simple.cpp @@ -68,11 +68,12 @@ int main(int argc, char ** argv) llama_init_backend(); - llama_context * ctx ; + llama_model * model; + llama_context * ctx; - ctx = llama_init_from_gpt_params( params ); + std::tie(model, ctx) = llama_init_from_gpt_params( params ); - if ( ctx == NULL ) + if ( model == NULL ) { fprintf( stderr , "%s: error: unable to load model\n" , __func__ ); return 1; @@ -170,6 +171,7 @@ int main(int argc, char ** argv) } // wend of main loop llama_free( ctx ); + llama_free_model( model ); return 0; } diff --git a/examples/train-text-from-scratch/train-text-from-scratch.cpp b/examples/train-text-from-scratch/train-text-from-scratch.cpp index 7ec8595..61c829e 100644 --- a/examples/train-text-from-scratch/train-text-from-scratch.cpp +++ b/examples/train-text-from-scratch/train-text-from-scratch.cpp @@ -3054,7 +3054,8 @@ int main(int argc, char ** argv) { struct llama_context_params llama_params = llama_context_default_params(); llama_params.vocab_only = true; - struct llama_context * lctx = llama_init_from_file(params.fn_vocab_model, llama_params); + struct llama_model * lmodel = llama_load_model_from_file(params.fn_vocab_model, llama_params); + struct llama_context * lctx = llama_new_context_with_model(lmodel, llama_params); struct llama_vocab vocab; { @@ -3395,6 +3396,8 @@ int main(int argc, char ** argv) { delete[] compute_addr; delete[] compute_buf_0; delete[] compute_buf_1; + llama_free(lctx); + llama_free_model(lmodel); ggml_free(model.ctx); return 0; @@ -182,6 +182,19 @@ struct llama_kv_cache { } }; +struct llama_vocab { + using id = int32_t; + using token = std::string; + + struct token_score { + token tok; + float score; + }; + + std::unordered_map<token, id> token_to_id; + std::vector<token_score> id_to_token; +}; + struct llama_model { e_model type = MODEL_UNKNOWN; @@ -198,10 +211,6 @@ struct llama_model { // context struct ggml_context * ctx = NULL; - // key + value cache for the self attention - // TODO: move to llama_state - struct llama_kv_cache kv_self; - // the model memory buffer llama_ctx_buffer buf; @@ -215,6 +224,11 @@ struct llama_model { // for quantize-stats only std::vector<std::pair<std::string, struct ggml_tensor *>> tensors_by_name; + int64_t t_load_us = 0; + int64_t t_start_us = 0; + + llama_vocab vocab; + ~llama_model() { if (ctx) { ggml_free(ctx); @@ -233,24 +247,11 @@ struct llama_model { } }; -struct llama_vocab { - using id = int32_t; - using token = std::string; - - struct token_score { - token tok; - float score; - }; - - std::unordered_map<token, id> token_to_id; - std::vector<token_score> id_to_token; -}; - struct llama_context { + llama_context(const llama_model & model, const llama_vocab & vocab) : model(model), vocab(vocab), t_load_us(model.t_load_us), t_start_us(model.t_start_us) {} + std::mt19937 rng; - int64_t t_load_us = 0; - int64_t t_start_us = 0; bool has_evaluated_once = false; int64_t t_sample_us = 0; @@ -261,8 +262,16 @@ struct llama_context { int32_t n_eval = 0; // number of eval calls int32_t n_p_eval = 0; // number of tokens in eval calls for the prompt (with batch size > 1) - llama_model model; - llama_vocab vocab; + const llama_model & model; + const llama_vocab & vocab; + + bool model_owner = false; + + int64_t t_load_us; + int64_t t_start_us; + + // key + value cache for the self attention + struct llama_kv_cache kv_self; size_t mem_per_token = 0; @@ -1033,7 +1042,8 @@ static const char *llama_model_type_name(e_model type) { static void llama_model_load_internal( const std::string & fname, - llama_context & lctx, + llama_model & model, + llama_vocab & vocab, int n_ctx, int n_batch, int n_gpu_layers, @@ -1047,12 +1057,11 @@ static void llama_model_load_internal( llama_progress_callback progress_callback, void * progress_callback_user_data) { - lctx.t_start_us = ggml_time_us(); + model.t_start_us = ggml_time_us(); std::unique_ptr<llama_model_loader> ml(new llama_model_loader(fname, use_mmap, vocab_only)); - lctx.vocab = std::move(ml->file_loaders.at(0)->vocab); - auto & model = lctx.model; + vocab = std::move(ml->file_loaders.at(0)->vocab); model.hparams = ml->file_loaders.at(0)->hparams; model.n_gpu_layers = n_gpu_layers; llama_file_version file_version = ml->file_loaders.at(0)->file_version; @@ -1122,15 +1131,15 @@ static void llama_model_load_internal( // create the ggml context { - lctx.model.buf.resize(ctx_size); + model.buf.resize(ctx_size); if (use_mlock) { - lctx.model.mlock_buf.init(lctx.model.buf.addr); - lctx.model.mlock_buf.grow_to(lctx.model.buf.size); + model.mlock_buf.init(model.buf.addr); + model.mlock_buf.grow_to(model.buf.size); } struct ggml_init_params params = { - /*.mem_size =*/ lctx.model.buf.size, - /*.mem_buffer =*/ lctx.model.buf.addr, + /*.mem_size =*/ model.buf.size, + /*.mem_buffer =*/ model.buf.addr, /*.no_alloc =*/ ml->use_mmap, }; @@ -1311,7 +1320,7 @@ static void llama_model_load_internal( } #endif - ml->load_all_data(progress_callback, progress_callback_user_data, use_mlock ? &lctx.model.mlock_mmap : NULL); + ml->load_all_data(progress_callback, progress_callback_user_data, use_mlock ? &model.mlock_mmap : NULL); if (progress_callback) { progress_callback(1.0f, progress_callback_user_data); @@ -1321,12 +1330,13 @@ static void llama_model_load_internal( // loading time will be recalculate after the first eval, so // we take page faults deferred by mmap() into consideration - lctx.t_load_us = ggml_time_us() - lctx.t_start_us; + model.t_load_us = ggml_time_us() - model.t_start_us; } static bool llama_model_load( const std::string & fname, - llama_context & lctx, + llama_model & model, + llama_vocab & vocab, int n_ctx, int n_batch, int n_gpu_layers, @@ -1340,7 +1350,7 @@ static bool llama_model_load( llama_progress_callback progress_callback, void *progress_callback_user_data) { try { - llama_model_load_internal(fname, lctx, n_ctx, n_batch, n_gpu_layers, main_gpu, tensor_split, low_vram, memory_type, + llama_model_load_internal(fname, model, vocab, n_ctx, n_batch, n_gpu_layers, main_gpu, tensor_split, low_vram, memory_type, use_mmap, use_mlock, vocab_only, progress_callback, progress_callback_user_data); return true; } catch (const std::exception & err) { @@ -1378,7 +1388,7 @@ static bool llama_eval_internal( const auto & model = lctx.model; const auto & hparams = model.hparams; - const auto & kv_self = model.kv_self; + const auto & kv_self = lctx.kv_self; LLAMA_ASSERT(!!kv_self.ctx); @@ -1726,7 +1736,7 @@ static bool llama_eval_internal( //memcpy(embd_w.data(), ggml_get_data(cur), sizeof(float)*n_vocab*N); // update kv token count - lctx.model.kv_self.n = n_past + N; + lctx.kv_self.n = n_past + N; // extract logits { @@ -2634,12 +2644,39 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s // interface implementation // -struct llama_context * llama_init_from_file( +struct llama_model * llama_load_model_from_file( const char * path_model, struct llama_context_params params) { ggml_time_init(); - llama_context * ctx = new llama_context; + llama_model * model = new llama_model; + + ggml_type memory_type = params.f16_kv ? GGML_TYPE_F16 : GGML_TYPE_F32; + + if (!llama_model_load(path_model, *model, model->vocab, params.n_ctx, params.n_batch, params.n_gpu_layers, + params.main_gpu, params.tensor_split, params.low_vram, memory_type, params.use_mmap, params.use_mlock, + params.vocab_only, params.progress_callback, params.progress_callback_user_data)) { + delete model; + fprintf(stderr, "%s: failed to load model\n", __func__); + return nullptr; + } + + return model; +} + +void llama_free_model(struct llama_model * model) { + delete model; +} + +struct llama_context * llama_new_context_with_model( + struct llama_model * model, + struct llama_context_params params) { + + if (!model) { + return nullptr; + } + + llama_context * ctx = new llama_context(*model, model->vocab); if (params.seed < 0) { params.seed = time(NULL); @@ -2667,24 +2704,16 @@ struct llama_context * llama_init_from_file( ggml_type memory_type = params.f16_kv ? GGML_TYPE_F16 : GGML_TYPE_F32; - if (!llama_model_load(path_model, *ctx, params.n_ctx, params.n_batch, params.n_gpu_layers, params.main_gpu, - params.tensor_split, params.low_vram, memory_type, params.use_mmap, params.use_mlock, - params.vocab_only, params.progress_callback, params.progress_callback_user_data)) { - fprintf(stderr, "%s: failed to load model\n", __func__); - llama_free(ctx); - return nullptr; - } - // reserve memory for context buffers if (!params.vocab_only) { - if (!kv_cache_init(ctx->model.hparams, ctx->model.kv_self, memory_type, ctx->model.hparams.n_ctx, params.n_gpu_layers)) { + if (!kv_cache_init(ctx->model.hparams, ctx->kv_self, memory_type, ctx->model.hparams.n_ctx, params.n_gpu_layers)) { fprintf(stderr, "%s: kv_cache_init() failed for self-attention cache\n", __func__); llama_free(ctx); return nullptr; } { - const size_t memory_size = ggml_nbytes(ctx->model.kv_self.k) + ggml_nbytes(ctx->model.kv_self.v); + const size_t memory_size = ggml_nbytes(ctx->kv_self.k) + ggml_nbytes(ctx->kv_self.v); fprintf(stderr, "%s: kv self size = %7.2f MB\n", __func__, memory_size / 1024.0 / 1024.0); } @@ -2736,8 +2765,8 @@ struct llama_context * llama_init_from_file( LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "data", data_ptr, data_size, max_size)); - LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "eval", ctx->buf_compute.addr, ctx->buf_compute.size, 0)); - LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "kv", ctx->model.kv_self.buf.addr, ctx->model.kv_self.buf.size, 0)); + LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "eval", ctx->buf_compute.addr, ctx->buf_compute.size, 0)); + LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "kv", ctx->kv_self.buf.addr, ctx->kv_self.buf.size, 0)); LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "scr0", ctx->buf_scratch[0].addr, ctx->buf_scratch[0].size, 0)); LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "scr1", ctx->buf_scratch[1].addr, ctx->buf_scratch[1].size, 0)); @@ -2748,7 +2777,23 @@ struct llama_context * llama_init_from_file( return ctx; } +struct llama_context * llama_init_from_file( + const char * path_model, + struct llama_context_params params) { + + struct llama_model * model = llama_load_model_from_file(path_model, params); + if (!model) { + return nullptr; + } + struct llama_context * ctx = llama_new_context_with_model(model, params); + ctx->model_owner = true; + return ctx; +} + void llama_free(struct llama_context * ctx) { + if (ctx->model_owner) { + delete &ctx->model; + } delete ctx; } @@ -2765,11 +2810,9 @@ int llama_model_quantize( } } -int llama_apply_lora_from_file_internal(struct llama_context * ctx, const char * path_lora, const char * path_base_model, int n_threads) { +int llama_apply_lora_from_file_internal(const struct llama_model & model, const char * path_lora, const char * path_base_model, int n_threads) { fprintf(stderr, "%s: applying lora adapter from '%s' - please wait ...\n", __func__, path_lora); - auto & model = ctx->model; - const int64_t t_start_lora_us = ggml_time_us(); auto fin = std::ifstream(path_lora, std::ios::binary); @@ -3012,7 +3055,16 @@ int llama_apply_lora_from_file_internal(struct llama_context * ctx, const char * int llama_apply_lora_from_file(struct llama_context * ctx, const char * path_lora, const char * path_base_model, int n_threads) { try { - return llama_apply_lora_from_file_internal(ctx, path_lora, path_base_model, n_threads); + return llama_apply_lora_from_file_internal(ctx->model, path_lora, path_base_model, n_threads); + } catch (const std::exception & err) { + fprintf(stderr, "%s: failed to apply lora adapter: %s\n", __func__, err.what()); + return 1; + } +} + +int llama_model_apply_lora_from_file(const struct llama_model * model, const char * path_lora, const char * path_base_model, int n_threads) { + try { + return llama_apply_lora_from_file_internal(*model, path_lora, path_base_model, n_threads); } catch (const std::exception & err) { fprintf(stderr, "%s: failed to apply lora adapter: %s\n", __func__, err.what()); return 1; @@ -3020,7 +3072,7 @@ int llama_apply_lora_from_file(struct llama_context * ctx, const char * path_lor } int llama_get_kv_cache_token_count(const struct llama_context * ctx) { - return ctx->model.kv_self.n; + return ctx->kv_self.n; } #define LLAMA_MAX_RNG_STATE (64*1024) @@ -3045,7 +3097,7 @@ size_t llama_get_state_size(const struct llama_context * ctx) { const size_t s_embedding = ctx->embedding.size() * sizeof(float); const size_t s_kv_size = sizeof(size_t); const size_t s_kv_ntok = sizeof(int); - const size_t s_kv = ctx->model.kv_self.buf.size; + const size_t s_kv = ctx->kv_self.buf.size; const size_t s_total = ( + s_rng_size @@ -3111,7 +3163,7 @@ size_t llama_copy_state_data(struct llama_context * ctx, uint8_t * dst) { // copy kv cache { - const auto & kv_self = ctx->model.kv_self; + const auto & kv_self = ctx->kv_self; const auto & hparams = ctx->model.hparams; const int n_layer = hparams.n_layer; const int n_embd = hparams.n_embd; @@ -3215,7 +3267,7 @@ size_t llama_set_state_data(struct llama_context * ctx, uint8_t * src) { // set kv cache { - const auto & kv_self = ctx->model.kv_self; + const auto & kv_self = ctx->kv_self; const auto & hparams = ctx->model.hparams; const int n_layer = hparams.n_layer; const int n_embd = hparams.n_embd; @@ -3259,7 +3311,7 @@ size_t llama_set_state_data(struct llama_context * ctx, uint8_t * src) { ggml_free(cpy_ctx); } - ctx->model.kv_self.n = kv_ntok; + ctx->kv_self.n = kv_ntok; } const size_t nread = inp - src; @@ -3506,6 +3558,6 @@ const char * llama_print_system_info(void) { } // For internal test use -std::vector<std::pair<std::string, struct ggml_tensor *>>& llama_internal_get_tensor_map(struct llama_context * ctx) { +const std::vector<std::pair<std::string, struct ggml_tensor *>>& llama_internal_get_tensor_map(struct llama_context * ctx) { return ctx->model.tensors_by_name; } @@ -26,6 +26,14 @@ # define LLAMA_API #endif +#ifdef __GNUC__ +# define DEPRECATED(func, hint) func __attribute__((deprecated(hint))) +#elif defined(_MSC_VER) +# define DEPRECATED(func, hint) __declspec(deprecated(hint)) func +#else +# define DEPRECATED(func, hint) func +#endif + #define LLAMA_FILE_MAGIC_GGJT 0x67676a74u // 'ggjt' #define LLAMA_FILE_MAGIC_GGLA 0x67676c61u // 'ggla' #define LLAMA_FILE_MAGIC_GGMF 0x67676d66u // 'ggmf' @@ -53,6 +61,7 @@ extern "C" { // TODO: show sample usage // + struct llama_model; struct llama_context; typedef int llama_token; @@ -136,12 +145,23 @@ extern "C" { LLAMA_API int64_t llama_time_us(); + LLAMA_API struct llama_model * llama_load_model_from_file( + const char * path_model, + struct llama_context_params params); + + LLAMA_API void llama_free_model(struct llama_model * model); + + LLAMA_API struct llama_context * llama_new_context_with_model( + struct llama_model * model, + struct llama_context_params params); + // Various functions for loading a ggml llama model. // Allocate (almost) all memory needed for the model. // Return NULL on failure - LLAMA_API struct llama_context * llama_init_from_file( + LLAMA_API DEPRECATED(struct llama_context * llama_init_from_file( const char * path_model, - struct llama_context_params params); + struct llama_context_params params), + "please use llama_load_model_from_file combined with llama_new_context_with_model instead"); // Frees all allocated memory LLAMA_API void llama_free(struct llama_context * ctx); @@ -158,10 +178,17 @@ extern "C" { // The model needs to be reloaded before applying a new adapter, otherwise the adapter // will be applied on top of the previous one // Returns 0 on success - LLAMA_API int llama_apply_lora_from_file( + LLAMA_API DEPRECATED(int llama_apply_lora_from_file( struct llama_context * ctx, const char * path_lora, const char * path_base_model, + int n_threads), + "please use llama_model_apply_lora_from_file instead"); + + LLAMA_API int llama_model_apply_lora_from_file( + const struct llama_model * model, + const char * path_lora, + const char * path_base_model, int n_threads); // Returns the number of tokens in the KV cache @@ -310,7 +337,7 @@ extern "C" { #include <string> struct ggml_tensor; -std::vector<std::pair<std::string, struct ggml_tensor *>>& llama_internal_get_tensor_map(struct llama_context * ctx); +const std::vector<std::pair<std::string, struct ggml_tensor *>>& llama_internal_get_tensor_map(struct llama_context * ctx); #endif diff --git a/tests/test-tokenizer-0.cpp b/tests/test-tokenizer-0.cpp index ab1538a..20abe71 100644 --- a/tests/test-tokenizer-0.cpp +++ b/tests/test-tokenizer-0.cpp @@ -28,6 +28,7 @@ int main(int argc, char **argv) { fprintf(stderr, "%s : reading vocab from: '%s'\n", __func__, fname.c_str()); + llama_model * model; llama_context * ctx; // load the vocab @@ -36,10 +37,18 @@ int main(int argc, char **argv) { lparams.vocab_only = true; - ctx = llama_init_from_file(fname.c_str(), lparams); + model = llama_load_model_from_file(fname.c_str(), lparams); + + if (model == NULL) { + fprintf(stderr, "%s: error: failed to load vocab '%s'\n", __func__, fname.c_str()); + return 1; + } + + ctx = llama_new_context_with_model(model, lparams); if (ctx == NULL) { fprintf(stderr, "%s: error: failed to load vocab '%s'\n", __func__, fname.c_str()); + llama_free_model(model); return 1; } } @@ -48,6 +57,8 @@ int main(int argc, char **argv) { if (n_vocab != 32000) { fprintf(stderr, "%s : expected 32000 tokens, got %d\n", __func__, n_vocab); + llama_free_model(model); + llama_free(ctx); return 2; } @@ -77,10 +88,13 @@ int main(int argc, char **argv) { } fprintf(stderr, "\n"); + llama_free_model(model); + llama_free(ctx); return 3; } } + llama_free_model(model); llama_free(ctx); return 0; |