aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--ggml.c203
-rw-r--r--ggml.h9
2 files changed, 210 insertions, 2 deletions
diff --git a/ggml.c b/ggml.c
index 44293da..53796bd 100644
--- a/ggml.c
+++ b/ggml.c
@@ -4034,7 +4034,7 @@ static const char * GGML_OP_LABEL[GGML_OP_COUNT] = {
"MAP_BINARY",
};
-static_assert(GGML_OP_COUNT == 38, "GGML_OP_COUNT != 38");
+static_assert(GGML_OP_COUNT == 39, "GGML_OP_COUNT != 39");
static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
"none",
@@ -4082,7 +4082,7 @@ static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
"f(x,y)",
};
-static_assert(GGML_OP_COUNT == 38, "GGML_OP_COUNT != 38");
+static_assert(GGML_OP_COUNT == 39, "GGML_OP_COUNT != 39");
static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
@@ -6080,6 +6080,37 @@ struct ggml_tensor * ggml_rope(
return result;
}
+// ggml_alibi
+
+struct ggml_tensor * ggml_alibi(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ int n_past,
+ int n_head) {
+ GGML_ASSERT(n_past >= 0);
+ bool is_node = false;
+
+ if (a->grad) {
+ GGML_ASSERT(false); // TODO: implement backward
+ is_node = true;
+ }
+
+ // TODO: when implement backward, fix this:
+ //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
+ struct ggml_tensor * result = ggml_view_tensor(ctx, a);
+
+ struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
+ ((int32_t *) b->data)[0] = n_past;
+ ((int32_t *) b->data)[1] = n_head;
+
+ result->op = GGML_OP_ALIBI;
+ result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
+ result->src0 = a;
+ result->src1 = b;
+
+ return result;
+}
+
// ggml_conv_1d_1s
struct ggml_tensor * ggml_conv_1d_1s(
@@ -9300,6 +9331,162 @@ static void ggml_compute_forward_soft_max(
}
}
+// ggml_compute_forward_alibi
+
+static void ggml_compute_forward_alibi_f32(
+ const struct ggml_compute_params * params,
+ const struct ggml_tensor * src0,
+ const struct ggml_tensor * src1,
+ struct ggml_tensor * dst) {
+ assert(params->ith == 0);
+ assert(src1->type == GGML_TYPE_I32);
+ assert(ggml_nelements(src1) == 2);
+
+ if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
+ return;
+ }
+
+ const int n_past = ((int32_t *) src1->data)[0];
+ const int n_head = ((int32_t *) src1->data)[1];
+
+ const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
+ const int ne1 = src0->ne[1]; // seq_len_without_past
+ //const int ne2 = src0->ne[2]; // n_head -> this is k
+ //const int ne3 = src0->ne[3]; // 1 -> bsz
+
+ const int n = ggml_nrows(src0);
+ const int ne2_ne3 = n/ne1; // ne2*ne3
+
+ const int nb0 = src0->nb[0];
+ const int nb1 = src0->nb[1];
+ const int nb2 = src0->nb[2];
+ //const int nb3 = src0->nb[3];
+
+ assert(nb0 == sizeof(float));
+ assert(ne1+n_past == ne0);
+
+ // add alibi to src0 (KQ_scaled)
+ const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
+
+ const float m0 = powf(2.0f, -8.0f / n_heads_log2_floor);
+ const float m1 = powf(2.0f, -4.0f / n_heads_log2_floor);
+
+ for (int i = 0; i < ne0; i++) {
+ for (int j = 0; j < ne1; j++) {
+ for (int k = 0; k < ne2_ne3; k++) {
+ float * const src = (float *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
+ float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
+
+ // TODO: k*nb2 or k*nb3
+
+ float m_k;
+
+ if (k < n_heads_log2_floor) {
+ m_k = powf(m0, k + 1);
+ } else {
+ m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
+ }
+
+ pdst[0] = (j+1) * m_k + src[0];
+ }
+ }
+ }
+}
+
+
+static void ggml_compute_forward_alibi_f16(
+ const struct ggml_compute_params * params,
+ const struct ggml_tensor * src0,
+ const struct ggml_tensor * src1,
+ struct ggml_tensor * dst) {
+ assert(params->ith == 0);
+ assert(src1->type == GGML_TYPE_I32);
+ assert(ggml_nelements(src1) == 2);
+
+ if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
+ return;
+ }
+
+ const int n_past = ((int32_t *) src1->data)[0];
+ const int n_head = ((int32_t *) src1->data)[1];
+
+ const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
+ const int ne1 = src0->ne[1]; // seq_len_without_past
+ //const int ne2 = src0->ne[2]; // n_head -> this is k
+ //const int ne3 = src0->ne[3]; // 1 -> bsz
+
+ const int n = ggml_nrows(src0);
+ const int ne2_ne3 = n/ne1; // ne2*ne3
+
+ const int nb0 = src0->nb[0];
+ const int nb1 = src0->nb[1];
+ const int nb2 = src0->nb[2];
+ //const int nb3 = src0->nb[3];
+
+ assert(nb0 == sizeof(ggml_fp16_t));
+ assert(ne1+n_past == ne0);
+
+ // add alibi to src0 (KQ_scaled)
+ const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
+
+ const float m0 = powf(2.0f, -8.0f / n_heads_log2_floor);
+ const float m1 = powf(2.0f, -4.0f / n_heads_log2_floor);
+
+ for (int i = 0; i < ne0; i++) {
+ for (int j = 0; j < ne1; j++) {
+ for (int k = 0; k < ne2_ne3; k++) {
+ ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
+ float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
+
+ // TODO: k*nb2 or k*nb3
+
+ float m_k;
+
+ if (k < n_heads_log2_floor) {
+ m_k = powf(m0, k + 1);
+ } else {
+ m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
+ }
+
+ // we return F32
+ pdst[0] = (j+1) * m_k + GGML_FP16_TO_FP32(src[0]);
+ }
+ }
+ }
+}
+
+static void ggml_compute_forward_alibi(
+ const struct ggml_compute_params * params,
+ const struct ggml_tensor * src0,
+ const struct ggml_tensor * src1,
+ struct ggml_tensor * dst) {
+ switch (src0->type) {
+ case GGML_TYPE_F16:
+ {
+ ggml_compute_forward_alibi_f16(params, src0, src1, dst);
+ } break;
+ case GGML_TYPE_F32:
+ {
+ ggml_compute_forward_alibi_f32(params, src0, src1, dst);
+ } break;
+ case GGML_TYPE_Q4_0:
+ case GGML_TYPE_Q4_1:
+ case GGML_TYPE_Q4_2:
+ case GGML_TYPE_Q4_3:
+ case GGML_TYPE_Q5_0:
+ case GGML_TYPE_Q5_1:
+ case GGML_TYPE_Q8_0:
+ case GGML_TYPE_Q8_1:
+ case GGML_TYPE_I8:
+ case GGML_TYPE_I16:
+ case GGML_TYPE_I32:
+ case GGML_TYPE_COUNT:
+ {
+ GGML_ASSERT(false);
+ } break;
+ }
+}
+
// ggml_compute_forward_rope
static void ggml_compute_forward_rope_f32(
@@ -10938,6 +11125,10 @@ static void ggml_compute_forward(struct ggml_compute_params * params, struct ggm
{
ggml_compute_forward_rope(params, tensor->src0, tensor->src1, tensor);
} break;
+ case GGML_OP_ALIBI:
+ {
+ ggml_compute_forward_alibi(params, tensor->src0, tensor->src1, tensor);
+ } break;
case GGML_OP_CONV_1D_1S:
{
ggml_compute_forward_conv_1d_1s(params, tensor->src0, tensor->src1, tensor);
@@ -11140,6 +11331,10 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor
{
GGML_ASSERT(false); // TODO: not implemented
} break;
+ case GGML_OP_ALIBI:
+ {
+ GGML_ASSERT(false); // TODO: not implemented
+ } break;
case GGML_OP_SILU:
{
GGML_ASSERT(false); // TODO: not implemented
@@ -11673,6 +11868,10 @@ void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph)
{
node->n_tasks = n_threads;
} break;
+ case GGML_OP_ALIBI:
+ {
+ node->n_tasks = 1; //TODO
+ } break;
case GGML_OP_CONV_1D_1S:
case GGML_OP_CONV_1D_2S:
{
diff --git a/ggml.h b/ggml.h
index 1bbe2db..540901f 100644
--- a/ggml.h
+++ b/ggml.h
@@ -269,6 +269,7 @@ extern "C" {
GGML_OP_DIAG_MASK_INF,
GGML_OP_SOFT_MAX,
GGML_OP_ROPE,
+ GGML_OP_ALIBI,
GGML_OP_CONV_1D_1S,
GGML_OP_CONV_1D_2S,
@@ -662,6 +663,14 @@ extern "C" {
int n_dims,
int mode);
+ // alibi position embedding
+ // in-place, returns view(a)
+ struct ggml_tensor * ggml_alibi(
+ struct ggml_context * ctx,
+ struct ggml_tensor * a,
+ int n_past,
+ int n_head);
+
// padding = 1
// TODO: we don't support extra parameters for now
// that's why we are hard-coding the stride, padding, and dilation