diff options
-rw-r--r-- | ggml-cuda.cu | 23 | ||||
-rw-r--r-- | ggml-cuda.h | 3 | ||||
-rw-r--r-- | ggml-opencl.cpp | 35 | ||||
-rw-r--r-- | ggml-opencl.h | 3 | ||||
-rw-r--r-- | llama.cpp | 105 |
5 files changed, 55 insertions, 114 deletions
diff --git a/ggml-cuda.cu b/ggml-cuda.cu index 4f2195f..3b9a5dd 100644 --- a/ggml-cuda.cu +++ b/ggml-cuda.cu @@ -1713,8 +1713,7 @@ void ggml_cuda_nop(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tens (void) dst; } -void ggml_cuda_load_data(const char * fname, struct ggml_tensor * tensor, const size_t offset) { - FILE * fp = fopen(fname, "rb"); +void ggml_cuda_transform_tensor(void * data, struct ggml_tensor * tensor) { int nrows = ggml_nrows(tensor); const size_t nb1 = tensor->nb[1]; ggml_backend backend = tensor->backend; @@ -1748,35 +1747,19 @@ void ggml_cuda_load_data(const char * fname, struct ggml_tensor * tensor, const int64_t nrows_split = row_high - row_low; - const size_t offset_split = offset + row_low*nb1; + const size_t offset_split = row_low*nb1; const size_t size = ggml_nbytes_split(tensor, nrows_split); void * buf; CUDA_CHECK(cudaMalloc(&buf, size)); - void * buf_host = malloc(size); - -#ifdef _WIN32 - int ret = _fseeki64(fp, (__int64) offset_split, SEEK_SET); -#else - int ret = fseek(fp, (long) offset_split, SEEK_SET); -#endif - GGML_ASSERT(ret == 0); // same - - size_t ret2 = fread(buf_host, size, 1, fp); - if (ret2 != 1) { - fprintf(stderr, "unexpectedly reached end of file"); - exit(1); - } + void * buf_host = (char*)data + offset_split; cudaMemcpy(buf, buf_host, size, cudaMemcpyHostToDevice); - cudaDeviceSynchronize(); - free(buf_host); extra->data_device[id] = buf; } tensor->extra = extra; - fclose(fp); } void ggml_cuda_free_data(struct ggml_tensor * tensor) { diff --git a/ggml-cuda.h b/ggml-cuda.h index 3b74e32..fde6d40 100644 --- a/ggml-cuda.h +++ b/ggml-cuda.h @@ -24,7 +24,8 @@ void ggml_cuda_mul_mat(const struct ggml_tensor * src0, const struct ggml_tens void * ggml_cuda_host_malloc(size_t size); void ggml_cuda_host_free(void * ptr); -void ggml_cuda_load_data(const char * fname, struct ggml_tensor * tensors, size_t offset); +void ggml_cuda_transform_tensor(void * data, struct ggml_tensor * tensor); + void ggml_cuda_free_data(struct ggml_tensor * tensor); void ggml_cuda_assign_buffers(struct ggml_tensor * tensor); void ggml_cuda_set_main_device(int main_device); diff --git a/ggml-opencl.cpp b/ggml-opencl.cpp index 7b6daf4..5df922a 100644 --- a/ggml-opencl.cpp +++ b/ggml-opencl.cpp @@ -1167,7 +1167,7 @@ size_t ggml_cl_mul_mat_get_wsize(const struct ggml_tensor * src0, const struct g return 0; } -void ggml_cl_transform_tensor(ggml_tensor * tensor) { +void ggml_cl_transform_tensor(void * data, ggml_tensor * tensor) { const int64_t ne0 = tensor->ne[0]; const int64_t ne1 = tensor->ne[1]; const int64_t ne2 = tensor->ne[2]; @@ -1179,6 +1179,7 @@ void ggml_cl_transform_tensor(ggml_tensor * tensor) { size_t q_size; cl_mem dst = ggml_cl_pool_malloc(q_sz, &q_size); + tensor->data = data; // copy tensor to device for (int64_t i3 = 0; i3 < ne3; i3++) { for (int64_t i2 = 0; i2 < ne2; i2++) { @@ -1190,35 +1191,5 @@ void ggml_cl_transform_tensor(ggml_tensor * tensor) { CL_CHECK(clFinish(queue)); tensor->data = dst; - tensor->backend = GGML_BACKEND_GPU; -} - -void ggml_cl_load_data(const char * fname, struct ggml_tensor * tensor, const size_t offset) { - cl_int err; - FILE * fp = fopen(fname, "rb"); - - const size_t size = ggml_nbytes(tensor); - - cl_mem dst; - CL_CHECK((dst = clCreateBuffer(context, CL_MEM_READ_ONLY, size, nullptr, &err), err)); - void * buf_host = malloc(size); - -#ifdef _WIN32 - int ret = _fseeki64(fp, (__int64) offset, SEEK_SET); -#else - int ret = fseek(fp, (long) offset, SEEK_SET); -#endif - GGML_ASSERT(ret == 0); // same - - size_t ret2 = fread(buf_host, size, 1, fp); - if (ret2 != 1) { - fprintf(stderr, "unexpectedly reached end of file"); - exit(1); - } - - clEnqueueWriteBuffer(queue, dst, CL_TRUE, 0, size, buf_host, 0, nullptr, nullptr); - - tensor->data = dst; - free(buf_host); - fclose(fp); + GGML_ASSERT(tensor->backend == GGML_BACKEND_GPU); } diff --git a/ggml-opencl.h b/ggml-opencl.h index bf95e5c..a92b445 100644 --- a/ggml-opencl.h +++ b/ggml-opencl.h @@ -18,8 +18,7 @@ void ggml_cl_host_free(void * ptr); void ggml_cl_free_data(const struct ggml_tensor* tensor); -void ggml_cl_transform_tensor(struct ggml_tensor * tensor); -void ggml_cl_load_data(const char * fname, struct ggml_tensor * tensor, size_t offset); +void ggml_cl_transform_tensor(void * data, struct ggml_tensor * tensor); #ifdef __cplusplus } @@ -707,6 +707,9 @@ struct llama_model_loader { struct ggml_tensor * get_tensor_for(llama_load_tensor & lt, ggml_backend backend) { struct ggml_tensor * tensor; + if (backend != GGML_BACKEND_CPU) { + ggml_set_no_alloc(ggml_ctx, true); + } if (lt.ne.size() == 2) { tensor = ggml_new_tensor_2d(ggml_ctx, lt.type, lt.ne.at(0), lt.ne.at(1)); } else { @@ -716,6 +719,9 @@ struct llama_model_loader { ggml_set_name(tensor, lt.name.c_str()); LLAMA_ASSERT(lt.ggml_tensor == NULL); // if this fails, we called get_tensor twice on the same tensor + if (backend != GGML_BACKEND_CPU) { + ggml_set_no_alloc(ggml_ctx, use_mmap); + } tensor->backend = backend; lt.ggml_tensor = tensor; num_ggml_tensors_created++; @@ -731,6 +737,7 @@ struct llama_model_loader { void load_all_data(llama_progress_callback progress_callback, void * progress_callback_user_data, llama_mlock * lmlock) { size_t data_size = 0; size_t prefetch_size = 0; + size_t lock_size = 0; for (const llama_load_tensor & lt : tensors_map.tensors) { data_size += lt.size; if (lt.ggml_tensor->backend == GGML_BACKEND_CPU) { @@ -740,11 +747,6 @@ struct llama_model_loader { if (use_mmap) { mapping.reset(new llama_mmap(&file_loaders.at(0)->file, prefetch_size)); - if (!lmlock) { - // Don't call the callback since the actual loading will be lazy - // and we can't measure it. - progress_callback = NULL; - } if (lmlock) { lmlock->init(mapping->addr); } @@ -752,20 +754,49 @@ struct llama_model_loader { size_t done_size = 0; for (llama_load_tensor & lt : tensors_map.tensors) { - if (lt.ggml_tensor->backend != GGML_BACKEND_CPU) { - continue; - } if (progress_callback) { progress_callback((float) done_size / data_size, progress_callback_user_data); } LLAMA_ASSERT(lt.ggml_tensor); // unused tensors should have been caught by load_data already lt.data = (uint8_t *) lt.ggml_tensor->data; + + // allocate temp buffer if not using mmap + if (!use_mmap && lt.data == NULL) { + GGML_ASSERT(lt.ggml_tensor->backend != GGML_BACKEND_CPU); + lt.data = (uint8_t*)malloc(ggml_nbytes(lt.ggml_tensor)); + } + load_data_for(lt); - lt.ggml_tensor->data = lt.data; - done_size += lt.size; - if (use_mmap && lmlock) { - lmlock->grow_to(done_size); + + switch(lt.ggml_tensor->backend) { + case GGML_BACKEND_CPU: + lt.ggml_tensor->data = lt.data; + if (use_mmap && lmlock) { + lock_size += lt.size; + lmlock->grow_to(lock_size); + } + break; +#if defined(GGML_USE_CUBLAS) + case GGML_BACKEND_GPU: + case GGML_BACKEND_GPU_SPLIT: + ggml_cuda_transform_tensor(lt.data, lt.ggml_tensor); + if (!use_mmap) { + free(lt.data); + } + break; +#elif defined(GGML_USE_CLBLAST) + case GGML_BACKEND_GPU: + ggml_cl_transform_tensor(lt.data, lt.ggml_tensor); + if (!use_mmap) { + free(lt.data); + } + break; +#endif + default: + continue; } + + done_size += lt.size; } } @@ -1141,7 +1172,7 @@ static void llama_model_load_internal( if (backend == GGML_BACKEND_GPU) { vram_weights += ggml_nbytes(layer.attention_norm) + ggml_nbytes(layer.wq) + ggml_nbytes(layer.wk) + - ggml_nbytes(layer.wv) + ggml_nbytes(layer.wo) + ggml_nbytes(layer.attention_norm) + + ggml_nbytes(layer.wv) + ggml_nbytes(layer.wo) + ggml_nbytes(layer.ffn_norm) + ggml_nbytes(layer.w1) + ggml_nbytes(layer.w2) + ggml_nbytes(layer.w3); } } @@ -1196,58 +1227,14 @@ static void llama_model_load_internal( model.tensors_by_name.emplace_back(lt.name, lt.ggml_tensor); } - ml->load_all_data(progress_callback, progress_callback_user_data, use_mlock ? &lctx.model.mlock_mmap : NULL); - #if defined(GGML_USE_CUBLAS) { ggml_cuda_set_tensor_split(tensor_split); - - size_t done_size = 0; - size_t data_size = 0; - for (llama_load_tensor & lt : ml->tensors_map.tensors) { - data_size += lt.size; - if (lt.ggml_tensor->backend == GGML_BACKEND_CPU) { - done_size += lt.size; - } - } - for (llama_load_tensor & lt : ml->tensors_map.tensors) { - ggml_backend backend = lt.ggml_tensor->backend; - if (backend != GGML_BACKEND_GPU && backend != GGML_BACKEND_GPU_SPLIT) { - continue; - } - if (progress_callback) { - progress_callback((float) done_size / data_size, progress_callback_user_data); - } - ggml_cuda_load_data(fname.c_str(), lt.ggml_tensor, lt.shards.at(0).file_off); - done_size += lt.size; - } - } -#elif defined(GGML_USE_CLBLAST) - { - size_t done_size = 0; - size_t data_size = 0; - for (llama_load_tensor & lt : ml->tensors_map.tensors) { - data_size += lt.size; - if (lt.ggml_tensor->backend == GGML_BACKEND_CPU) { - done_size += lt.size; - } - } - for (llama_load_tensor & lt : ml->tensors_map.tensors) { - if (lt.ggml_tensor->backend != GGML_BACKEND_GPU) { - continue; - } - if (progress_callback) { - progress_callback((float) done_size / data_size, progress_callback_user_data); - } - ggml_cl_load_data(fname.c_str(), lt.ggml_tensor, lt.shards.at(0).file_off); - done_size += lt.size; - } } -#else - (void) n_batch; - (void) tensor_split; #endif + ml->load_all_data(progress_callback, progress_callback_user_data, use_mlock ? &lctx.model.mlock_mmap : NULL); + if (progress_callback) { progress_callback(1.0f, progress_callback_user_data); } |