diff options
-rw-r--r-- | ggml-cuda.cu | 54 | ||||
-rw-r--r-- | ggml.c | 99 |
2 files changed, 101 insertions, 52 deletions
diff --git a/ggml-cuda.cu b/ggml-cuda.cu index e0d5e91..920466a 100644 --- a/ggml-cuda.cu +++ b/ggml-cuda.cu @@ -1667,6 +1667,40 @@ static __global__ void rope_f32(const float * x, float * dst, const int ncols, c dst[i + 1] = x0*sin_theta + x1*cos_theta; } +static __global__ void rope_glm_f32(const float * x, float * dst, const int ncols, const float p, const float block_p, const float theta_scale) { + const int col = blockDim.x*blockIdx.x + threadIdx.x; + const int half_n_dims = ncols/4; + + if (col >= half_n_dims) { + return; + } + + const int row = blockDim.y*blockIdx.y + threadIdx.y; + const int i = row*ncols + col; + + const float col_theta_scale = powf(theta_scale, col); + + const float theta = p*col_theta_scale; + const float sin_theta = sinf(theta); + const float cos_theta = cosf(theta); + + const float x0 = x[i + 0]; + const float x1 = x[i + half_n_dims]; + + dst[i + 0] = x0*cos_theta - x1*sin_theta; + dst[i + half_n_dims] = x0*sin_theta + x1*cos_theta; + + const float block_theta = block_p*col_theta_scale; + const float sin_block_theta = sinf(block_theta); + const float cos_block_theta = cosf(block_theta); + + const float x2 = x[i + half_n_dims * 2]; + const float x3 = x[i + half_n_dims * 3]; + + dst[i + half_n_dims * 2] = x2*cos_block_theta - x3*sin_block_theta; + dst[i + half_n_dims * 3] = x2*sin_block_theta + x3*cos_block_theta; +} + static __global__ void diag_mask_inf_f32(const float * x, float * dst, const int ncols, const int rows_per_channel, const int n_past) { const int col = blockDim.x*blockIdx.x + threadIdx.x; const int row = blockDim.y*blockIdx.y + threadIdx.y; @@ -2064,6 +2098,14 @@ static void rope_f32_cuda(const float * x, float * dst, const int ncols, const i rope_f32<<<block_nums, block_dims, 0, stream>>>(x, dst, ncols, p, theta_scale); } +static void rope_glm_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, const float p, const float block_p, const float theta_scale, cudaStream_t stream) { + GGML_ASSERT(nrows % 4 == 0); + const dim3 block_dims(4*CUDA_ROPE_BLOCK_SIZE, 1, 1); + const int num_blocks_x = (ncols + 4*CUDA_ROPE_BLOCK_SIZE - 1) / (4*CUDA_ROPE_BLOCK_SIZE); + const dim3 block_nums(num_blocks_x, nrows, 1); + rope_glm_f32<<<block_nums, block_dims, 0, stream>>>(x, dst, ncols, p, block_p, theta_scale); +} + static void diag_mask_inf_f32_cuda(const float * x, float * dst, const int ncols_x, const int nrows_x, const int rows_per_channel, const int n_past, cudaStream_t stream) { const dim3 block_dims(CUDA_DIAG_MASK_INF_BLOCK_SIZE, 1, 1); const int block_num_x = (ncols_x + CUDA_DIAG_MASK_INF_BLOCK_SIZE - 1) / CUDA_DIAG_MASK_INF_BLOCK_SIZE; @@ -2618,13 +2660,21 @@ inline void ggml_cuda_op_rope( const int n_past = ((int32_t *) src1->data)[0]; const int n_dims = ((int32_t *) src1->data)[1]; const int mode = ((int32_t *) src1->data)[2]; - GGML_ASSERT(mode == 0); + const int n_ctx = ((int32_t *) src1->data)[3]; const float theta_scale = powf(10000.0, -2.0f/n_dims); const float p = ((mode & 1) == 0 ? n_past + i02 : i02); + bool is_glm = mode & 4; + // compute - rope_f32_cuda(src0_ddf_i, dst_ddf_i, ne00, i01_diff, p, theta_scale, cudaStream_main); + if (is_glm) { + const float id_p = min(p, n_ctx - 2.f); + const float block_p = max(p - (n_ctx - 2.f), 0.f); + rope_glm_f32_cuda(src0_ddf_i, dst_ddf_i, ne00, i01_diff, id_p, block_p, theta_scale, cudaStream_main); + } else { + rope_f32_cuda(src0_ddf_i, dst_ddf_i, ne00, i01_diff, p, theta_scale, cudaStream_main); + } (void) dst; (void) src0_ddq_i; @@ -10684,6 +10684,8 @@ static void ggml_compute_forward_mul_mat( const enum ggml_type type = src0->type; + const bool src1_cont = ggml_is_contiguous(src1); + ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot; enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type; ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float; @@ -10747,7 +10749,7 @@ static void ggml_compute_forward_mul_mat( float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3); if (type != GGML_TYPE_F32) { - float * const wdata = params->wdata; + float * const wdata = params->wdata; ggml_to_float_t const to_float = type_traits[type].to_float; size_t id = 0; @@ -10805,7 +10807,7 @@ static void ggml_compute_forward_mul_mat( // src1 rows const int64_t nr1 = ne11*ne12*ne13; - void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata; + const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata; const size_t row_size = ne10*GGML_TYPE_SIZE[vec_dot_type]/GGML_BLCK_SIZE[vec_dot_type]; for (int64_t ir1 = 0; ir1 < nr1; ++ir1) { @@ -10828,7 +10830,15 @@ static void ggml_compute_forward_mul_mat( const int64_t i3 = i13; const char * src0_row = (const char *) src0->data + ( 0 + i02*nb02 + i03*nb03 ); - const char * src1_col = (const char *) wdata + (i11 + i12*ne11 + i13*ne12*ne11)*row_size; + + // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides + // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using + // the original src1 data pointer, so we should index using the indices directly + // TODO: this is a bit of a hack, we should probably have a better way to handle this + const char * src1_col = (const char *) wdata + + (src1_cont || src1->type != vec_dot_type + ? (i11 + i12*ne11 + i13*ne12*ne11)*row_size + : (i11*nb11 + i12*nb12 + i13*nb13)); float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)); @@ -12982,12 +12992,13 @@ static void ggml_compute_forward_conv_1d( }; } -// ggml_compute_forward_conv_2d_sk_p0 +// ggml_compute_forward_conv_2d -static void ggml_compute_forward_conv_2d_sk_p0_f16_f32( +static void ggml_compute_forward_conv_2d_f16_f32( const struct ggml_compute_params * params, const struct ggml_tensor * src0, const struct ggml_tensor * src1, + const struct ggml_tensor * opt0, struct ggml_tensor * dst) { GGML_ASSERT(src0->type == GGML_TYPE_F16); GGML_ASSERT(src1->type == GGML_TYPE_F32); @@ -13007,28 +13018,37 @@ static void ggml_compute_forward_conv_2d_sk_p0_f16_f32( // size of the convolution row - the kernel size unrolled across all channels const int ew0 = nk0*nk1*ne02; + const int32_t s0 = ((const int32_t*)(opt0->data))[0]; + const int32_t s1 = ((const int32_t*)(opt0->data))[1]; + const int32_t p0 = ((const int32_t*)(opt0->data))[2]; + const int32_t p1 = ((const int32_t*)(opt0->data))[3]; + const int32_t d0 = ((const int32_t*)(opt0->data))[4]; + const int32_t d1 = ((const int32_t*)(opt0->data))[5]; + GGML_ASSERT(nb00 == sizeof(ggml_fp16_t)); GGML_ASSERT(nb10 == sizeof(float)); if (params->type == GGML_TASK_INIT) { - // TODO: fix this memset (wsize is overestimated) memset(params->wdata, 0, params->wsize); // prepare source data (src1) { ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0; - for (int i13 = 0; i13 < ne13; i13++) { - for (int i12 = 0; i12 < ne12; i12++) { - const float * const src = (float *)((char *) src1->data + i13*nb13 + i12*nb12); - ggml_fp16_t * dst_data = wdata + i13*(ne1*ne0*ew0); + for (int i12 = 0; i12 < ne12; i12++) { + const float * const src = (float *)((char *) src1->data + i12*nb12); + ggml_fp16_t * dst_data = wdata; - for (int i1 = 0; i1 < ne1; i1++) { - for (int i0 = 0; i0 < ne0; i0++) { - for (int ik1 = 0; ik1 < nk1; ik1++) { - for (int ik0 = 0; ik0 < nk0; ik0++) { + for (int i1 = 0; i1 < ne1; i1++) { + for (int i0 = 0; i0 < ne0; i0++) { + for (int ik1 = 0; ik1 < nk1; ik1++) { + for (int ik0 = 0; ik0 < nk0; ik0++) { + const int idx0 = i0*s0 + ik0*d0 - p0; + const int idx1 = i1*s1 + ik1*d1 - p1; + + if (!(idx1 < 0 || idx1 >= ne11 || idx0 < 0 || idx0 >= ne10)) { dst_data[(i1*ne0 + i0)*ew0 + i12*(nk0*nk1) + ik1*nk0 + ik0] = - GGML_FP32_TO_FP16(src[(i1*nk1 + ik1)*ne10 + (i0*nk0 + ik0)]); + GGML_FP32_TO_FP16(src[idx1*ne10 + idx0]); } } } @@ -13071,19 +13091,21 @@ static void ggml_compute_forward_conv_2d_sk_p0_f16_f32( } } -static void ggml_compute_forward_conv_2d_sk_p0( +static void ggml_compute_forward_conv_2d( const struct ggml_compute_params * params, const struct ggml_tensor * src0, const struct ggml_tensor * src1, - struct ggml_tensor * dst) { + const struct ggml_tensor * opt0, + struct ggml_tensor * dst + ) { switch (src0->type) { case GGML_TYPE_F16: { - ggml_compute_forward_conv_2d_sk_p0_f16_f32(params, src0, src1, dst); + ggml_compute_forward_conv_2d_f16_f32(params, src0, src1, opt0, dst); } break; case GGML_TYPE_F32: { - //ggml_compute_forward_conv_2d_sk_p0_f32(params, src0, src1, dst); + //ggml_compute_forward_conv_2d_f32(params, src0, src1, opt0, dst); GGML_ASSERT(false); } break; default: @@ -13093,32 +13115,6 @@ static void ggml_compute_forward_conv_2d_sk_p0( } } -// ggml_compute_forward_conv_2d - -static void ggml_compute_forward_conv_2d( - const struct ggml_compute_params* params, - const struct ggml_tensor* src0, - const struct ggml_tensor* src1, - const struct ggml_tensor* opt0, - struct ggml_tensor* dst) { - const int32_t s0 = ((const int32_t*)(opt0->data))[0]; - const int32_t s1 = ((const int32_t*)(opt0->data))[1]; - const int32_t p0 = ((const int32_t*)(opt0->data))[2]; - const int32_t p1 = ((const int32_t*)(opt0->data))[3]; - const int32_t d0 = ((const int32_t*)(opt0->data))[4]; - const int32_t d1 = ((const int32_t*)(opt0->data))[5]; - GGML_ASSERT(d0 == 1); // dilation not supported - GGML_ASSERT(d1 == 1); - GGML_ASSERT(p0 == 0); // padding not supported - GGML_ASSERT(p1 == 0); - - if (s0 == src0->ne[0] && s1 == src0->ne[1]) { - ggml_compute_forward_conv_2d_sk_p0(params, src0, src1, dst); - } else { - GGML_ASSERT(false); // only stride equal to kernel size is supported - } -} - // ggml_compute_forward_pool_1d_sk_p0 static void ggml_compute_forward_pool_1d_sk_p0( @@ -16575,19 +16571,22 @@ struct ggml_cplan ggml_graph_plan(struct ggml_cgraph * cgraph, int n_threads) { const int64_t ne11 = node->src[1]->ne[1]; // H const int64_t ne12 = node->src[1]->ne[2]; // C + const int64_t ne0 = node->ne[0]; + const int64_t ne1 = node->ne[1]; + const int64_t ne2 = node->ne[2]; const int64_t nk = ne00*ne01; + const int64_t ew0 = nk * ne02; - UNUSED(ne02); UNUSED(ne03); - UNUSED(nk); + UNUSED(ne2); size_t cur = 0; if (node->src[0]->type == GGML_TYPE_F16 && - node->src[1]->type == GGML_TYPE_F32) { - cur = sizeof(ggml_fp16_t)*(ne10*ne11*ne12); + node->src[1]->type == GGML_TYPE_F32) { + cur = sizeof(ggml_fp16_t)*(ne0*ne1*ew0); } else if (node->src[0]->type == GGML_TYPE_F32 && - node->src[1]->type == GGML_TYPE_F32) { + node->src[1]->type == GGML_TYPE_F32) { cur = sizeof(float)* (ne10*ne11*ne12); } else { GGML_ASSERT(false); |