aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--examples/common.cpp91
-rw-r--r--examples/common.h21
-rw-r--r--examples/main/main.cpp71
-rw-r--r--examples/save-load-state/save-load-state.cpp34
-rw-r--r--llama.cpp483
-rw-r--r--llama.h64
-rw-r--r--tests/CMakeLists.txt1
-rw-r--r--tests/test-sampling.cpp199
8 files changed, 808 insertions, 156 deletions
diff --git a/examples/common.cpp b/examples/common.cpp
index 9f10dc2..6c712c7 100644
--- a/examples/common.cpp
+++ b/examples/common.cpp
@@ -6,6 +6,8 @@
#include <string>
#include <iterator>
#include <algorithm>
+#include <sstream>
+#include <iostream>
#if defined (_WIN32)
#include <fcntl.h>
@@ -114,6 +116,18 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
break;
}
params.temp = std::stof(argv[i]);
+ } else if (arg == "--tfs") {
+ if (++i >= argc) {
+ invalid_param = true;
+ break;
+ }
+ params.tfs_z = std::stof(argv[i]);
+ } else if (arg == "--typical") {
+ if (++i >= argc) {
+ invalid_param = true;
+ break;
+ }
+ params.typical_p = std::stof(argv[i]);
} else if (arg == "--repeat_last_n") {
if (++i >= argc) {
invalid_param = true;
@@ -126,6 +140,36 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
break;
}
params.repeat_penalty = std::stof(argv[i]);
+ } else if (arg == "--frequency_penalty") {
+ if (++i >= argc) {
+ invalid_param = true;
+ break;
+ }
+ params.frequency_penalty = std::stof(argv[i]);
+ } else if (arg == "--presence_penalty") {
+ if (++i >= argc) {
+ invalid_param = true;
+ break;
+ }
+ params.presence_penalty = std::stof(argv[i]);
+ } else if (arg == "--mirostat") {
+ if (++i >= argc) {
+ invalid_param = true;
+ break;
+ }
+ params.mirostat = std::stoi(argv[i]);
+ } else if (arg == "--mirostat_lr") {
+ if (++i >= argc) {
+ invalid_param = true;
+ break;
+ }
+ params.mirostat_eta = std::stof(argv[i]);
+ } else if (arg == "--mirostat_ent") {
+ if (++i >= argc) {
+ invalid_param = true;
+ break;
+ }
+ params.mirostat_tau = std::stof(argv[i]);
} else if (arg == "-b" || arg == "--batch_size") {
if (++i >= argc) {
invalid_param = true;
@@ -185,7 +229,28 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
} else if (arg == "--perplexity") {
params.perplexity = true;
} else if (arg == "--ignore-eos") {
- params.ignore_eos = true;
+ params.logit_bias[llama_token_eos()] = -INFINITY;
+ } else if (arg == "--no-penalize-nl") {
+ params.penalize_nl = false;
+ } else if (arg == "-l" || arg == "--logit-bias") {
+ if (++i >= argc) {
+ invalid_param = true;
+ break;
+ }
+ std::stringstream ss(argv[i]);
+ llama_token key;
+ char sign;
+ std::string value_str;
+ try {
+ if (ss >> key && ss >> sign && std::getline(ss, value_str) && (sign == '+' || sign == '-')) {
+ params.logit_bias[key] = std::stof(value_str) * ((sign == '-') ? -1.0f : 1.0f);
+ } else {
+ throw std::exception();
+ }
+ } catch (const std::exception &e) {
+ invalid_param = true;
+ break;
+ }
} else if (arg == "--n_parts") {
if (++i >= argc) {
invalid_param = true;
@@ -240,12 +305,26 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
fprintf(stderr, " -f FNAME, --file FNAME\n");
fprintf(stderr, " prompt file to start generation.\n");
fprintf(stderr, " -n N, --n_predict N number of tokens to predict (default: %d, -1 = infinity)\n", params.n_predict);
- fprintf(stderr, " --top_k N top-k sampling (default: %d)\n", params.top_k);
- fprintf(stderr, " --top_p N top-p sampling (default: %.1f)\n", (double)params.top_p);
- fprintf(stderr, " --repeat_last_n N last n tokens to consider for penalize (default: %d)\n", params.repeat_last_n);
- fprintf(stderr, " --repeat_penalty N penalize repeat sequence of tokens (default: %.1f)\n", (double)params.repeat_penalty);
+ fprintf(stderr, " --top_k N top-k sampling (default: %d, 0 = disabled)\n", params.top_k);
+ fprintf(stderr, " --top_p N top-p sampling (default: %.1f, 1.0 = disabled)\n", (double)params.top_p);
+ fprintf(stderr, " --tfs N tail free sampling, parameter z (default: %.1f, 1.0 = disabled)\n", (double)params.tfs_z);
+ fprintf(stderr, " --typical N locally typical sampling, parameter p (default: %.1f, 1.0 = disabled)\n", (double)params.typical_p);
+ fprintf(stderr, " --repeat_last_n N last n tokens to consider for penalize (default: %d, 0 = disabled, -1 = ctx_size)\n", params.repeat_last_n);
+ fprintf(stderr, " --repeat_penalty N penalize repeat sequence of tokens (default: %.1f, 1.0 = disabled)\n", (double)params.repeat_penalty);
+ fprintf(stderr, " --presence_penalty N repeat alpha presence penalty (default: %.1f, 0.0 = disabled)\n", (double)params.presence_penalty);
+ fprintf(stderr, " --frequency_penalty N repeat alpha frequency penalty (default: %.1f, 0.0 = disabled)\n", (double)params.frequency_penalty);
+ fprintf(stderr, " --mirostat N use Mirostat sampling.\n");
+ fprintf(stderr, " Top K, Nucleus, Tail Free and Locally Typical samplers are ignored if used.\n");
+ fprintf(stderr, " (default: %d, 0 = disabled, 1 = Mirostat, 2 = Mirostat 2.0)\n", params.mirostat);
+ fprintf(stderr, " --mirostat_lr N Mirostat learning rate, parameter eta (default: %.1f)\n", (double)params.mirostat_eta);
+ fprintf(stderr, " --mirostat_ent N Mirostat target entropy, parameter tau (default: %.1f)\n", (double)params.mirostat_tau);
+ fprintf(stderr, " -l TOKEN_ID(+/-)BIAS, --logit-bias TOKEN_ID(+/-)BIAS\n");
+ fprintf(stderr, " modifies the likelihood of token appearing in the completion,\n");
+ fprintf(stderr, " i.e. `--logit-bias 15043+1` to increase likelihood of token ' Hello',\n");
+ fprintf(stderr, " or `--logit-bias 15043-1` to decrease likelihood of token ' Hello'\n");
fprintf(stderr, " -c N, --ctx_size N size of the prompt context (default: %d)\n", params.n_ctx);
- fprintf(stderr, " --ignore-eos ignore end of stream token and continue generating\n");
+ fprintf(stderr, " --ignore-eos ignore end of stream token and continue generating (implies --logit-bias 2-inf)\n");
+ fprintf(stderr, " --no-penalize-nl do not penalize newline token\n");
fprintf(stderr, " --memory_f32 use f32 instead of f16 for memory key+value\n");
fprintf(stderr, " --temp N temperature (default: %.1f)\n", (double)params.temp);
fprintf(stderr, " --n_parts N number of model parts (default: -1 = determine from dimensions)\n");
diff --git a/examples/common.h b/examples/common.h
index 9d3697d..14e6b1b 100644
--- a/examples/common.h
+++ b/examples/common.h
@@ -8,6 +8,7 @@
#include <vector>
#include <random>
#include <thread>
+#include <unordered_map>
//
// CLI argument parsing
@@ -17,17 +18,25 @@ struct gpt_params {
int32_t seed = -1; // RNG seed
int32_t n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency());
int32_t n_predict = 128; // new tokens to predict
- int32_t repeat_last_n = 64; // last n tokens to penalize
int32_t n_parts = -1; // amount of model parts (-1 = determine from model dimensions)
int32_t n_ctx = 512; // context size
int32_t n_batch = 512; // batch size for prompt processing (must be >=32 to use BLAS)
int32_t n_keep = 0; // number of tokens to keep from initial prompt
// sampling parameters
- int32_t top_k = 40;
- float top_p = 0.95f;
- float temp = 0.80f;
- float repeat_penalty = 1.10f;
+ std::unordered_map<llama_token, float> logit_bias; // logit bias for specific tokens
+ int32_t top_k = 0; // <= 0 to use vocab size
+ float top_p = 1.0f; // 1.0 = disabled
+ float tfs_z = 1.0f; // 1.0 = disabled
+ float typical_p = 1.0f; // 1.0 = disabled
+ float temp = 1.0f; // 1.0 = disabled
+ float repeat_penalty = 1.0f; // 1.0 = disabled
+ int32_t repeat_last_n = -1; // last n tokens to penalize (0 = disable penalty, -1 = context size)
+ float frequency_penalty = 0.0f; // 0.0 = disabled
+ float presence_penalty = 0.0f; // 0.0 = disabled
+ int mirostat = 0; // 0 = disabled, 1 = mirostat, 2 = mirostat 2.0
+ float mirostat_tau = 5.0f; // target entropy
+ float mirostat_eta = 0.1f; // learning rate
std::string model = "models/lamma-7B/ggml-model.bin"; // model path
std::string prompt = "";
@@ -47,7 +56,7 @@ struct gpt_params {
bool interactive_first = false; // wait for user input immediately
bool instruct = false; // instruction mode (used for Alpaca models)
- bool ignore_eos = false; // do not stop generating after eos
+ bool penalize_nl = true; // consider newlines as a repeatable token
bool perplexity = false; // compute perplexity over the prompt
bool use_mmap = true; // use mmap for faster loads
bool use_mlock = false; // use mlock to keep model in memory
diff --git a/examples/main/main.cpp b/examples/main/main.cpp
index fda6557..674920b 100644
--- a/examples/main/main.cpp
+++ b/examples/main/main.cpp
@@ -276,8 +276,8 @@ int main(int argc, char ** argv) {
fprintf(stderr, "Input prefix: '%s'\n", params.input_prefix.c_str());
}
}
- fprintf(stderr, "sampling: temp = %f, top_k = %d, top_p = %f, repeat_last_n = %i, repeat_penalty = %f\n",
- params.temp, params.top_k, params.top_p, params.repeat_last_n, params.repeat_penalty);
+ fprintf(stderr, "sampling: repeat_last_n = %d, repeat_penalty = %f, presence_penalty = %f, frequency_penalty = %f, top_k = %d, tfs_z = %f, top_p = %f, typical_p = %f, temp = %f, mirostat = %d, mirostat_lr = %f, mirostat_ent = %f\n",
+ params.repeat_last_n, params.repeat_penalty, params.presence_penalty, params.frequency_penalty, params.top_k, params.tfs_z, params.top_p, params.typical_p, params.temp, params.mirostat, params.mirostat_eta, params.mirostat_tau);
fprintf(stderr, "generate: n_ctx = %d, n_batch = %d, n_predict = %d, n_keep = %d\n", n_ctx, params.n_batch, params.n_predict, params.n_keep);
fprintf(stderr, "\n\n");
@@ -387,10 +387,19 @@ int main(int argc, char ** argv) {
if ((int) embd_inp.size() <= n_consumed && !is_interacting) {
// out of user input, sample next token
- const int32_t top_k = params.top_k;
- const float top_p = params.top_p;
const float temp = params.temp;
+ const int32_t top_k = params.top_k <= 0 ? llama_n_vocab(ctx) : params.top_k;
+ const float top_p = params.top_p;
+ const float tfs_z = params.tfs_z;
+ const float typical_p = params.typical_p;
+ const int32_t repeat_last_n = params.repeat_last_n < 0 ? n_ctx : params.repeat_last_n;
const float repeat_penalty = params.repeat_penalty;
+ const float alpha_presence = params.presence_penalty;
+ const float alpha_frequency = params.frequency_penalty;
+ const int mirostat = params.mirostat;
+ const float mirostat_tau = params.mirostat_tau;
+ const float mirostat_eta = params.mirostat_eta;
+ const bool penalize_nl = params.penalize_nl;
// optionally save the session on first sample (for faster prompt loading next time)
if (!path_session.empty() && need_to_save_session) {
@@ -402,14 +411,58 @@ int main(int argc, char ** argv) {
{
auto logits = llama_get_logits(ctx);
+ auto n_vocab = llama_n_vocab(ctx);
- if (params.ignore_eos) {
- logits[llama_token_eos()] = 0;
+ // Apply params.logit_bias map
+ for (auto it = params.logit_bias.begin(); it != params.logit_bias.end(); it++) {
+ logits[it->first] += it->second;
}
- id = llama_sample_top_p_top_k(ctx,
- last_n_tokens.data() + n_ctx - params.repeat_last_n,
- params.repeat_last_n, top_k, top_p, temp, repeat_penalty);
+ std::vector<llama_token_data> candidates;
+ candidates.reserve(n_vocab);
+ for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
+ candidates.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f});
+ }
+
+ llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
+
+ // Apply penalties
+ float nl_logit = logits[llama_token_nl()];
+ auto last_n_repeat = std::min(std::min((int)last_n_tokens.size(), repeat_last_n), n_ctx);
+ llama_sample_repetition_penalty(ctx, &candidates_p,
+ last_n_tokens.data() + last_n_tokens.size() - last_n_repeat,
+ last_n_repeat, repeat_penalty);
+ llama_sample_frequency_and_presence_penalties(ctx, &candidates_p,
+ last_n_tokens.data() + last_n_tokens.size() - last_n_repeat,
+ last_n_repeat, alpha_frequency, alpha_presence);
+ if (!penalize_nl) {
+ logits[llama_token_nl()] = nl_logit;
+ }
+
+ if (temp <= 0) {
+ // Greedy sampling
+ id = llama_sample_token_greedy(ctx, &candidates_p);
+ } else {
+ if (mirostat == 1) {
+ static float mirostat_mu = 2.0f * mirostat_tau;
+ const int mirostat_m = 100;
+ llama_sample_temperature(ctx, &candidates_p, temp);
+ id = llama_sample_token_mirostat(ctx, &candidates_p, mirostat_tau, mirostat_eta, mirostat_m, &mirostat_mu);
+ } else if (mirostat == 2) {
+ static float mirostat_mu = 2.0f * mirostat_tau;
+ llama_sample_temperature(ctx, &candidates_p, temp);
+ id = llama_sample_token_mirostat_v2(ctx, &candidates_p, mirostat_tau, mirostat_eta, &mirostat_mu);
+ } else {
+ // Temperature sampling
+ llama_sample_top_k(ctx, &candidates_p, top_k);
+ llama_sample_tail_free(ctx, &candidates_p, tfs_z);
+ llama_sample_typical(ctx, &candidates_p, typical_p);
+ llama_sample_top_p(ctx, &candidates_p, top_p);
+ llama_sample_temperature(ctx, &candidates_p, temp);
+ id = llama_sample_token(ctx, &candidates_p);
+ }
+ }
+ // printf("`%d`", candidates_p.size);
last_n_tokens.erase(last_n_tokens.begin());
last_n_tokens.push_back(id);
diff --git a/examples/save-load-state/save-load-state.cpp b/examples/save-load-state/save-load-state.cpp
index 39aa7f8..07dfa2c 100644
--- a/examples/save-load-state/save-load-state.cpp
+++ b/examples/save-load-state/save-load-state.cpp
@@ -64,14 +64,15 @@ int main(int argc, char ** argv) {
// first run
printf("\n%s", params.prompt.c_str());
for (auto i = 0; i < params.n_predict; i++) {
- auto next_token = llama_sample_top_p_top_k(
- ctx,
- &last_n_tokens_data.back() - params.repeat_last_n,
- params.repeat_last_n,
- 40,
- 1.0,
- 1.0,
- 1.1);
+ auto logits = llama_get_logits(ctx);
+ auto n_vocab = llama_n_vocab(ctx);
+ std::vector<llama_token_data> candidates;
+ candidates.reserve(n_vocab);
+ for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
+ candidates.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f});
+ }
+ llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
+ auto next_token = llama_sample_token(ctx, &candidates_p);
auto next_token_str = llama_token_to_str(ctx, next_token);
last_n_tokens_data.push_back(next_token);
printf("%s", next_token_str);
@@ -106,14 +107,15 @@ int main(int argc, char ** argv) {
// second run
for (auto i = 0; i < params.n_predict; i++) {
- auto next_token = llama_sample_top_p_top_k(
- ctx2,
- &last_n_tokens_data.back() - params.repeat_last_n,
- params.repeat_last_n,
- 40,
- 1.0,
- 1.0,
- 1.1);
+ auto logits = llama_get_logits(ctx2);
+ auto n_vocab = llama_n_vocab(ctx2);
+ std::vector<llama_token_data> candidates;
+ candidates.reserve(n_vocab);
+ for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
+ candidates.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f});
+ }
+ llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
+ auto next_token = llama_sample_token(ctx2, &candidates_p);
auto next_token_str = llama_token_to_str(ctx2, next_token);
last_n_tokens_data.push_back(next_token);
printf("%s", next_token_str);
diff --git a/llama.cpp b/llama.cpp
index 4699e5c..1032fb9 100644
--- a/llama.cpp
+++ b/llama.cpp
@@ -28,6 +28,7 @@
#include <atomic>
#include <mutex>
#include <sstream>
+#include <numeric>
#define LLAMA_USE_SCRATCH
#define LLAMA_MAX_SCRATCH_BUFFERS 16
@@ -1475,109 +1476,402 @@ static std::vector<llama_vocab::id> llama_tokenize(const llama_vocab & vocab, co
// sampling
//
-static void sample_top_k(std::vector<std::pair<float, llama_vocab::id>> & logits_id, int top_k) {
- // find the top k tokens
- std::partial_sort(
- logits_id.begin(),
- logits_id.begin() + top_k, logits_id.end(),
- [](const std::pair<float, llama_vocab::id> & a, const std::pair<float, llama_vocab::id> & b) {
- return a.first > b.first;
- });
+void llama_sample_softmax(struct llama_context * ctx, llama_token_data_array * candidates) {
+ assert(candidates->size > 0);
+
+ const int64_t t_start_sample_us = ggml_time_us();
- logits_id.resize(top_k);
+ // Sort the logits in descending order
+ if (!candidates->sorted) {
+ std::sort(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) {
+ return a.logit > b.logit;
+ });
+ candidates->sorted = true;
+ }
+
+ float max_l = candidates->data[0].logit;
+ float cum_sum = 0.0f;
+ for (size_t i = 0; i < candidates->size; ++i) {
+ float p = expf(candidates->data[i].logit - max_l);
+ candidates->data[i].p = p;
+ cum_sum += p;
+ }
+ for (size_t i = 0; i < candidates->size; ++i) {
+ candidates->data[i].p /= cum_sum;
+ }
+
+ if (ctx) {
+ ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
+ }
}
-static llama_vocab::id llama_sample_top_p_top_k(
- llama_context & lctx,
- const std::vector<llama_vocab::id> & last_n_tokens,
- int top_k,
- float top_p,
- float temp,
- float repeat_penalty) {
- auto & rng = lctx.rng;
-
- const int n_logits = lctx.model.hparams.n_vocab;
-
- const auto & logits = lctx.logits;
- const auto * plogits = logits.data() + logits.size() - n_logits;
-
- if (temp <= 0) {
- // select the token with the highest logit directly
- float max_logit = plogits[0];
- llama_vocab::id max_id = 0;
-
- for (int i = 1; i < n_logits; ++i) {
- if (plogits[i] > max_logit) {
- max_logit = plogits[i];
- max_id = i;
- }
+void llama_sample_top_k(struct llama_context * ctx, llama_token_data_array * candidates, int k, size_t min_keep) {
+ const int64_t t_start_sample_us = ggml_time_us();
+
+ k = std::max(k, (int) min_keep);
+ k = std::min(k, (int) candidates->size);
+
+ // Sort scores in descending order
+ if (!candidates->sorted) {
+ auto comp = [](const llama_token_data & a, const llama_token_data & b) {
+ return a.logit > b.logit;
+ };
+ if (k == (int) candidates->size) {
+ std::sort(candidates->data, candidates->data + candidates->size, comp);
+ } else {
+ std::partial_sort(candidates->data, candidates->data + k, candidates->data + candidates->size, comp);
}
- return max_id;
+ candidates->sorted = true;
}
+ candidates->size = k;
- std::vector<std::pair<float, llama_vocab::id>> logits_id;
- logits_id.reserve(n_logits);
+ if (ctx) {
+ ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
+ }
+}
- {
- const float scale = 1.0f/temp;
- for (int i = 0; i < n_logits; ++i) {
- // repetition penalty from ctrl paper (https://arxiv.org/abs/1909.05858)
- // credit https://github.com/facebookresearch/llama/compare/main...shawwn:llama:main
- if (std::find(last_n_tokens.begin(), last_n_tokens.end(), i) != last_n_tokens.end()) {
- // if score < 0 then repetition penalty has to multiplied to reduce the previous token probability
- if (plogits[i] < 0.0f) {
- logits_id.push_back(std::make_pair(plogits[i]*scale*repeat_penalty, i));
- } else {
- logits_id.push_back(std::make_pair(plogits[i]*scale/repeat_penalty, i));
- }
- } else {
- logits_id.push_back(std::make_pair(plogits[i]*scale, i));
- }
+void llama_sample_top_p(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) {
+ if (p >= 1.0f) {
+ return;
+ }
+
+ const int64_t t_start_sample_us = ggml_time_us();
+
+ llama_sample_softmax(ctx, candidates);
+
+ // Compute the cumulative probabilities
+ float cum_sum = 0.0f;
+ size_t last_idx = candidates->size;
+
+ for (size_t i = 0; i < candidates->size; ++i) {
+ cum_sum += candidates->data[i].p;
+
+ // Check if the running sum is greater than p or if we have kept at least min_keep tokens
+ if (cum_sum > p && i >= min_keep) {
+ last_idx = i;
+ break;
}
}
- sample_top_k(logits_id, top_k > 0 ? std::min(top_k, n_logits) : n_logits);
+ // Resize the output vector to keep only the top-p tokens
+ candidates->size = last_idx;
- // compute probs for the top k tokens
- std::vector<float> probs;
- probs.reserve(logits_id.size());
+ if (ctx) {
+ ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
+ }
+}
- float maxl = logits_id[0].first;
- double sum = 0.0;
- for (const auto & kv : logits_id) {
- const float p = expf(kv.first - maxl);
- probs.push_back(p);
- sum += p;
+void llama_sample_tail_free(struct llama_context * ctx, llama_token_data_array * candidates, float z, size_t min_keep) {
+ if (z >= 1.0f || candidates->size <= 2) {
+ return;
}
- // normalize the probs
- for (auto & p : probs) {
- p /= sum;
+ const int64_t t_start_sample_us = ggml_time_us();
+
+ llama_sample_softmax(nullptr, candidates);
+
+ // Compute the first and second derivatives
+ std::vector<float> first_derivatives(candidates->size - 1);
+ std::vector<float> second_derivatives(candidates->size - 2);
+
+ for (size_t i = 0; i < first_derivatives.size(); ++i) {
+ first_derivatives[i] = candidates->data[i].p - candidates->data[i + 1].p;
+ }
+ for (size_t i = 0; i < second_derivatives.size(); ++i) {
+ second_derivatives[i] = first_derivatives[i] - first_derivatives[i + 1];
}
- if (top_p < 1.0) {
- double cumsum = 0.0;
- for (int i = 0; i < (int) probs.size(); i++) {
- cumsum += probs[i];
- if (cumsum >= top_p) {
- probs.resize(i + 1);
- logits_id.resize(i + 1);
- break;
- }
+ // Calculate absolute value of second derivatives
+ for (size_t i = 0; i < second_derivatives.size(); ++i) {
+ second_derivatives[i] = abs(second_derivatives[i]);
+ }
+
+ // Normalize the second derivatives
+ float second_derivatives_sum = std::accumulate(second_derivatives.begin(), second_derivatives.end(), 0.0f);
+ for (float & value : second_derivatives) {
+ value /= second_derivatives_sum;
+ }
+
+ float cum_sum = 0.0f;
+ size_t last_idx = candidates->size;
+ for (size_t i = 0; i < second_derivatives.size(); ++i) {
+ cum_sum += second_derivatives[i];
+
+ // Check if the running sum is greater than z or if we have kept at least min_keep tokens
+ if (cum_sum > z && i >= min_keep) {
+ last_idx = i;
+ break;
}
}
- //printf("\n");
- //for (int i = 0; i < (int) 10; i++) {
- // printf("%d: '%s' %f\n", i, lctx.vocab.id_to_token.at(logits_id[i].second).tok.c_str(), probs[i]);
- //}
- //printf("\n\n");
- //exit(0);
+ // Resize the output vector to keep only the tokens above the tail location
+ candidates->size = last_idx;
+
+ if (ctx) {
+ ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
+ }
+}
+
+
+void llama_sample_typical(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) {
+ // Reference implementation:
+ // https://github.com/huggingface/transformers/compare/main...cimeister:typical-sampling:typical-pr
+ if (p >= 1.0f) {
+ return;
+ }
+
+ const int64_t t_start_sample_us = ggml_time_us();
+
+ // Compute the softmax of logits and calculate entropy
+ llama_sample_softmax(nullptr, candidates);
+
+ float entropy = 0.0f;
+ for (size_t i = 0; i < candidates->size; ++i) {
+ entropy += -candidates->data[i].p * logf(candidates->data[i].p);
+ }
+
+ // Compute the absolute difference between negative log probability and entropy for each candidate
+ std::vector<float> shifted_scores;
+ for (size_t i = 0; i < candidates->size; ++i) {
+ float shifted_score = fabsf(-logf(candidates->data[i].p) - entropy);
+ shifted_scores.push_back(shifted_score);
+ }
+
+ // Sort tokens based on the shifted_scores and their corresponding indices
+ std::vector<size_t> indices(candidates->size);
+ std::iota(indices.begin(), indices.end(), 0);
+
+ std::sort(indices.begin(), indices.end(), [&](size_t a, size_t b) {
+ return shifted_scores[a] < shifted_scores[b];
+ });
+
+ // Compute the cumulative probabilities
+ float cum_sum = 0.0f;
+ size_t last_idx = indices.size();
+
+ for (size_t i = 0; i < indices.size(); ++i) {
+ size_t idx = indices[i];
+ cum_sum += candidates->data[idx].p;
+
+ // Check if the running sum is greater than typical or if we have kept at least min_keep tokens
+ if (cum_sum > p && i >= min_keep - 1) {
+ last_idx = i + 1;
+ break;
+ }
+ }
+
+ // Resize the output vector to keep only the locally typical tokens
+ std::vector<llama_token_data> new_candidates;
+ for (size_t i = 0; i < last_idx; ++i) {
+ size_t idx = indices[i];
+ new_candidates.push_back(candidates->data[idx]);
+ }
+
+ // Replace the data in candidates with the new_candidates data
+ std::copy(new_candidates.begin(), new_candidates.end(), candidates->data);
+ candidates->size = new_candidates.size();
+
+ if (ctx) {
+ ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
+ }
+}
+
+void llama_sample_temperature(struct llama_context * ctx, llama_token_data_array * candidates_p, float temp) {
+ const int64_t t_start_sample_us = ggml_time_us();
+
+ for (size_t i = 0; i < candidates_p->size; ++i) {
+ candidates_p->data[i].logit /= temp;
+ }
+
+ if (ctx) {
+ ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
+ }
+}
+
+void llama_sample_repetition_penalty(struct llama_context * ctx, llama_token_data_array * candidates, llama_token * last_tokens, size_t last_tokens_size, float penalty) {
+ if (last_tokens_size == 0 || penalty == 1.0f) {
+ return;
+ }
+
+ const int64_t t_start_sample_us = ggml_time_us();
+
+ for (size_t i = 0; i < candidates->size; ++i) {
+ auto token_iter = std::find(last_tokens, last_tokens + last_tokens_size, candidates->data[i].id);
+ if (token_iter == last_tokens + last_tokens_size) {
+ continue;
+ }
+
+ // The academic publication that described this technique actually just only divided, but that would cause tokens with negative logits to become more likely, which is obviously wrong.
+ // This is common fix for this problem, which is to multiply by the penalty instead of dividing.
+ if (candidates->data[i].logit <= 0) {
+ candidates->data[i].logit *= penalty;
+ } else {
+ candidates->data[i].logit /= penalty;
+ }
+ }
+
+ candidates->sorted = false;
+
+ if (ctx) {
+ ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
+ }
+}
+
+void llama_sample_frequency_and_presence_penalties(struct llama_context * ctx, llama_token_data_array * candidates, llama_token * last_tokens_p, size_t last_tokens_size, float alpha_frequency, float alpha_presence) {
+ if (last_tokens_size == 0 || (alpha_frequency == 0.0f && alpha_presence == 0.0f)) {
+ return;
+ }
+
+ const int64_t t_start_sample_us = ggml_time_us();
+
+ // Create a frequency map to count occurrences of each token in last_tokens
+ std::unordered_map<llama_token, int> token_count;
+ for (size_t i = 0; i < last_tokens_size; ++i) {
+ token_count[last_tokens_p[i]]++;
+ }
+
+ // Apply frequency and presence penalties to the candidates
+ for (size_t i = 0; i < candidates->size; ++i) {
+ auto token_iter = token_count.find(candidates->data[i].id);
+ if (token_iter == token_count.end()) {
+ continue;
+ }
+
+ int count = token_iter->second;
+ candidates->data[i].logit -= float(count) * alpha_frequency + float(count > 0) * alpha_presence;
+ }
+
+ candidates->sorted = false;
+
+ if (ctx) {
+ ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
+ }
+}
+
+
+llama_token llama_sample_token_mirostat(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, int m, float * mu) {
+ assert(ctx);
+ auto N = float(llama_n_vocab(ctx));
+ int64_t t_start_sample_us;
+ t_start_sample_us = ggml_time_us();
+
+ llama_sample_softmax(nullptr, candidates);
+
+ // Estimate s_hat using the most probable m tokens
+ float s_hat = 0.0;
+ float sum_ti_bi = 0.0;
+ float sum_ti_sq = 0.0;
+ for (size_t i = 0; i < size_t(m - 1) && i < candidates->size - 1; ++i) {
+ float t_i = logf(float(i + 2) / float(i + 1));
+ float b_i = logf(candidates->data[i].p / candidates->data[i + 1].p);
+ sum_ti_bi += t_i * b_i;
+ sum_ti_sq += t_i * t_i;
+ }
+ s_hat = sum_ti_bi / sum_ti_sq;
+
+ // Compute k from the estimated s_hat and target surprise value
+ float epsilon_hat = s_hat - 1;
+ float k = powf((epsilon_hat * powf(2, *mu)) / (1 - powf(N, -epsilon_hat)), 1 / s_hat);
+
+ // Sample the next word X using top-k sampling
+ llama_sample_top_k(nullptr, candidates, int(k));
+ if (ctx) {
+ ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
+ }
+ llama_token X = llama_sample_token(ctx, candidates);
+ t_start_sample_us = ggml_time_us();
+
+ // Compute error as the difference between observed surprise and target surprise value
+ size_t X_idx = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
+ return candidate.id == X;
+ }));
+ float observed_surprise = -log2f(candidates->data[X_idx].p);
+ float e = observed_surprise - tau;
+
+ // Update mu using the learning rate and error
+ *mu = *mu - eta * e;
+
+ if (ctx) {
+ ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
+ ctx->n_sample++;
+ }
+ return X;
+}
+
+llama_token llama_sample_token_mirostat_v2(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, float * mu) {
+ assert(ctx);
+ int64_t t_start_sample_us;
+ t_start_sample_us = ggml_time_us();
+
+ llama_sample_softmax(ctx, candidates);
+
+ // Truncate the words with surprise values greater than mu
+ candidates->size = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
+ return -log2f(candidate.p) > *mu;
+ }));
+
+ // Normalize the probabilities of the remaining words
+ llama_sample_softmax(ctx, candidates);
+
+ // Sample the next word X from the remaining words
+ if (ctx) {
+ ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
+ }
+ llama_token X = llama_sample_token(ctx, candidates);
+ t_start_sample_us = ggml_time_us();
+
+ // Compute error as the difference between observed surprise and target surprise value
+ size_t X_idx = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
+ return candidate.id == X;
+ }));
+ float observed_surprise = -log2f(candidates->data[X_idx].p);
+ float e = observed_surprise - tau;
+
+ // Update mu using the learning rate and error
+ *mu = *mu - eta * e;
+
+ if (ctx) {
+ ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
+ }
+ return X;
+}
+
+llama_token llama_sample_token_greedy(struct llama_context * ctx, llama_token_data_array * candidates) {
+ const int64_t t_start_sample_us = ggml_time_us();
+
+ // Find max element
+ auto max_iter = std::max_element(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) {
+ return a.logit < b.logit;
+ });
+
+ llama_token result = max_iter->id;
+ if (ctx) {
+ ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
+ ctx->n_sample++;
+ }
+ return result;
+}
+
+llama_token llama_sample_token(struct llama_context * ctx, llama_token_data_array * candidates) {
+ assert(ctx);
+ const int64_t t_start_sample_us = ggml_time_us();
+ llama_sample_softmax(nullptr, candidates);
+
+ std::vector<float> probs;
+ probs.reserve(candidates->size);
+ for (size_t i = 0; i < candidates->size; ++i) {
+ probs.push_back(candidates->data[i].p);
+ }
std::discrete_distribution<> dist(probs.begin(), probs.end());
+ auto & rng = ctx->rng;
int idx = dist(rng);
- return logits_id[idx].second;
+ llama_token result = candidates->data[idx].id;
+
+ ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
+ ctx->n_sample++;
+ return result;
}
//
@@ -2348,33 +2642,8 @@ llama_token llama_token_eos() {
return 2;
}
-llama_token llama_sample_top_p_top_k(
- llama_context * ctx,
- const llama_token * last_n_tokens_data,
- int last_n_tokens_size,
- int top_k,
- float top_p,
- float temp,
- float repeat_penalty) {
- const int64_t t_start_sample_us = ggml_time_us();
-
- llama_token result = 0;
-
- // TODO: avoid this ...
- const auto last_n_tokens = std::vector<llama_token>(last_n_tokens_data, last_n_tokens_data + last_n_tokens_size);
-
- result = llama_sample_top_p_top_k(
- *ctx,
- last_n_tokens,
- top_k,
- top_p,
- temp,
- repeat_penalty);
-
- ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
- ctx->n_sample++;
-
- return result;
+llama_token llama_token_nl() {
+ return 13;
}
diff --git a/llama.h b/llama.h
index 936c521..34a8f5b 100644
--- a/llama.h
+++ b/llama.h
@@ -39,12 +39,16 @@ extern "C" {
typedef struct llama_token_data {
llama_token id; // token id
-
+ float logit; // log-odds of the token
float p; // probability of the token
- float plog; // log probability of the token
-
} llama_token_data;
+ typedef struct llama_token_data_array {
+ llama_token_data * data;
+ size_t size;
+ bool sorted;
+ } llama_token_data_array;
+
typedef void (*llama_progress_callback)(float progress, void *ctx);
struct llama_context_params {
@@ -181,16 +185,52 @@ extern "C" {
// Special tokens
LLAMA_API llama_token llama_token_bos();
LLAMA_API llama_token llama_token_eos();
+ LLAMA_API llama_token llama_token_nl();
+
+ // Sampling functions
+
+ /// @details Repetition penalty described in CTRL academic paper https://arxiv.org/abs/1909.05858, with negative logit fix.
+ LLAMA_API void llama_sample_repetition_penalty(struct llama_context * ctx, llama_token_data_array * candidates, llama_token * last_tokens, size_t last_tokens_size, float penalty);
+
+ /// @details Frequency and presence penalties described in OpenAI API https://platform.openai.com/docs/api-reference/parameter-details.
+ LLAMA_API void llama_sample_frequency_and_presence_penalties(struct llama_context * ctx, llama_token_data_array * candidates, llama_token * last_tokens, size_t last_tokens_size, float alpha_frequency, float alpha_presence);
+
+ /// @details Sorts candidate tokens by their logits in descending order and calculate probabilities based on logits.
+ LLAMA_API void llama_sample_softmax(struct llama_context * ctx, llama_token_data_array * candidates);
+
+ /// @details Top-K sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
+ LLAMA_API void llama_sample_top_k(struct llama_context * ctx, llama_token_data_array * candidates, int k, size_t min_keep = 1);
+
+ /// @details Nucleus sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
+ LLAMA_API void llama_sample_top_p(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep = 1);
+
+ /// @details Tail Free Sampling described in https://www.trentonbricken.com/Tail-Free-Sampling/.
+ LLAMA_API void llama_sample_tail_free(struct llama_context * ctx, llama_token_data_array * candidates, float z, size_t min_keep = 1);
+
+ /// @details Locally Typical Sampling implementation described in the paper https://arxiv.org/abs/2202.00666.
+ LLAMA_API void llama_sample_typical(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep = 1);
+ LLAMA_API void llama_sample_temperature(struct llama_context * ctx, llama_token_data_array * candidates, float temp);
+
+ /// @details Mirostat 1.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
+ /// @param candidates A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text.
+ /// @param tau The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
+ /// @param eta The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates.
+ /// @param m The number of tokens considered in the estimation of `s_hat`. This is an arbitrary value that is used to calculate `s_hat`, which in turn helps to calculate the value of `k`. In the paper, they use `m = 100`, but you can experiment with different values to see how it affects the performance of the algorithm.
+ /// @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal.
+ LLAMA_API llama_token llama_sample_token_mirostat(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, int m, float * mu);
+
+ /// @details Mirostat 2.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
+ /// @param candidates A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text.
+ /// @param tau The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
+ /// @param eta The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates.
+ /// @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal.
+ LLAMA_API llama_token llama_sample_token_mirostat_v2(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, float * mu);
+
+ /// @details Selects the token with the highest probability.
+ LLAMA_API llama_token llama_sample_token_greedy(struct llama_context * ctx, llama_token_data_array * candidates);
- // TODO: improve the last_n_tokens interface ?
- LLAMA_API llama_token llama_sample_top_p_top_k(
- struct llama_context * ctx,
- const llama_token * last_n_tokens_data,
- int last_n_tokens_size,
- int top_k,
- float top_p,
- float temp,
- float repeat_penalty);
+ /// @details Randomly selects a token from the candidates based on their probabilities.
+ LLAMA_API llama_token llama_sample_token(struct llama_context * ctx, llama_token_data_array * candidates);
// Performance information
LLAMA_API void llama_print_timings(struct llama_context * ctx);
diff --git a/tests/CMakeLists.txt b/tests/CMakeLists.txt
index 81eadbc..6456485 100644
--- a/tests/CMakeLists.txt
+++ b/tests/CMakeLists.txt
@@ -8,4 +8,5 @@ endfunction()
# llama_add_test(test-double-float.c) # SLOW
llama_add_test(test-quantize-fns.cpp)
llama_add_test(test-quantize-perf.cpp)
+llama_add_test(test-sampling.cpp)
llama_add_test(test-tokenizer-0.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab.bin)
diff --git a/tests/test-sampling.cpp b/tests/test-sampling.cpp
new file mode 100644
index 0000000..7eee4f6
--- /dev/null
+++ b/tests/test-sampling.cpp
@@ -0,0 +1,199 @@
+#include "llama.h"
+#include "ggml.h"
+#include <cassert>
+#include <cmath>
+#include <numeric>
+#include <cassert>
+#include <iostream>
+#include <vector>
+#include <algorithm>
+
+
+void dump(const llama_token_data_array * candidates) {
+ for (size_t i = 0; i < candidates->size; i++) {
+ printf("%d: %f (%f)\n", candidates->data[i].id, candidates->data[i].p, candidates->data[i].logit);
+ }
+}
+
+#define DUMP(__candidates) do { printf("%s:%d (%s)\n", __FILE__, __LINE__, __func__); dump((__candidates)); printf("-\n"); } while(0)
+
+
+void test_top_k(const std::vector<float> & probs,
+ const std::vector<float> & expected_probs,
+ int k) {
+ size_t n_vocab = probs.size();
+ std::vector<llama_token_data> candidates;
+ candidates.reserve(n_vocab);
+ for (llama_token token_id = 0; token_id < (llama_token)n_vocab; token_id++) {
+ float logit = log(probs[token_id]);
+ candidates.emplace_back(llama_token_data{token_id, logit, 0.0f});
+ }
+
+ llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
+ llama_sample_softmax(nullptr, &candidates_p);
+ DUMP(&candidates_p);
+ llama_sample_top_k(nullptr, &candidates_p, k);
+ DUMP(&candidates_p);
+
+ assert(candidates_p.size == expected_probs.size());
+ for (size_t i = 0; i < candidates_p.size; i++) {
+ assert(fabs(candidates_p.data[i].p - expected_probs[i]) < 1e-5);
+ }
+}
+
+
+void test_top_p(const std::vector<float> & probs,
+ const std::vector<float> & expected_probs,
+ float p) {
+
+ size_t n_vocab = probs.size();
+ std::vector<llama_token_data> candidates;
+ candidates.reserve(n_vocab);
+ for (llama_token token_id = 0; token_id < (llama_token)n_vocab; token_id++) {
+ float logit = log(probs[token_id]);
+ candidates.emplace_back(llama_token_data{token_id, logit, 0.0f});
+ }
+
+ llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
+ llama_sample_softmax(nullptr, &candidates_p);
+ DUMP(&candidates_p);
+ llama_sample_top_p(nullptr, &candidates_p, p);
+ DUMP(&candidates_p);
+
+ assert(candidates_p.size == expected_probs.size());
+ for (size_t i = 0; i < candidates_p.size; i++) {
+ assert(fabs(candidates_p.data[i].p - expected_probs[i]) < 1e-3);
+ }
+}
+
+
+void test_tfs(const std::vector<float> & probs,
+ const std::vector<float> & expected_probs,
+ float z) {
+ size_t n_vocab = probs.size();
+ std::vector<llama_token_data> candidates;
+ candidates.reserve(n_vocab);
+ for (llama_token token_id = 0; token_id < (llama_token)n_vocab; token_id++) {
+ float logit = log(probs[token_id]);
+ candidates.emplace_back(llama_token_data{token_id, logit, 0.0f});
+ }
+
+ llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
+ DUMP(&candidates_p);
+ llama_sample_tail_free(nullptr, &candidates_p, z);
+ DUMP(&candidates_p);
+
+ assert(candidates_p.size == expected_probs.size());
+ for (size_t i = 0; i < candidates_p.size; i++) {
+ assert(fabs(candidates_p.data[i].p - expected_probs[i]) < 1e-3);
+ }
+}
+
+
+void test_typical(const std::vector<float> & probs,
+ const std::vector<float> & expected_probs,
+ float p) {
+ size_t n_vocab = probs.size();
+ std::vector<llama_token_data> candidates;
+ candidates.reserve(n_vocab);
+ for (llama_token token_id = 0; token_id < (llama_token)n_vocab; token_id++) {
+ float logit = log(probs[token_id]);
+ candidates.emplace_back(llama_token_data{token_id, logit, 0.0f});
+ }
+
+ llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
+ DUMP(&candidates_p);
+ llama_sample_typical(nullptr, &candidates_p, p);
+ DUMP(&candidates_p);
+
+ assert(candidates_p.size == expected_probs.size());
+ for (size_t i = 0; i < candidates_p.size; i++) {
+ assert(fabs(candidates_p.data[i].p - expected_probs[i]) < 1e-3);
+ }
+}
+
+
+void test_repetition_penalty(
+ const std::vector<float> & probs,
+ const std::vector<llama_token> & last_tokens,
+ const std::vector<float> & expected_probs,
+ float penalty) {
+ assert(probs.size() == expected_probs.size());
+
+ size_t n_vocab = probs.size();
+ std::vector<llama_token_data> candidates;
+ candidates.reserve(n_vocab);
+ for (llama_token token_id = 0; token_id < (llama_token)n_vocab; token_id++) {
+ float logit = log(probs[token_id]);
+ candidates.emplace_back(llama_token_data{token_id, logit, 0.0f});
+ }
+
+ llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
+ llama_sample_softmax(nullptr, &candidates_p);
+ DUMP(&candidates_p);
+ llama_sample_repetition_penalty(nullptr, &candidates_p, (llama_token *)last_tokens.data(), last_tokens.size(), penalty);
+ llama_sample_softmax(nullptr, &candidates_p);
+ DUMP(&candidates_p);
+
+ assert(candidates_p.size == expected_probs.size());
+ for (size_t i = 0; i < candidates_p.size; i++) {
+ assert(fabs(candidates_p.data[i].p - expected_probs[i]) < 1e-6);
+ }
+}
+
+
+void test_frequency_presence_penalty(
+ const std::vector<float> & probs,
+ const std::vector<llama_token> & last_tokens,
+ const std::vector<float> & expected_probs,
+ float alpha_frequency, float alpha_presence) {
+ assert(probs.size() == expected_probs.size());
+
+ size_t n_vocab = probs.size();
+ std::vector<llama_token_data> candidates;
+ candidates.reserve(n_vocab);
+ for (llama_token token_id = 0; token_id < (llama_token)n_vocab; token_id++) {
+ float logit = log(probs[token_id]);
+ candidates.emplace_back(llama_token_data{token_id, logit, 0.0f});
+ }
+
+ llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
+ llama_sample_softmax(nullptr, &candidates_p);
+ // DUMP(&candidates_p);
+ llama_sample_frequency_and_presence_penalties(nullptr, &candidates_p, (llama_token *)last_tokens.data(), last_tokens.size(), alpha_frequency, alpha_presence);
+ llama_sample_softmax(nullptr, &candidates_p);
+ // DUMP(&candidates_p);
+
+ assert(candidates_p.size == expected_probs.size());
+ for (size_t i = 0; i < candidates_p.size; i++) {
+ assert(fabs(candidates_p.data[i].p - expected_probs[i]) < 1e-3);
+ }
+}
+
+int main(void) {
+ ggml_time_init();
+
+ test_top_k({0.1, 0.2, 0.3, 0.4}, {0.4}, 1);
+ test_top_k({0.1, 0.2, 0.3, 0.4}, {0.4, 0.3, 0.2}, 3);
+
+ test_top_p({0.1, 0.2, 0.3, 0.4}, {0.4}, 0);
+ test_top_p({0.1, 0.2, 0.3, 0.4}, {0.4, 0.3}, 0.7);
+ test_top_p({0.1, 0.2, 0.3, 0.4}, {0.4, 0.3, 0.2, 0.1}, 1);
+
+ test_tfs({0.1, 0.15, 0.2, 0.25, 0.3}, {0.3}, 0.25);
+ test_tfs({0.1, 0.15, 0.2, 0.25, 0.3}, {0.3, 0.25}, 0.75);
+ test_tfs({0.1, 0.15, 0.2, 0.25, 0.3}, {0.3, 0.25}, 0.99);
+
+ test_typical({0.97, 0.01, 0.01, 0.01}, {0.97}, 0.5);
+ test_typical({0.4, 0.2, 0.2, 0.2}, {0.2, 0.2, 0.2}, 0.5);
+
+ test_repetition_penalty({0.2, 0.2, 0.2, 0.2, 0.2}, {0}, {0.25, 0.25, 0.25, 0.25, 0}, 50.0);
+ test_repetition_penalty({0.2, 0.2, 0.2, 0.2, 0.2}, {0, 1, 2}, {0.5, 0.5, 0, 0, 0}, 50.0);
+ test_repetition_penalty({0.2, 0.2, 0.2, 0.2, 0.2}, {0, 1, 2, 0, 0}, {0.5, 0.5, 0, 0, 0}, 50.0);
+
+ test_frequency_presence_penalty({0.2, 0.2, 0.2, 0.2, 0.2}, {0}, {0.249997, 0.249997, 0.249997, 0.249997, 0.000011}, 5.0, 5.0);
+ test_frequency_presence_penalty({0.2, 0.2, 0.2, 0.2, 0.2}, {0, 1, 2}, {0.499966, 0.499966, 0.000023, 0.000023, 0.000023}, 5.0, 5.0);
+ test_frequency_presence_penalty({0.2, 0.2, 0.2, 0.2, 0.2}, {0, 1, 2, 0, 0}, {0.499977, 0.499977, 0.000023, 0.000023, 0.000000}, 5.0, 5.0);
+
+ printf("OK\n");
+}