diff options
-rw-r--r-- | llama.cpp | 263 | ||||
-rw-r--r-- | llama.h | 19 |
2 files changed, 177 insertions, 105 deletions
@@ -56,6 +56,13 @@ #pragma warning(disable: 4244 4267) // possible loss of data #endif +static void llama_log_internal(llama_log_level level, const char* format, ...); +static void llama_log_callback_default(llama_log_level level, const char * text, void * user_data); +#define LLAMA_LOG_INFO(...) llama_log_internal(LLAMA_LOG_LEVEL_INFO , __VA_ARGS__) +#define LLAMA_LOG_WARN(...) llama_log_internal(LLAMA_LOG_LEVEL_WARN , __VA_ARGS__) +#define LLAMA_LOG_ERROR(...) llama_log_internal(LLAMA_LOG_LEVEL_ERROR, __VA_ARGS__) + + #if !defined(GGML_USE_CUBLAS) && !defined(GGML_USE_METAL) #include "ggml-alloc.h" #define LLAMA_USE_ALLOCATOR @@ -438,6 +445,14 @@ struct llama_context { } }; +struct llama_state { + // We save the log callback globally + llama_log_callback log_callback = llama_log_callback_default; + void * log_callback_user_data = nullptr; +}; +// global state +static llama_state g_state; + template <typename T> static T checked_mul(T a, T b) { T ret = a * b; @@ -504,7 +519,7 @@ struct llama_file_loader { llama_file_loader(const char * fname, llama_load_tensors_map & tensors_map) : file(fname, "rb") { - fprintf(stderr, "llama.cpp: loading model from %s\n", fname); + LLAMA_LOG_INFO("llama.cpp: loading model from %s\n", fname); read_magic(); read_hparams(); read_vocab(); @@ -619,7 +634,7 @@ struct llama_file_saver { llama_file_loader * any_file_loader; llama_file_saver(const char * fname, llama_file_loader * any_file_loader, enum llama_ftype new_ftype) : file(fname, "wb"), any_file_loader(any_file_loader) { - fprintf(stderr, "llama.cpp: saving model to %s\n", fname); + LLAMA_LOG_INFO("llama.cpp: saving model to %s\n", fname); write_magic(); write_hparams(new_ftype); write_vocab(); @@ -640,7 +655,7 @@ struct llama_file_saver { } void write_vocab() { if (any_file_loader->file_version == LLAMA_FILE_VERSION_GGML) { - fprintf(stderr, "llama.cpp: WARNING: input is an old file that doesn't have scores; will add dummy scores\n"); + LLAMA_LOG_WARN("llama.cpp: WARNING: input is an old file that doesn't have scores; will add dummy scores\n"); } uint32_t n_vocab = any_file_loader->hparams.n_vocab; for (uint32_t i = 0; i < n_vocab; i++) { @@ -831,7 +846,7 @@ struct llama_model_loader { uint8_t byte = lt.data[i]; sum = byte + (sum << 6) + (sum << 16) - sum; // sdbm hash } - fprintf(stderr, "%s checksum: %#08x (%s, size %zu)\n", lt.name.c_str(), sum, + LLAMA_LOG_INFO("%s checksum: %#08x (%s, size %zu)\n", lt.name.c_str(), sum, llama_format_tensor_shape(lt.ne).c_str(), lt.size); } @@ -864,7 +879,7 @@ static bool kv_cache_init( cache.ctx = ggml_init(params); if (!cache.ctx) { - fprintf(stderr, "%s: failed to allocate memory for kv cache\n", __func__); + LLAMA_LOG_ERROR("%s: failed to allocate memory for kv cache\n", __func__); return false; } @@ -1076,7 +1091,7 @@ static void llama_model_load_internal( LLAMA_ASSERT(hparams.n_head % n_gqa == 0); hparams.n_head_kv = hparams.n_head / n_gqa; if (model.type == e_model::MODEL_65B && n_gqa == 8) { - fprintf(stderr, "%s: warning: assuming 70B model based on GQA == %d\n", __func__, n_gqa); + LLAMA_LOG_WARN("%s: warning: assuming 70B model based on GQA == %d\n", __func__, n_gqa); model.type = e_model::MODEL_70B; hparams.f_ffn_mult = 1.3f; // from the params.json of the 70B model } @@ -1092,22 +1107,22 @@ static void llama_model_load_internal( //const uint32_t n_ff = 28672; { - fprintf(stderr, "%s: format = %s\n", __func__, llama_file_version_name(file_version)); - fprintf(stderr, "%s: n_vocab = %u\n", __func__, hparams.n_vocab); - fprintf(stderr, "%s: n_ctx = %u\n", __func__, hparams.n_ctx); - fprintf(stderr, "%s: n_embd = %u\n", __func__, hparams.n_embd); - fprintf(stderr, "%s: n_mult = %u\n", __func__, hparams.n_mult); - fprintf(stderr, "%s: n_head = %u\n", __func__, hparams.n_head); - fprintf(stderr, "%s: n_head_kv = %u\n", __func__, hparams.n_head_kv); - fprintf(stderr, "%s: n_layer = %u\n", __func__, hparams.n_layer); - fprintf(stderr, "%s: n_rot = %u\n", __func__, hparams.n_rot); // a.k.a. n_embd_head, n_head_dim - fprintf(stderr, "%s: n_gqa = %u\n", __func__, hparams.n_gqa()); - fprintf(stderr, "%s: rnorm_eps = %.1e\n", __func__, hparams.f_rms_norm_eps); - fprintf(stderr, "%s: n_ff = %u\n", __func__, n_ff); - fprintf(stderr, "%s: freq_base = %.1f\n", __func__, hparams.rope_freq_base); - fprintf(stderr, "%s: freq_scale = %g\n", __func__, hparams.rope_freq_scale); - fprintf(stderr, "%s: ftype = %u (%s)\n", __func__, hparams.ftype, llama_ftype_name(hparams.ftype)); - fprintf(stderr, "%s: model size = %s\n", __func__, llama_model_type_name(model.type)); + LLAMA_LOG_INFO("%s: format = %s\n", __func__, llama_file_version_name(file_version)); + LLAMA_LOG_INFO("%s: n_vocab = %u\n", __func__, hparams.n_vocab); + LLAMA_LOG_INFO("%s: n_ctx = %u\n", __func__, hparams.n_ctx); + LLAMA_LOG_INFO("%s: n_embd = %u\n", __func__, hparams.n_embd); + LLAMA_LOG_INFO("%s: n_mult = %u\n", __func__, hparams.n_mult); + LLAMA_LOG_INFO("%s: n_head = %u\n", __func__, hparams.n_head); + LLAMA_LOG_INFO("%s: n_head_kv = %u\n", __func__, hparams.n_head_kv); + LLAMA_LOG_INFO("%s: n_layer = %u\n", __func__, hparams.n_layer); + LLAMA_LOG_INFO("%s: n_rot = %u\n", __func__, hparams.n_rot); // a.k.a. n_embd_head, n_head_dim + LLAMA_LOG_INFO("%s: n_gqa = %u\n", __func__, hparams.n_gqa()); + LLAMA_LOG_INFO("%s: rnorm_eps = %.1e\n", __func__, hparams.f_rms_norm_eps); + LLAMA_LOG_INFO("%s: n_ff = %u\n", __func__, n_ff); + LLAMA_LOG_INFO("%s: freq_base = %.1f\n", __func__, hparams.rope_freq_base); + LLAMA_LOG_INFO("%s: freq_scale = %g\n", __func__, hparams.rope_freq_scale); + LLAMA_LOG_INFO("%s: ftype = %u (%s)\n", __func__, hparams.ftype, llama_ftype_name(hparams.ftype)); + LLAMA_LOG_INFO("%s: model size = %s\n", __func__, llama_model_type_name(model.type)); } if (file_version < LLAMA_FILE_VERSION_GGJT_V2) { @@ -1135,7 +1150,7 @@ static void llama_model_load_internal( size_t ctx_size; size_t mmapped_size; ml->calc_sizes(&ctx_size, &mmapped_size); - fprintf(stderr, "%s: ggml ctx size = %7.2f MB\n", __func__, ctx_size/1024.0/1024.0); + LLAMA_LOG_INFO("%s: ggml ctx size = %7.2f MB\n", __func__, ctx_size/1024.0/1024.0); // create the ggml context { @@ -1160,13 +1175,13 @@ static void llama_model_load_internal( (void) main_gpu; (void) mul_mat_q; #if defined(GGML_USE_CUBLAS) - fprintf(stderr, "%s: using CUDA for GPU acceleration\n", __func__); + LLAMA_LOG_INFO("%s: using CUDA for GPU acceleration\n", __func__); ggml_cuda_set_main_device(main_gpu); ggml_cuda_set_mul_mat_q(mul_mat_q); #define LLAMA_BACKEND_OFFLOAD GGML_BACKEND_GPU #define LLAMA_BACKEND_OFFLOAD_SPLIT GGML_BACKEND_GPU_SPLIT #elif defined(GGML_USE_CLBLAST) - fprintf(stderr, "%s: using OpenCL for GPU acceleration\n", __func__); + LLAMA_LOG_INFO("%s: using OpenCL for GPU acceleration\n", __func__); #define LLAMA_BACKEND_OFFLOAD GGML_BACKEND_GPU #define LLAMA_BACKEND_OFFLOAD_SPLIT GGML_BACKEND_GPU #else @@ -1271,14 +1286,14 @@ static void llama_model_load_internal( const size_t mem_required_state = scale*hparams.kv_size(); - fprintf(stderr, "%s: mem required = %7.2f MB (+ %7.2f MB per state)\n", __func__, + LLAMA_LOG_INFO("%s: mem required = %7.2f MB (+ %7.2f MB per state)\n", __func__, mem_required / 1024.0 / 1024.0, mem_required_state / 1024.0 / 1024.0); (void) vram_scratch; (void) n_batch; #ifdef GGML_USE_CUBLAS if (low_vram) { - fprintf(stderr, "%s: not allocating a VRAM scratch buffer due to low VRAM option\n", __func__); + LLAMA_LOG_INFO("%s: not allocating a VRAM scratch buffer due to low VRAM option\n", __func__); ggml_cuda_set_scratch_size(0); // disable scratch } else { const size_t vram_scratch_base = VRAM_REQ_SCRATCH_BASE().at(model.type); @@ -1286,7 +1301,7 @@ static void llama_model_load_internal( vram_scratch = n_batch * (vram_scratch_base + n_ctx * vram_scratch_per_context); ggml_cuda_set_scratch_size(vram_scratch); if (n_gpu_layers > 0) { - fprintf(stderr, "%s: allocating batch_size x (%zd kB + n_ctx x %zd B) = %zd MB VRAM for the scratch buffer\n", + LLAMA_LOG_INFO("%s: allocating batch_size x (%zd kB + n_ctx x %zd B) = %zd MB VRAM for the scratch buffer\n", __func__, vram_scratch_base / kB, vram_scratch_per_context, (vram_scratch + MB - 1) / MB); // round up } @@ -1296,9 +1311,9 @@ static void llama_model_load_internal( #if defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST) const int n_gpu = std::min(n_gpu_layers, int(hparams.n_layer)); - fprintf(stderr, "%s: offloading %d repeating layers to GPU\n", __func__, n_gpu); + LLAMA_LOG_INFO("%s: offloading %d repeating layers to GPU\n", __func__, n_gpu); if (n_gpu_layers > (int) hparams.n_layer) { - fprintf(stderr, "%s: offloading non-repeating layers to GPU\n", __func__); + LLAMA_LOG_INFO("%s: offloading non-repeating layers to GPU\n", __func__); } size_t vram_kv_cache = 0; @@ -1307,17 +1322,17 @@ static void llama_model_load_internal( const int max_offloadable_layers = low_vram ? hparams.n_layer + 1 : hparams.n_layer + 3; if (n_gpu_layers > (int) hparams.n_layer + 1) { if (low_vram) { - fprintf(stderr, "%s: cannot offload v cache to GPU due to low VRAM option\n", __func__); + LLAMA_LOG_INFO("%s: cannot offload v cache to GPU due to low VRAM option\n", __func__); } else { - fprintf(stderr, "%s: offloading v cache to GPU\n", __func__); + LLAMA_LOG_INFO("%s: offloading v cache to GPU\n", __func__); vram_kv_cache += hparams.kv_size() / 2; } } if (n_gpu_layers > (int) hparams.n_layer + 2) { if (low_vram) { - fprintf(stderr, "%s: cannot offload k cache to GPU due to low VRAM option\n", __func__); + LLAMA_LOG_WARN("%s: cannot offload k cache to GPU due to low VRAM option\n", __func__); } else { - fprintf(stderr, "%s: offloading k cache to GPU\n", __func__); + LLAMA_LOG_INFO("%s: offloading k cache to GPU\n", __func__); vram_kv_cache += hparams.kv_size() / 2; } } @@ -1326,9 +1341,9 @@ static void llama_model_load_internal( const int max_offloadable_layers = hparams.n_layer + 1; #endif // GGML_USE_CUBLAS - fprintf(stderr, "%s: offloaded %d/%d layers to GPU\n", + LLAMA_LOG_INFO("%s: offloaded %d/%d layers to GPU\n", __func__, std::min(n_gpu_layers, max_offloadable_layers), max_backend_supported_layers); - fprintf(stderr, "%s: total VRAM used: %zu MB\n", + LLAMA_LOG_INFO("%s: total VRAM used: %zu MB\n", __func__, (vram_weights + vram_scratch + vram_kv_cache + MB - 1) / MB); // round up #else (void) n_gpu_layers; @@ -1387,7 +1402,7 @@ static bool llama_model_load( use_mmap, use_mlock, vocab_only, progress_callback, progress_callback_user_data); return true; } catch (const std::exception & err) { - fprintf(stderr, "error loading model: %s\n", err.what()); + LLAMA_LOG_ERROR("error loading model: %s\n", err.what()); return false; } } @@ -1751,7 +1766,7 @@ static struct ggml_cgraph * llama_build_graph( } #if 0 - printf("\n%s: used_mem: eval ctx %.3f MB, scratch %.3f MB %.3f MB, work buf %.3f MB, n_past = %d, N = %d\n", __func__, + LLAMA_LOG_INFO("\n%s: used_mem: eval ctx %.3f MB, scratch %.3f MB %.3f MB, work buf %.3f MB, n_past = %d, N = %d\n", __func__, ggml_used_mem(ctx0)/1024.0/1024.0, lctx.get_buf_max_mem(0)/1024.0/1024.0, lctx.get_buf_max_mem(1)/1024.0/1024.0, @@ -1812,7 +1827,7 @@ static bool llama_eval_internal( ggml_allocr_alloc_graph(lctx.alloc, gf); #endif - // fprintf(stderr, "graph build time: %.3f ms (%d nodes, %d leafs)\n", (ggml_time_us() - t_start_us)/1000.0, gf->n_nodes, gf->n_leafs); + // LLAMA_LOG_INFO("graph build time: %.3f ms (%d nodes, %d leafs)\n", (ggml_time_us() - t_start_us)/1000.0, gf->n_nodes, gf->n_leafs); // for big prompts, if BLAS is enabled, it is better to use only one thread // otherwise, the threads are spin-lock waiting for the BLAS calls and are degrading the performance @@ -1999,7 +2014,7 @@ struct llama_tokenizer { left_sym.n += right_sym.n; right_sym.n = 0; - //printf("left = '%*s' size = %zu\n", (int) left_sym.n, left_sym.text, bigram.size); + //LLAMA_LOG_INFO("left = '%*s' size = %zu\n", (int) left_sym.n, left_sym.text, bigram.size); // remove the right sym from the chain left_sym.next = right_sym.next; @@ -3007,7 +3022,7 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s tensor.data = read_data.addr; model_loader->load_data_for(tensor); - printf("[%4zu/%4zu] %36s - %16s, type = %6s, ", + LLAMA_LOG_INFO("[%4zu/%4zu] %36s - %16s, type = %6s, ", ++idx, model_loader->tensors_map.tensors.size(), tensor.name.c_str(), llama_format_tensor_shape(tensor.ne).c_str(), ggml_type_name(tensor.type)); @@ -3029,7 +3044,7 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s new_type = tensor.type; new_data = tensor.data; new_size = tensor.size; - printf("size = %8.3f MB\n", tensor.size/1024.0/1024.0); + LLAMA_LOG_INFO("size = %8.3f MB\n", tensor.size/1024.0/1024.0); } else { new_type = quantized_type; #ifdef GGML_USE_K_QUANTS @@ -3064,17 +3079,17 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s int nx = tensor.ne.at(0); int ny = tensor.ne.at(1); if (nx % QK_K != 0 || ny % QK_K != 0) { - fprintf(stderr, "\n\nTensor sizes %d x %d are not divisible by %d, required for k-quants.\n",nx,ny,QK_K); + LLAMA_LOG_INFO("\n\nTensor sizes %d x %d are not divisible by %d, required for k-quants.\n",nx,ny,QK_K); convert_incompatible_tensor = true; } } if (convert_incompatible_tensor) { if (tensor.name == "output.weight") { new_type = GGML_TYPE_F16; //fall back to F16 instead of just failing. - fprintf(stderr, "F16 will be used for this tensor instead.\n"); + LLAMA_LOG_WARN("F16 will be used for this tensor instead.\n"); } else if (tensor.name == "tok_embeddings.weight") { new_type = GGML_TYPE_Q4_0; //fall back to Q4_0 instead of just failing. - fprintf(stderr, "Q4_0 will be used for this tensor instead.\n"); + LLAMA_LOG_WARN("Q4_0 will be used for this tensor instead.\n"); } else { throw std::runtime_error("Unsupported tensor size encountered\n"); } @@ -3094,7 +3109,7 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s f32_data = (float *) f32_conv_buf.addr; } - printf("quantizing to %s .. ", ggml_type_name(new_type)); + LLAMA_LOG_INFO("quantizing to %s .. ", ggml_type_name(new_type)); fflush(stdout); work.resize(nelements * 4); // upper bound on size @@ -3144,7 +3159,7 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s } } - printf("size = %8.2f MB -> %8.2f MB | hist: ", tensor.size/1024.0/1024.0, new_size/1024.0/1024.0); + LLAMA_LOG_INFO("size = %8.2f MB -> %8.2f MB | hist: ", tensor.size/1024.0/1024.0, new_size/1024.0/1024.0); int64_t tot_count = 0; for (size_t i = 0; i < hist_cur.size(); i++) { hist_all[i] += hist_cur[i]; @@ -3153,18 +3168,18 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s if (tot_count > 0) { for (size_t i = 0; i < hist_cur.size(); i++) { - printf("%5.3f ", hist_cur[i] / float(nelements)); + LLAMA_LOG_INFO("%5.3f ", hist_cur[i] / float(nelements)); } } - printf("\n"); + LLAMA_LOG_INFO("\n"); } total_size_org += tensor.size; total_size_new += new_size; file_saver.write_tensor(tensor, new_type, new_data, new_size); } - printf("%s: model size = %8.2f MB\n", __func__, total_size_org/1024.0/1024.0); - printf("%s: quant size = %8.2f MB\n", __func__, total_size_new/1024.0/1024.0); + LLAMA_LOG_INFO("%s: model size = %8.2f MB\n", __func__, total_size_org/1024.0/1024.0); + LLAMA_LOG_INFO("%s: quant size = %8.2f MB\n", __func__, total_size_new/1024.0/1024.0); { int64_t sum_all = 0; @@ -3173,11 +3188,11 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s } if (sum_all > 0) { - printf("%s: hist: ", __func__); + LLAMA_LOG_INFO("%s: hist: ", __func__); for (size_t i = 0; i < hist_all.size(); i++) { - printf("%5.3f ", hist_all[i] / float(sum_all)); + LLAMA_LOG_INFO("%5.3f ", hist_all[i] / float(sum_all)); } - printf("\n"); + LLAMA_LOG_INFO("\n"); } } } @@ -3201,8 +3216,8 @@ struct llama_model * llama_load_model_from_file( params.main_gpu, params.tensor_split, params.mul_mat_q, params.rope_freq_base, params.rope_freq_scale,params.low_vram, memory_type, params.use_mmap, params.use_mlock, params.vocab_only, params.progress_callback, params.progress_callback_user_data)) { + LLAMA_LOG_ERROR("%s: failed to load model\n", __func__); delete model; - fprintf(stderr, "%s: failed to load model\n", __func__); return nullptr; } @@ -3235,10 +3250,9 @@ struct llama_context * llama_new_context_with_model( unsigned percentage = (unsigned) (100 * progress); while (percentage > *cur_percentage_p) { *cur_percentage_p = percentage; - fprintf(stderr, "."); - fflush(stderr); + LLAMA_LOG_INFO("."); if (percentage >= 100) { - fprintf(stderr, "\n"); + LLAMA_LOG_INFO("\n"); } } }; @@ -3252,14 +3266,14 @@ struct llama_context * llama_new_context_with_model( // reserve memory for context buffers if (!params.vocab_only) { if (!kv_cache_init(ctx->model.hparams, ctx->kv_self, memory_type, ctx->model.hparams.n_ctx, params.n_gpu_layers)) { - fprintf(stderr, "%s: kv_cache_init() failed for self-attention cache\n", __func__); + LLAMA_LOG_ERROR("%s: kv_cache_init() failed for self-attention cache\n", __func__); llama_free(ctx); return nullptr; } { const size_t memory_size = ggml_nbytes(ctx->kv_self.k) + ggml_nbytes(ctx->kv_self.v); - fprintf(stderr, "%s: kv self size = %7.2f MB\n", __func__, memory_size / 1024.0 / 1024.0); + LLAMA_LOG_INFO("%s: kv self size = %7.2f MB\n", __func__, memory_size / 1024.0 / 1024.0); } const auto & hparams = ctx->model.hparams; @@ -3293,14 +3307,14 @@ struct llama_context * llama_new_context_with_model( // measure memory requirements for the graph size_t alloc_size = ggml_allocr_alloc_graph(ctx->alloc, gf) + tensor_alignment; - fprintf(stderr, "%s: compute buffer total size = %7.2f MB\n", __func__, (ctx->buf_compute.size + alloc_size) / 1024.0 / 1024.0); + LLAMA_LOG_INFO("%s: compute buffer total size = %7.2f MB\n", __func__, (ctx->buf_compute.size + alloc_size) / 1024.0 / 1024.0); // debug - for comparison with scratch buffer //size_t prev_req = // MEM_REQ_SCRATCH0(hparams.n_ctx).at(ctx->model.type) + // MEM_REQ_SCRATCH1().at(ctx->model.type) + // MEM_REQ_EVAL().at(ctx->model.type); - //fprintf(stderr, "%s: (debug) equivalent with scratch buffer = %7.2f MB\n", __func__, prev_req / 1024.0 / 1024.0); + //LLAMA_LOG_INFO("%s: (debug) equivalent with scratch buffer = %7.2f MB\n", __func__, prev_req / 1024.0 / 1024.0); // recreate allocator with exact memory requirements ggml_allocr_free(ctx->alloc); @@ -3336,13 +3350,13 @@ struct llama_context * llama_new_context_with_model( const size_t max_size = ggml_get_max_tensor_size(ctx->model.ctx); - fprintf(stderr, "%s: max tensor size = %8.2f MB\n", __func__, max_size/1024.0/1024.0); + LLAMA_LOG_INFO("%s: max tensor size = %8.2f MB\n", __func__, max_size/1024.0/1024.0); -#define LLAMA_METAL_CHECK_BUF(result) \ - if (!(result)) { \ - fprintf(stderr, "%s: failed to add buffer\n", __func__); \ - llama_free(ctx); \ - return NULL; \ +#define LLAMA_METAL_CHECK_BUF(result) \ + if (!(result)) { \ + LLAMA_LOG_ERROR("%s: failed to add buffer\n", __func__); \ + llama_free(ctx); \ + return NULL; \ } LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "data", data_ptr, data_size, max_size)); @@ -3396,19 +3410,19 @@ int llama_model_quantize( llama_model_quantize_internal(fname_inp, fname_out, params); return 0; } catch (const std::exception & err) { - fprintf(stderr, "%s: failed to quantize: %s\n", __func__, err.what()); + LLAMA_LOG_ERROR("%s: failed to quantize: %s\n", __func__, err.what()); return 1; } } int llama_apply_lora_from_file_internal(const struct llama_model & model, const char * path_lora, const char * path_base_model, int n_threads) { - fprintf(stderr, "%s: applying lora adapter from '%s' - please wait ...\n", __func__, path_lora); + LLAMA_LOG_INFO("%s: applying lora adapter from '%s' - please wait ...\n", __func__, path_lora); const int64_t t_start_lora_us = ggml_time_us(); auto fin = std::ifstream(path_lora, std::ios::binary); if (!fin) { - fprintf(stderr, "%s: failed to open '%s'\n", __func__, path_lora); + LLAMA_LOG_ERROR("%s: failed to open '%s'\n", __func__, path_lora); return 1; } @@ -3417,14 +3431,14 @@ int llama_apply_lora_from_file_internal(const struct llama_model & model, const uint32_t magic; fin.read((char *) &magic, sizeof(magic)); if (magic != LLAMA_FILE_MAGIC_GGLA) { - fprintf(stderr, "%s: bad file magic\n", __func__); + LLAMA_LOG_ERROR("%s: bad file magic\n", __func__); return 1; } uint32_t format_version; fin.read((char *) &format_version, sizeof(format_version)); if (format_version != 1) { - fprintf(stderr, "%s: unsupported file version\n", __func__ ); + LLAMA_LOG_ERROR("%s: unsupported file version\n", __func__ ); return 1; } } @@ -3435,7 +3449,7 @@ int llama_apply_lora_from_file_internal(const struct llama_model & model, const fin.read((char *) &lora_alpha, sizeof(lora_alpha)); float scaling = (float)lora_alpha / (float)lora_r; - fprintf(stderr, "%s: r = %d, alpha = %d, scaling = %.2f\n", __func__, lora_r, lora_alpha, scaling); + LLAMA_LOG_INFO("%s: r = %d, alpha = %d, scaling = %.2f\n", __func__, lora_r, lora_alpha, scaling); // create a temporary ggml context to store the lora tensors @@ -3461,7 +3475,7 @@ int llama_apply_lora_from_file_internal(const struct llama_model & model, const ggml_context * base_ctx = NULL; llama_buffer base_buf; if (path_base_model) { - fprintf(stderr, "%s: loading base model from '%s'\n", __func__, path_base_model); + LLAMA_LOG_INFO("%s: loading base model from '%s'\n", __func__, path_base_model); model_loader.reset(new llama_model_loader(path_base_model, /*use_mmap*/ true)); size_t ctx_size; @@ -3518,17 +3532,17 @@ int llama_apply_lora_from_file_internal(const struct llama_model & model, const const std::string lora_suffix = ".lora"; size_t pos = name.rfind(lora_suffix); if (pos == std::string::npos) { - fprintf(stderr, "%s: error: '%s' is not a lora tensor\n", __func__, name.c_str()); + LLAMA_LOG_ERROR("%s: error: '%s' is not a lora tensor\n", __func__, name.c_str()); return 1; } std::string lora_type = name.substr(pos + lora_suffix.length()); std::string base_name = name; base_name.erase(pos); - // fprintf(stderr, "%s: %s => %s (lora type %s) ", __func__, name.c_str(),base_name.c_str(), lora_type.c_str()); + // LLAMA_LOG_INFO("%s: %s => %s (lora type %s) \n", __func__, name.c_str(),base_name.c_str(), lora_type.c_str()); if (model_tensors.find(base_name) == model_tensors.end()) { - fprintf(stderr, "%s: unknown tensor '%s' in lora adapter\n", __func__, name.data()); + LLAMA_LOG_ERROR("%s: unknown tensor '%s' in lora adapter\n", __func__, name.data()); return 1; } @@ -3539,7 +3553,7 @@ int llama_apply_lora_from_file_internal(const struct llama_model & model, const case 1: wtype = GGML_TYPE_F16; break; default: { - fprintf(stderr, "%s: invalid tensor data type '%d'\n", + LLAMA_LOG_ERROR("%s: invalid tensor data type '%d'\n", __func__, ftype); return false; } @@ -3549,7 +3563,7 @@ int llama_apply_lora_from_file_internal(const struct llama_model & model, const lora_tensor = ggml_new_tensor_2d(lora_ctx, wtype, ne[0], ne[1]); } else { - fprintf(stderr, "%s: unsupported tensor dimension %d\n", __func__, n_dims); + LLAMA_LOG_ERROR("%s: unsupported tensor dimension %d\n", __func__, n_dims); return 1; } ggml_set_name(lora_tensor, "lora_tensor"); @@ -3587,7 +3601,7 @@ int llama_apply_lora_from_file_internal(const struct llama_model & model, const if (model_loader) { // load from base model if (model_loader->tensors_map.name_to_idx.find(base_name) == model_loader->tensors_map.name_to_idx.end()) { - fprintf(stderr, "%s: error: tensor '%s' not found in base model\n", __func__, base_name.c_str()); + LLAMA_LOG_ERROR("%s: error: tensor '%s' not found in base model\n", __func__, base_name.c_str()); return 1; } size_t idx = model_loader->tensors_map.name_to_idx[base_name]; @@ -3603,8 +3617,8 @@ int llama_apply_lora_from_file_internal(const struct llama_model & model, const if (ggml_is_quantized(base_t->type)) { if (!warned) { - fprintf(stderr, "%s: warning: using a lora adapter with a quantized model may result in poor quality, " - "use a f16 or f32 base model with --lora-base\n", __func__); + LLAMA_LOG_WARN("%s: warning: using a lora adapter with a quantized model may result in poor quality, " + "use a f16 or f32 base model with --lora-base\n", __func__); warned = true; } } @@ -3618,8 +3632,8 @@ int llama_apply_lora_from_file_internal(const struct llama_model & model, const ggml_set_name(loraB, "loraB"); if (base_t->ne[0] != loraA->ne[1] || base_t->ne[1] != loraB->ne[1]) { - fprintf(stderr, "%s: incompatible tensor dimensions (%" PRId64 " and %" PRId64 ");" - " are you sure that this adapter is for this model?\n", __func__, base_t->ne[0], loraA->ne[1]); + LLAMA_LOG_ERROR("%s: incompatible tensor dimensions (%" PRId64 " and %" PRId64 ");" + " are you sure that this adapter is for this model?\n", __func__, base_t->ne[0], loraA->ne[1]); return 1; } @@ -3664,7 +3678,7 @@ int llama_apply_lora_from_file_internal(const struct llama_model & model, const n_tensors++; if (n_tensors % 4 == 0) { - fprintf(stderr, "."); + LLAMA_LOG_INFO("."); } } } @@ -3676,7 +3690,7 @@ int llama_apply_lora_from_file_internal(const struct llama_model & model, const } const int64_t t_lora_us = ggml_time_us() - t_start_lora_us; - fprintf(stderr, " done (%.2f ms)\n", t_lora_us / 1000.0); + LLAMA_LOG_INFO(" done (%.2f ms)\n", t_lora_us / 1000.0); return 0; } @@ -3685,7 +3699,7 @@ int llama_apply_lora_from_file(struct llama_context * ctx, const char * path_lor try { return llama_apply_lora_from_file_internal(ctx->model, path_lora, path_base_model, n_threads); } catch (const std::exception & err) { - fprintf(stderr, "%s: failed to apply lora adapter: %s\n", __func__, err.what()); + LLAMA_LOG_ERROR("%s: failed to apply lora adapter: %s\n", __func__, err.what()); return 1; } } @@ -3694,7 +3708,7 @@ int llama_model_apply_lora_from_file(const struct llama_model * model, const cha try { return llama_apply_lora_from_file_internal(*model, path_lora, path_base_model, n_threads); } catch (const std::exception & err) { - fprintf(stderr, "%s: failed to apply lora adapter: %s\n", __func__, err.what()); + LLAMA_LOG_ERROR("%s: failed to apply lora adapter: %s\n", __func__, err.what()); return 1; } } @@ -3976,7 +3990,7 @@ static bool llama_load_session_file_internal(struct llama_context * ctx, const c const uint32_t version = file.read_u32(); if (magic != LLAMA_SESSION_MAGIC || version != LLAMA_SESSION_VERSION) { - fprintf(stderr, "%s : unknown (magic, version) for session file: %08x, %08x\n", __func__, magic, version); + LLAMA_LOG_ERROR("%s : unknown (magic, version) for session file: %08x, %08x\n", __func__, magic, version); return false; } @@ -3984,7 +3998,7 @@ static bool llama_load_session_file_internal(struct llama_context * ctx, const c file.read_raw(&session_hparams, sizeof(llama_hparams)); if (session_hparams != ctx->model.hparams) { - fprintf(stderr, "%s : model hparams didn't match from session file!\n", __func__); + LLAMA_LOG_INFO("%s : model hparams didn't match from session file!\n", __func__); return false; } } @@ -3994,7 +4008,7 @@ static bool llama_load_session_file_internal(struct llama_context * ctx, const c const uint32_t n_token_count = file.read_u32(); if (n_token_count > n_token_capacity) { - fprintf(stderr, "%s : token count in session file exceeded capacity! %u > %zu\n", __func__, n_token_count, n_token_capacity); + LLAMA_LOG_ERROR("%s : token count in session file exceeded capacity! %u > %zu\n", __func__, n_token_count, n_token_capacity); return false; } @@ -4008,7 +4022,7 @@ static bool llama_load_session_file_internal(struct llama_context * ctx, const c const size_t n_state_size_max = llama_get_state_size(ctx); if (n_state_size_cur > n_state_size_max) { - fprintf(stderr, "%s : the state size in session file is too big! max %zu, got %zu\n", __func__, n_state_size_max, n_state_size_cur); + LLAMA_LOG_ERROR("%s : the state size in session file is too big! max %zu, got %zu\n", __func__, n_state_size_max, n_state_size_cur); return false; } @@ -4025,7 +4039,7 @@ bool llama_load_session_file(struct llama_context * ctx, const char * path_sessi try { return llama_load_session_file_internal(ctx, path_session, tokens_out, n_token_capacity, n_token_count_out); } catch (const std::exception & err) { - fprintf(stderr, "error loading session file: %s\n", err.what()); + LLAMA_LOG_ERROR("error loading session file: %s\n", err.what()); return false; } } @@ -4056,7 +4070,7 @@ int llama_eval( int n_past, int n_threads) { if (!llama_eval_internal(*ctx, tokens, nullptr, n_tokens, n_past, n_threads, nullptr)) { - fprintf(stderr, "%s: failed to eval\n", __func__); + LLAMA_LOG_ERROR("%s: failed to eval\n", __func__); return 1; } @@ -4078,7 +4092,7 @@ int llama_eval_embd( int n_past, int n_threads) { if (!llama_eval_internal(*ctx, nullptr, embd, n_tokens, n_past, n_threads, nullptr)) { - fprintf(stderr, "%s: failed to eval\n", __func__); + LLAMA_LOG_ERROR("%s: failed to eval\n", __func__); return 1; } @@ -4099,7 +4113,7 @@ int llama_eval_export(struct llama_context * ctx, const char * fname) { const std::vector<llama_token> tmp(n_batch, llama_token_bos()); if (!llama_eval_internal(*ctx, tmp.data(), nullptr, tmp.size(), n_ctx, 1, fname)) { - fprintf(stderr, "%s: failed to eval\n", __func__); + LLAMA_LOG_ERROR("%s: failed to eval\n", __func__); return 1; } @@ -4115,7 +4129,7 @@ int llama_tokenize_with_model( auto res = llama_tokenize(model->vocab, text, add_bos); if (n_max_tokens < (int) res.size()) { - fprintf(stderr, "%s: too many tokens\n", __func__); + LLAMA_LOG_ERROR("%s: too many tokens\n", __func__); return -((int) res.size()); } @@ -4232,15 +4246,15 @@ struct llama_timings llama_get_timings(struct llama_context * ctx) { void llama_print_timings(struct llama_context * ctx) { const llama_timings timings = llama_get_timings(ctx); - fprintf(stderr, "\n"); - fprintf(stderr, "%s: load time = %8.2f ms\n", __func__, timings.t_load_ms); - fprintf(stderr, "%s: sample time = %8.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)\n", + LLAMA_LOG_INFO("\n"); + LLAMA_LOG_INFO("%s: load time = %8.2f ms\n", __func__, timings.t_load_ms); + LLAMA_LOG_INFO("%s: sample time = %8.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)\n", __func__, timings.t_sample_ms, timings.n_sample, timings.t_sample_ms / timings.n_sample, 1e3 / timings.t_sample_ms * timings.n_sample); - fprintf(stderr, "%s: prompt eval time = %8.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n", + LLAMA_LOG_INFO("%s: prompt eval time = %8.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n", __func__, timings.t_p_eval_ms, timings.n_p_eval, timings.t_p_eval_ms / timings.n_p_eval, 1e3 / timings.t_p_eval_ms * timings.n_p_eval); - fprintf(stderr, "%s: eval time = %8.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)\n", + LLAMA_LOG_INFO("%s: eval time = %8.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)\n", __func__, timings.t_eval_ms, timings.n_eval, timings.t_eval_ms / timings.n_eval, 1e3 / timings.t_eval_ms * timings.n_eval); - fprintf(stderr, "%s: total time = %8.2f ms\n", __func__, (timings.t_end_ms - timings.t_start_ms)); + LLAMA_LOG_INFO("%s: total time = %8.2f ms\n", __func__, (timings.t_end_ms - timings.t_start_ms)); } void llama_reset_timings(struct llama_context * ctx) { @@ -4276,3 +4290,44 @@ const char * llama_print_system_info(void) { const std::vector<std::pair<std::string, struct ggml_tensor *>>& llama_internal_get_tensor_map(struct llama_context * ctx) { return ctx->model.tensors_by_name; } + + +void llama_log_set(llama_log_callback log_callback, void * user_data) { + g_state.log_callback = log_callback ? log_callback : llama_log_callback_default; + g_state.log_callback_user_data = user_data; +} + +#if defined(_MSC_VER) && !defined(vsnprintf) +#define vsnprintf _vsnprintf +#endif + +static void llama_log_internal_v(llama_log_level level, const char * format, va_list args) { + va_list args_copy; + va_copy(args_copy, args); + char buffer[128]; + int len = vsnprintf(buffer, 128, format, args); + if (len < 128) { + g_state.log_callback(level, buffer, g_state.log_callback_user_data); + } else { + char* buffer2 = new char[len+1]; + vsnprintf(buffer2, len+1, format, args_copy); + buffer2[len] = 0; + g_state.log_callback(level, buffer2, g_state.log_callback_user_data); + delete[] buffer2; + } + va_end(args_copy); +} + +static void llama_log_internal(llama_log_level level, const char * format, ...) { + va_list args; + va_start(args, format); + llama_log_internal_v(level, format, args); + va_end(args); +} + +static void llama_log_callback_default(llama_log_level level, const char * text, void * user_data) { + (void) level; + (void) user_data; + fputs(text, stderr); + fflush(stderr); +} @@ -86,7 +86,20 @@ extern "C" { typedef void (*llama_progress_callback)(float progress, void *ctx); - struct llama_context_params { + enum llama_log_level { + LLAMA_LOG_LEVEL_ERROR = 2, + LLAMA_LOG_LEVEL_WARN = 3, + LLAMA_LOG_LEVEL_INFO = 4 + }; + + // Signature for logging events + // Note that text includes the new line character at the end for most events. + // If your logging mechanism cannot handle that, check if the last character is '\n' and strip it + // if it exists. + // It might not exist for progress report where '.' is output repeatedly. + typedef void (*llama_log_callback)(llama_log_level level, const char * text, void * user_data); + + struct llama_context_params { uint32_t seed; // RNG seed, -1 for random int32_t n_ctx; // text context int32_t n_batch; // prompt processing batch size @@ -195,6 +208,10 @@ extern "C" { int32_t n_eval; }; + // Set callback for all future logging events. + // If this is not called, or NULL is supplied, everything is output on stderr. + LLAMA_API void llama_log_set(llama_log_callback log_callback, void * user_data); + LLAMA_API int llama_max_devices(); LLAMA_API struct llama_context_params llama_context_default_params(); |