aboutsummaryrefslogtreecommitdiff
path: root/examples/simple
diff options
context:
space:
mode:
Diffstat (limited to 'examples/simple')
-rw-r--r--examples/simple/CMakeLists.txt7
-rw-r--r--examples/simple/simple.cpp177
2 files changed, 184 insertions, 0 deletions
diff --git a/examples/simple/CMakeLists.txt b/examples/simple/CMakeLists.txt
new file mode 100644
index 0000000..1568f73
--- /dev/null
+++ b/examples/simple/CMakeLists.txt
@@ -0,0 +1,7 @@
+set(TARGET simple)
+add_executable(${TARGET} simple.cpp)
+target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
+target_compile_features(${TARGET} PRIVATE cxx_std_11)
+if(TARGET BUILD_INFO)
+ add_dependencies(${TARGET} BUILD_INFO)
+endif()
diff --git a/examples/simple/simple.cpp b/examples/simple/simple.cpp
new file mode 100644
index 0000000..76f991c
--- /dev/null
+++ b/examples/simple/simple.cpp
@@ -0,0 +1,177 @@
+#ifndef _GNU_SOURCE
+#define _GNU_SOURCE
+#endif
+
+#include "common.h"
+#include "llama.h"
+#include "build-info.h"
+
+#include <cassert>
+#include <cinttypes>
+#include <cmath>
+#include <cstdio>
+#include <cstring>
+#include <ctime>
+#include <fstream>
+#include <iostream>
+#include <string>
+#include <vector>
+
+#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
+#include <signal.h>
+#include <unistd.h>
+#elif defined (_WIN32)
+#define WIN32_LEAN_AND_MEAN
+#define NOMINMAX
+#include <windows.h>
+#include <signal.h>
+#endif
+
+
+
+int main(int argc, char ** argv)
+{
+ gpt_params params;
+
+ //---------------------------------
+ // Print help :
+ //---------------------------------
+
+ if ( argc == 1 || argv[1][0] == '-' )
+ {
+ printf( "usage: %s MODEL_PATH [PROMPT]\n" , argv[0] );
+ return 1 ;
+ }
+
+ //---------------------------------
+ // Load parameters :
+ //---------------------------------
+
+ if ( argc >= 2 )
+ {
+ params.model = argv[1];
+ }
+
+ if ( argc >= 3 )
+ {
+ params.prompt = argv[2];
+ }
+
+ if ( params.prompt.empty() )
+ {
+ params.prompt = "Hello my name is";
+ }
+
+ //---------------------------------
+ // Init LLM :
+ //---------------------------------
+
+ llama_init_backend();
+
+ llama_context * ctx ;
+
+ ctx = llama_init_from_gpt_params( params );
+
+ if ( ctx == NULL )
+ {
+ fprintf( stderr , "%s: error: unable to load model\n" , __func__ );
+ return 1;
+ }
+
+ //---------------------------------
+ // Tokenize the prompt :
+ //---------------------------------
+
+ std::vector<llama_token> tokens_list;
+ tokens_list = ::llama_tokenize( ctx , params.prompt , true );
+
+ const int max_context_size = llama_n_ctx( ctx );
+ const int max_tokens_list_size = max_context_size - 4 ;
+
+ if ( (int)tokens_list.size() > max_tokens_list_size )
+ {
+ fprintf( stderr , "%s: error: prompt too long (%d tokens, max %d)\n" ,
+ __func__ , (int)tokens_list.size() , max_tokens_list_size );
+ return 1;
+ }
+
+ fprintf( stderr, "\n\n" );
+
+ // Print the tokens from the prompt :
+
+ for( auto id : tokens_list )
+ {
+ printf( "%s" , llama_token_to_str( ctx , id ) );
+ }
+
+ fflush(stdout);
+
+
+ //---------------------------------
+ // Main prediction loop :
+ //---------------------------------
+
+ // The LLM keeps a contextual cache memory of previous token evaluation.
+ // Usually, once this cache is full, it is required to recompute a compressed context based on previous
+ // tokens (see "infinite text generation via context swapping" in the main example), but in this minimalist
+ // example, we will just stop the loop once this cache is full or once an end of stream is detected.
+
+ while ( llama_get_kv_cache_token_count( ctx ) < max_context_size )
+ {
+ //---------------------------------
+ // Evaluate the tokens :
+ //---------------------------------
+
+ if ( llama_eval( ctx , tokens_list.data() , tokens_list.size() , llama_get_kv_cache_token_count( ctx ) , params.n_threads ) )
+ {
+ fprintf( stderr, "%s : failed to eval\n" , __func__ );
+ return 1;
+ }
+
+ tokens_list.clear();
+
+ //---------------------------------
+ // Select the best prediction :
+ //---------------------------------
+
+ llama_token new_token_id = 0;
+
+ auto logits = llama_get_logits( ctx );
+ auto n_vocab = llama_n_vocab( ctx ); // the size of the LLM vocabulary (in tokens)
+
+ std::vector<llama_token_data> candidates;
+ candidates.reserve( n_vocab );
+
+ for( llama_token token_id = 0 ; token_id < n_vocab ; token_id++ )
+ {
+ candidates.emplace_back( llama_token_data{ token_id , logits[ token_id ] , 0.0f } );
+ }
+
+ llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
+
+ // Select it using the "Greedy sampling" method :
+ new_token_id = llama_sample_token_greedy( ctx , &candidates_p );
+
+
+ // is it an end of stream ?
+ if ( new_token_id == llama_token_eos() )
+ {
+ fprintf(stderr, " [end of text]\n");
+ break;
+ }
+
+ // Print the new token :
+ printf( "%s" , llama_token_to_str( ctx , new_token_id ) );
+ fflush( stdout );
+
+ // Push this new token for next evaluation :
+ tokens_list.push_back( new_token_id );
+
+ } // wend of main loop
+
+ llama_free( ctx );
+
+ return 0;
+}
+
+// EOF