aboutsummaryrefslogtreecommitdiff
path: root/ggml-cuda.cu
diff options
context:
space:
mode:
Diffstat (limited to 'ggml-cuda.cu')
-rw-r--r--ggml-cuda.cu429
1 files changed, 385 insertions, 44 deletions
diff --git a/ggml-cuda.cu b/ggml-cuda.cu
index c1ec306..e8a1e77 100644
--- a/ggml-cuda.cu
+++ b/ggml-cuda.cu
@@ -1,11 +1,38 @@
+#include <cstddef>
+#include <cstdint>
#include <stdint.h>
#include <stdio.h>
-#include <cuda_fp16.h>
#include <atomic>
-#include "ggml-cuda.h"
-typedef uint16_t ggml_fp16_t;
-static_assert(sizeof(__half) == sizeof(ggml_fp16_t), "wrong fp16 size");
+#include <cuda_runtime.h>
+#include <cublas_v2.h>
+#include <cuda_fp16.h>
+
+#include "ggml-cuda.h"
+#include "ggml.h"
+
+static_assert(sizeof(half) == sizeof(ggml_fp16_t), "wrong fp16 size");
+
+#define CUDA_CHECK(err) \
+ do { \
+ cudaError_t err_ = (err); \
+ if (err_ != cudaSuccess) { \
+ fprintf(stderr, "CUDA error %d at %s:%d: %s\n", err_, __FILE__, __LINE__, \
+ cudaGetErrorString(err_)); \
+ exit(1); \
+ } \
+ } while (0)
+
+#define CUBLAS_CHECK(err) \
+ do { \
+ cublasStatus_t err_ = (err); \
+ if (err_ != CUBLAS_STATUS_SUCCESS) { \
+ fprintf(stderr, "cuBLAS error %d at %s:%d\n", err_, __FILE__, __LINE__); \
+ exit(1); \
+ } \
+ } while (0)
+
+typedef void (*to_fp32_cuda_t)(const void * x, float * y, int k, cudaStream_t stream);
#define QK4_0 32
typedef struct {
@@ -24,14 +51,14 @@ static_assert(sizeof(block_q4_1) == sizeof(float) * 2 + QK4_1 / 2, "wrong q4_1 b
#define QK4_2 16
typedef struct {
- __half d; // delta
+ half d; // delta
uint8_t qs[QK4_2 / 2]; // nibbles / quants
} block_q4_2;
static_assert(sizeof(block_q4_2) == sizeof(ggml_fp16_t) + QK4_2 / 2, "wrong q4_2 block size/padding");
#define QK5_0 32
typedef struct {
- __half d; // delta
+ half d; // delta
uint8_t qh[4]; // 5-th bit of quants
uint8_t qs[QK5_0 / 2]; // nibbles / quants
} block_q5_0;
@@ -39,9 +66,9 @@ static_assert(sizeof(block_q5_0) == sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5
#define QK5_1 32
typedef struct {
- __half d; // delta
- __half m; // min
- uint32_t qh; // 5-th bit of quants
+ half d; // delta
+ half m; // min
+ uint8_t qh[4]; // 5-th bit of quants
uint8_t qs[QK5_1 / 2]; // nibbles / quants
} block_q5_1;
static_assert(sizeof(block_q5_1) == 2 * sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_1 / 2, "wrong q5_1 block size/padding");
@@ -162,7 +189,8 @@ static __global__ void dequantize_block_q5_1(const void * vx, float * y) {
const uint8_t * pp = x[i].qs;
- const uint32_t qh = x[i].qh;
+ uint32_t qh;
+ memcpy(&qh, x[i].qh, sizeof(qh));
for (int l = 0; l < QK5_1; l += 2) {
const uint8_t vi = pp[l/2];
@@ -197,37 +225,50 @@ static __global__ void dequantize_block_q8_0(const void * vx, float * y) {
}
}
-void dequantize_row_q4_0_cuda(const void * vx, float * y, int k, cudaStream_t stream) {
+static void dequantize_row_q4_0_cuda(const void * vx, float * y, int k, cudaStream_t stream) {
const int nb = k / QK4_0;
dequantize_block_q4_0<<<nb, 1, 0, stream>>>(vx, y);
}
-void dequantize_row_q4_1_cuda(const void * vx, float * y, int k, cudaStream_t stream) {
+static void dequantize_row_q4_1_cuda(const void * vx, float * y, int k, cudaStream_t stream) {
const int nb = k / QK4_1;
dequantize_block_q4_1<<<nb, 1, 0, stream>>>(vx, y);
}
-void dequantize_row_q4_2_cuda(const void * vx, float * y, int k, cudaStream_t stream) {
+static void dequantize_row_q4_2_cuda(const void * vx, float * y, int k, cudaStream_t stream) {
const int nb = k / QK4_2;
dequantize_block_q4_2<<<nb, 1, 0, stream>>>(vx, y);
}
-void dequantize_row_q5_0_cuda(const void * vx, float * y, int k, cudaStream_t stream) {
+static void dequantize_row_q5_0_cuda(const void * vx, float * y, int k, cudaStream_t stream) {
const int nb = k / QK5_0;
dequantize_block_q5_0<<<nb, 1, 0, stream>>>(vx, y);
}
-void dequantize_row_q5_1_cuda(const void * vx, float * y, int k, cudaStream_t stream) {
+static void dequantize_row_q5_1_cuda(const void * vx, float * y, int k, cudaStream_t stream) {
const int nb = k / QK5_1;
dequantize_block_q5_1<<<nb, 1, 0, stream>>>(vx, y);
}
-void dequantize_row_q8_0_cuda(const void * vx, float * y, int k, cudaStream_t stream) {
+static void dequantize_row_q8_0_cuda(const void * vx, float * y, int k, cudaStream_t stream) {
const int nb = k / QK8_0;
dequantize_block_q8_0<<<nb, 1, 0, stream>>>(vx, y);
}
-dequantize_row_q_cuda_t ggml_get_dequantize_row_q_cuda(ggml_type type) {
+// TODO: optimize
+static __global__ void convert_fp16_to_fp32(const void * vx, float * y) {
+ const half * x = (const half *) vx;
+
+ const int i = blockIdx.x;
+
+ y[i] = __half2float(x[i]);
+}
+
+static void convert_fp16_to_fp32_cuda(const void * x, float * y, int k, cudaStream_t stream) {
+ convert_fp16_to_fp32<<<k, 1, 0, stream>>>(x, y);
+}
+
+static to_fp32_cuda_t ggml_get_to_fp32_cuda(ggml_type type) {
switch (type) {
case GGML_TYPE_Q4_0:
return dequantize_row_q4_0_cuda;
@@ -241,6 +282,8 @@ dequantize_row_q_cuda_t ggml_get_dequantize_row_q_cuda(ggml_type type) {
return dequantize_row_q5_1_cuda;
case GGML_TYPE_Q8_0:
return dequantize_row_q8_0_cuda;
+ case GGML_TYPE_F16:
+ return convert_fp16_to_fp32_cuda;
default:
return nullptr;
}
@@ -271,7 +314,7 @@ struct cuda_buffer {
static cuda_buffer g_cuda_buffer_pool[MAX_CUDA_BUFFERS];
static std::atomic_flag g_cuda_pool_lock = ATOMIC_FLAG_INIT;
-void * ggml_cuda_pool_malloc(size_t size, size_t * actual_size) {
+static void * ggml_cuda_pool_malloc(size_t size, size_t * actual_size) {
scoped_spin_lock lock(g_cuda_pool_lock);
for (int i = 0; i < MAX_CUDA_BUFFERS; ++i) {
@@ -290,7 +333,7 @@ void * ggml_cuda_pool_malloc(size_t size, size_t * actual_size) {
return ptr;
}
-void ggml_cuda_pool_free(void * ptr, size_t size) {
+static void ggml_cuda_pool_free(void * ptr, size_t size) {
scoped_spin_lock lock(g_cuda_pool_lock);
for (int i = 0; i < MAX_CUDA_BUFFERS; ++i) {
@@ -305,28 +348,55 @@ void ggml_cuda_pool_free(void * ptr, size_t size) {
CUDA_CHECK(cudaFree(ptr));
}
-cublasHandle_t g_cublasH = nullptr;
-cudaStream_t g_cudaStream = nullptr;
-cudaStream_t g_cudaStream2 = nullptr;
-cudaEvent_t g_cudaEvent = nullptr;
+#define GGML_CUDA_MAX_STREAMS 8
+#define GGML_CUDA_MAX_EVENTS 64
+static cublasHandle_t g_cublasH = nullptr;
+static cudaStream_t g_cudaStreams[GGML_CUDA_MAX_STREAMS] = { nullptr };
+static cudaStream_t g_cudaStreams2[GGML_CUDA_MAX_STREAMS] = { nullptr };
+static cudaEvent_t g_cudaEvents[GGML_CUDA_MAX_EVENTS] = { nullptr };
void ggml_init_cublas() {
if (g_cublasH == nullptr) {
- // create cublas handle, bind a stream
- CUBLAS_CHECK(cublasCreate(&g_cublasH));
- CUDA_CHECK(cudaStreamCreateWithFlags(&g_cudaStream, cudaStreamNonBlocking));
- CUBLAS_CHECK(cublasSetStream(g_cublasH, g_cudaStream));
+ // create streams
+ for (int i = 0; i < GGML_CUDA_MAX_STREAMS; ++i) {
+ CUDA_CHECK(cudaStreamCreateWithFlags(&g_cudaStreams[i], cudaStreamNonBlocking));
+ CUDA_CHECK(cudaStreamCreateWithFlags(&g_cudaStreams2[i], cudaStreamNonBlocking));
+ }
+ // create events
+ for (int i = 0; i < GGML_CUDA_MAX_EVENTS; ++i) {
+ CUDA_CHECK(cudaEventCreateWithFlags(&g_cudaEvents[i], cudaEventDisableTiming));
+ }
- // create additional stream and event for synchronization
- CUDA_CHECK(cudaStreamCreateWithFlags(&g_cudaStream2, cudaStreamNonBlocking));
- CUDA_CHECK(cudaEventCreateWithFlags(&g_cudaEvent, cudaEventDisableTiming));
+ // create cublas handle
+ CUBLAS_CHECK(cublasCreate(&g_cublasH));
+ CUBLAS_CHECK(cublasSetMathMode(g_cublasH, CUBLAS_TF32_TENSOR_OP_MATH));
// configure logging to stdout
- // CUBLAS_CHECK(cublasLoggerConfigure(1, 1, 0, NULL));
+ // CUBLAS_CHECK(cublasLoggerConfigure(1, 1, 0, nullptr));
+ }
+}
+
+void * ggml_cuda_host_malloc(size_t size) {
+ if (getenv("GGML_CUDA_NO_PINNED") != nullptr) {
+ return nullptr;
}
+
+ void * ptr = nullptr;
+ cudaError_t err = cudaMallocHost((void **) &ptr, size);
+ if (err != cudaSuccess) {
+ fprintf(stderr, "WARNING: failed to allocate %.2f MB of pinned memory: %s\n",
+ size/1024.0/1024.0, cudaGetErrorString(err));
+ return nullptr;
+ }
+
+ return ptr;
+}
+
+void ggml_cuda_host_free(void * ptr) {
+ CUDA_CHECK(cudaFreeHost(ptr));
}
-cudaError_t ggml_cuda_h2d_tensor_2d(void * dst, const struct ggml_tensor * src, uint64_t i3, uint64_t i2, cudaStream_t stream) {
+static cudaError_t ggml_cuda_h2d_tensor_2d(void * dst, const struct ggml_tensor * src, uint64_t i3, uint64_t i2, cudaStream_t stream) {
const uint64_t ne0 = src->ne[0];
const uint64_t ne1 = src->ne[1];
const uint64_t nb0 = src->nb[0];
@@ -354,22 +424,293 @@ cudaError_t ggml_cuda_h2d_tensor_2d(void * dst, const struct ggml_tensor * src,
}
}
-void * ggml_cuda_host_malloc(size_t size) {
- if (getenv("GGML_CUDA_NO_PINNED") != nullptr) {
- return nullptr;
+static void ggml_cuda_mul_mat_f32(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
+ const int64_t ne00 = src0->ne[0];
+ const int64_t ne01 = src0->ne[1];
+ const int64_t ne02 = src0->ne[2];
+ const int64_t ne03 = src0->ne[3];
+
+ const int64_t ne10 = src1->ne[0];
+ const int64_t ne11 = src1->ne[1];
+
+ const int nb2 = dst->nb[2];
+ const int nb3 = dst->nb[3];
+
+ const float alpha = 1.0f;
+ const float beta = 0.0f;
+ const int x_ne = ne01 * ne00;
+ const int y_ne = ne11 * ne10;
+ const int d_ne = ne11 * ne01;
+ const int n_mm = ne03 * ne02;
+
+ size_t x_size, y_size, d_size;
+ float * d_X = (float *) ggml_cuda_pool_malloc(n_mm * sizeof(float) * x_ne, &x_size);
+ float * d_Y = (float *) ggml_cuda_pool_malloc(n_mm * sizeof(float) * y_ne, &y_size);
+ float * d_D = (float *) ggml_cuda_pool_malloc(n_mm * sizeof(float) * d_ne, &d_size);
+
+ for (int64_t i03 = 0; i03 < ne03; i03++) {
+ for (int64_t i02 = 0; i02 < ne02; i02++) {
+ int i = i03*ne02 + i02;
+ cudaStream_t cudaStream = g_cudaStreams[i % GGML_CUDA_MAX_STREAMS];
+
+ float * c_X = d_X + i * x_ne;
+ float * c_Y = d_Y + i * y_ne;
+ float * c_D = d_D + i * d_ne;
+
+ // copy data to device
+ CUDA_CHECK(ggml_cuda_h2d_tensor_2d(c_X, src0, i03, i02, cudaStream));
+ CUDA_CHECK(ggml_cuda_h2d_tensor_2d(c_Y, src1, i03, i02, cudaStream));
+
+ // compute
+ CUBLAS_CHECK(cublasSetStream(g_cublasH, cudaStream));
+ CUBLAS_CHECK(
+ cublasSgemm(g_cublasH, CUBLAS_OP_T, CUBLAS_OP_N,
+ ne01, ne11, ne10,
+ &alpha, c_X, ne00,
+ c_Y, ne10,
+ &beta, c_D, ne01));
+
+ // copy dst to host
+ float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
+ CUDA_CHECK(cudaMemcpyAsync(d, c_D, sizeof(float) * d_ne, cudaMemcpyDeviceToHost, cudaStream));
+ }
}
- void * ptr = nullptr;
- cudaError_t err = cudaMallocHost((void **) &ptr, size);
- if (err != cudaSuccess) {
- fprintf(stderr, "WARNING: failed to allocate %.2f MB of pinned memory: %s\n",
- size/1024.0/1024.0, cudaGetErrorString(err));
- return nullptr;
+ CUDA_CHECK(cudaDeviceSynchronize());
+ ggml_cuda_pool_free(d_X, x_size);
+ ggml_cuda_pool_free(d_Y, y_size);
+ ggml_cuda_pool_free(d_D, d_size);
+}
+
+static void ggml_cuda_mul_mat_f16(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, void * wdata, size_t /* wsize */) {
+ const int64_t ne00 = src0->ne[0];
+ const int64_t ne01 = src0->ne[1];
+ const int64_t ne02 = src0->ne[2];
+ const int64_t ne03 = src0->ne[3];
+
+ const int64_t ne10 = src1->ne[0];
+ const int64_t ne11 = src1->ne[1];
+
+ const int nb10 = src1->nb[0];
+ const int nb11 = src1->nb[1];
+ const int nb12 = src1->nb[2];
+ const int nb13 = src1->nb[3];
+
+ const int nb2 = dst->nb[2];
+ const int nb3 = dst->nb[3];
+
+ const float alpha = 1.0f;
+ const float beta = 0.0f;
+ const int x_ne = ne01 * ne00;
+ const int y_ne = ne11 * ne10;
+ const int d_ne = ne11 * ne01;
+ const int n_mm = ne03 * ne02;
+
+ size_t x_size, y_size, d_size;
+ half * d_X = (half *) ggml_cuda_pool_malloc(n_mm * sizeof(half) * x_ne, &x_size);
+ half * d_Y = (half *) ggml_cuda_pool_malloc(n_mm * sizeof(half) * y_ne, &y_size);
+ float * d_D = (float *) ggml_cuda_pool_malloc(n_mm * sizeof(float) * d_ne, &d_size);
+
+ bool src1_cont_rows = nb10 == sizeof(float);
+ bool src1_cont_cols = (size_t)nb11 == ne11*sizeof(float);
+
+ for (int64_t i03 = 0; i03 < ne03; i03++) {
+ for (int64_t i02 = 0; i02 < ne02; i02++) {
+ int i = i03*ne02 + i02;
+ cudaStream_t cudaStream = g_cudaStreams[i % GGML_CUDA_MAX_STREAMS];
+
+ half * c_X = d_X + i * x_ne;
+ half * c_Y = d_Y + i * y_ne;
+ float * c_D = d_D + i * d_ne;
+
+ // copy src0 to device
+ CUDA_CHECK(ggml_cuda_h2d_tensor_2d(c_X, src0, i03, i02, cudaStream));
+
+ // convert src1 to fp16
+ // TODO: use multiple threads
+ ggml_fp16_t * const tmp = (ggml_fp16_t *) wdata + (ne11 * ne10) * (i03 * ne02 + i02);
+ char * src1i = (char *) src1->data + i03*nb13 + i02*nb12;
+ if (src1_cont_rows) {
+ if (src1_cont_cols) {
+ ggml_fp32_to_fp16_row((float *) src1i, tmp, ne10*ne11);
+ }
+ else {
+ for (int64_t i01 = 0; i01 < ne11; i01++) {
+ ggml_fp32_to_fp16_row((float *) (src1i + i01*nb11), tmp + i01*ne10, ne10);
+ }
+ }
+ }
+ else {
+ for (int64_t i01 = 0; i01 < ne11; i01++) {
+ for (int64_t i00 = 0; i00 < ne10; i00++) {
+ // very slow due to no inlining
+ tmp[i01*ne10 + i00] = ggml_fp32_to_fp16(*(float *) (src1i + i01*nb11 + i00*nb10));
+ }
+ }
+ }
+
+ // copy src1 to device
+ CUDA_CHECK(cudaMemcpyAsync(c_Y, tmp, sizeof(half) * y_ne, cudaMemcpyHostToDevice, cudaStream));
+
+ // compute
+ CUBLAS_CHECK(cublasSetStream(g_cublasH, cudaStream));
+ CUBLAS_CHECK(
+ cublasGemmEx(g_cublasH, CUBLAS_OP_T, CUBLAS_OP_N,
+ ne01, ne11, ne10,
+ &alpha, c_X, CUDA_R_16F, ne00,
+ c_Y, CUDA_R_16F, ne10,
+ &beta, c_D, CUDA_R_32F, ne01,
+ CUBLAS_COMPUTE_32F_FAST_16F,
+ CUBLAS_GEMM_DEFAULT));
+
+ // copy dst to host
+ float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
+ CUDA_CHECK(cudaMemcpyAsync(d, c_D, sizeof(float) * d_ne, cudaMemcpyDeviceToHost, cudaStream));
+ }
}
- return ptr;
+ CUDA_CHECK(cudaDeviceSynchronize());
+ ggml_cuda_pool_free(d_X, x_size);
+ ggml_cuda_pool_free(d_Y, y_size);
+ ggml_cuda_pool_free(d_D, d_size);
}
-void ggml_cuda_host_free(void * ptr) {
- CUDA_CHECK(cudaFreeHost(ptr));
+static void ggml_cuda_mul_mat_q_f32(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
+ const int64_t ne00 = src0->ne[0];
+ const int64_t ne01 = src0->ne[1];
+ const int64_t ne02 = src0->ne[2];
+ const int64_t ne03 = src0->ne[3];
+
+ const int64_t ne10 = src1->ne[0];
+ const int64_t ne11 = src1->ne[1];
+
+ const int nb2 = dst->nb[2];
+ const int nb3 = dst->nb[3];
+ const ggml_type type = src0->type;
+
+ const float alpha = 1.0f;
+ const float beta = 0.0f;
+ const int x_ne = ne01 * ne00;
+ const int y_ne = ne11 * ne10;
+ const int d_ne = ne11 * ne01;
+ const int n_mm = ne03 * ne02;
+ const size_t q_sz = ggml_type_size(type) * x_ne / ggml_blck_size(type);
+
+ size_t x_size, y_size, d_size, q_size;
+ float * d_X = (float *) ggml_cuda_pool_malloc(n_mm * sizeof(float) * x_ne, &x_size);
+ float * d_Y = (float *) ggml_cuda_pool_malloc(n_mm * sizeof(float) * y_ne, &y_size);
+ float * d_D = (float *) ggml_cuda_pool_malloc(n_mm * sizeof(float) * d_ne, &d_size);
+ char * d_Q = (char *) ggml_cuda_pool_malloc(n_mm * q_sz, &q_size);
+
+ const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(type);
+ GGML_ASSERT(to_fp32_cuda != nullptr);
+
+ for (int64_t i03 = 0; i03 < ne03; i03++) {
+ for (int64_t i02 = 0; i02 < ne02; i02++) {
+ int i = i03*ne02 + i02;
+ cudaStream_t cudaStream = g_cudaStreams[i % GGML_CUDA_MAX_STREAMS];
+ cudaStream_t cudaStream2 = g_cudaStreams2[i % GGML_CUDA_MAX_STREAMS];
+ cudaEvent_t cudaEvent = g_cudaEvents[i % GGML_CUDA_MAX_EVENTS];
+
+ float * c_X = d_X + i * x_ne;
+ float * c_Y = d_Y + i * y_ne;
+ float * c_D = d_D + i * d_ne;
+ char * c_Q = d_Q + i * q_sz;
+
+ // copy src0 and convert to fp32 on device
+ CUDA_CHECK(ggml_cuda_h2d_tensor_2d(c_Q, src0, i03, i02, cudaStream2));
+ to_fp32_cuda(c_Q, c_X, x_ne, cudaStream2);
+ CUDA_CHECK(cudaGetLastError());
+ CUDA_CHECK(cudaEventRecord(cudaEvent, cudaStream2));
+
+ // copy src1 to device
+ CUDA_CHECK(ggml_cuda_h2d_tensor_2d(c_Y, src1, i03, i02, cudaStream));
+
+ // wait for conversion
+ CUDA_CHECK(cudaStreamWaitEvent(cudaStream, cudaEvent, 0));
+
+ // compute
+ CUBLAS_CHECK(cublasSetStream(g_cublasH, cudaStream));
+ CUBLAS_CHECK(
+ cublasSgemm(g_cublasH, CUBLAS_OP_T, CUBLAS_OP_N,
+ ne01, ne11, ne10,
+ &alpha, c_X, ne00,
+ c_Y, ne10,
+ &beta, c_D, ne01));
+
+ // copy dst to host
+ float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
+ CUDA_CHECK(cudaMemcpyAsync(d, c_D, sizeof(float) * d_ne, cudaMemcpyDeviceToHost, cudaStream));
+ }
+ }
+
+ CUDA_CHECK(cudaDeviceSynchronize());
+ ggml_cuda_pool_free(d_X, x_size);
+ ggml_cuda_pool_free(d_Y, y_size);
+ ggml_cuda_pool_free(d_D, d_size);
+ ggml_cuda_pool_free(d_Q, q_size);
+}
+
+bool ggml_cuda_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) {
+ const int64_t ne10 = src1->ne[0];
+
+ const int64_t ne0 = dst->ne[0];
+ const int64_t ne1 = dst->ne[1];
+
+ // TODO: find the optimal values for these
+ if ((src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) &&
+ src1->type == GGML_TYPE_F32 &&
+ dst->type == GGML_TYPE_F32 &&
+ (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
+
+ return true;
+ }
+
+ return false;
+}
+
+bool ggml_cuda_mul_mat_use_f16(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * /* dst */) {
+ size_t src0_sz = ggml_nbytes(src0);
+ size_t src1_sz = ggml_nbytes(src1);
+
+ // mul_mat_q: src0 is converted to fp32 on device
+ size_t mul_mat_q_transfer = src0_sz + src1_sz;
+
+ // mul_mat_f16: src1 is converted to fp16 on cpu
+ size_t mul_mat_f16_transfer = src0_sz + sizeof(half) * ggml_nelements(src1);
+
+ // choose the smaller one to transfer to the device
+ // TODO: this is not always the best choice due to the overhead of converting to fp16
+ return mul_mat_f16_transfer < mul_mat_q_transfer;
+}
+
+void ggml_cuda_mul_mat(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, void * wdata, size_t wsize) {
+ GGML_ASSERT(ggml_cuda_can_mul_mat(src0, src1, dst));
+
+ if (src0->type == GGML_TYPE_F32) {
+ ggml_cuda_mul_mat_f32(src0, src1, dst);
+ }
+ else if (src0->type == GGML_TYPE_F16) {
+ if (ggml_cuda_mul_mat_use_f16(src0, src1, dst)) {
+ ggml_cuda_mul_mat_f16(src0, src1, dst, wdata, wsize);
+ }
+ else {
+ ggml_cuda_mul_mat_q_f32(src0, src1, dst);
+ }
+ }
+ else if (ggml_is_quantized(src0->type)) {
+ ggml_cuda_mul_mat_q_f32(src0, src1, dst);
+ }
+ else {
+ GGML_ASSERT(false);
+ }
+}
+
+size_t ggml_cuda_mul_mat_get_wsize(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) {
+ if (ggml_cuda_mul_mat_use_f16(src0, src1, dst)) {
+ return ggml_nelements(src1) * sizeof(ggml_fp16_t);
+ }
+ else {
+ return 0;
+ }
}