aboutsummaryrefslogtreecommitdiff
path: root/ggml-cuda.cu
diff options
context:
space:
mode:
Diffstat (limited to 'ggml-cuda.cu')
-rw-r--r--ggml-cuda.cu3411
1 files changed, 3091 insertions, 320 deletions
diff --git a/ggml-cuda.cu b/ggml-cuda.cu
index 89e69bd..6390b11 100644
--- a/ggml-cuda.cu
+++ b/ggml-cuda.cu
@@ -13,6 +13,9 @@
#include "ggml-cuda.h"
#include "ggml.h"
+#define MIN_CC_DP4A 610 // minimum compute capability for __dp4a, an intrinsic for byte-wise dot products
+#define CC_TURING 700
+
#if defined(_MSC_VER)
#pragma warning(disable: 4244 4267) // possible loss of data
#endif
@@ -50,13 +53,41 @@ static_assert(sizeof(half) == sizeof(ggml_fp16_t), "wrong fp16 size");
} while (0)
#endif // CUDART_VERSION >= 11
-#ifdef GGML_CUDA_DMMV_F16
+#ifdef GGML_CUDA_F16
typedef half dfloat; // dequantize float
typedef half2 dfloat2;
#else
typedef float dfloat; // dequantize float
typedef float2 dfloat2;
-#endif //GGML_CUDA_DMMV_F16
+#endif //GGML_CUDA_F16
+
+static __device__ __forceinline__ int get_int_from_int8(const int8_t * x8, const int & i32) {
+ const uint16_t * x16 = (uint16_t *) (x8 + sizeof(int) * i32); // assume at least 2 byte alignment
+
+ int x32 = 0;
+ x32 |= x16[0] << 0;
+ x32 |= x16[1] << 16;
+
+ return x32;
+}
+
+static __device__ __forceinline__ int get_int_from_uint8(const uint8_t * x8, const int & i32) {
+ const uint16_t * x16 = (uint16_t *) (x8 + sizeof(int) * i32); // assume at least 2 byte alignment
+
+ int x32 = 0;
+ x32 |= x16[0] << 0;
+ x32 |= x16[1] << 16;
+
+ return x32;
+}
+
+static __device__ __forceinline__ int get_int_from_int8_aligned(const int8_t * x8, const int & i32) {
+ return *((int *) (x8 + sizeof(int) * i32)); // assume at least 4 byte alignment
+}
+
+static __device__ __forceinline__ int get_int_from_uint8_aligned(const uint8_t * x8, const int & i32) {
+ return *((int *) (x8 + sizeof(int) * i32)); // assume at least 4 byte alignment
+}
typedef void (*dequantize_kernel_t)(const void * vx, const int ib, const int iqs, dfloat2 & v);
typedef void (*to_fp32_cuda_t)(const void * __restrict__ x, float * __restrict__ y, int k, cudaStream_t stream);
@@ -74,7 +105,7 @@ typedef void (*ggml_cuda_op_t)(
#define QK4_0 32
#define QR4_0 2
-#define QI4_0 4
+#define QI4_0 (QK4_0 / (4 * QR4_0))
typedef struct {
half d; // delta
uint8_t qs[QK4_0 / 2]; // nibbles / quants
@@ -83,17 +114,16 @@ static_assert(sizeof(block_q4_0) == sizeof(ggml_fp16_t) + QK4_0 / 2, "wrong q4_0
#define QK4_1 32
#define QR4_1 2
-#define QI4_1 4
+#define QI4_1 (QK4_1 / (4 * QR4_1))
typedef struct {
- half d; // delta
- half m; // min
+ half2 dm; // dm.x = delta, dm.y = min
uint8_t qs[QK4_1 / 2]; // nibbles / quants
} block_q4_1;
static_assert(sizeof(block_q4_1) == sizeof(ggml_fp16_t) * 2 + QK4_1 / 2, "wrong q4_1 block size/padding");
#define QK5_0 32
#define QR5_0 2
-#define QI5_0 4
+#define QI5_0 (QK5_0 / (4 * QR5_0))
typedef struct {
half d; // delta
uint8_t qh[4]; // 5-th bit of quants
@@ -103,10 +133,9 @@ static_assert(sizeof(block_q5_0) == sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5
#define QK5_1 32
#define QR5_1 2
-#define QI5_1 4
+#define QI5_1 (QK5_1 / (4 * QR5_1))
typedef struct {
- half d; // delta
- half m; // min
+ half2 dm; // dm.x = delta, dm.y = min
uint8_t qh[4]; // 5-th bit of quants
uint8_t qs[QK5_1 / 2]; // nibbles / quants
} block_q5_1;
@@ -114,7 +143,7 @@ static_assert(sizeof(block_q5_1) == 2 * sizeof(ggml_fp16_t) + sizeof(uint32_t) +
#define QK8_0 32
#define QR8_0 1
-#define QI8_0 8
+#define QI8_0 (QK8_0 / (4 * QR8_0))
typedef struct {
half d; // delta
int8_t qs[QK8_0]; // quants
@@ -123,15 +152,21 @@ static_assert(sizeof(block_q8_0) == sizeof(ggml_fp16_t) + QK8_0, "wrong q8_0 blo
#define QK8_1 32
#define QR8_1 1
-#define QI8_1 8
+#define QI8_1 (QK8_1 / (4 * QR8_1))
typedef struct {
- half d; // delta
- half s; // unquantized sum
+ half2 ds; // ds.x = delta, ds.y = sum
int8_t qs[QK8_0]; // quants
} block_q8_1;
static_assert(sizeof(block_q8_1) == 2*sizeof(ggml_fp16_t) + QK8_0, "wrong q8_1 block size/padding");
-typedef float (*vec_dot_q_cuda_t)(const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int iqs);
+typedef float (*vec_dot_q_cuda_t)(const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs);
+typedef void (*allocate_tiles_cuda_t)(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc);
+typedef void (*load_tiles_cuda_t)(
+ const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
+ int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row);
+typedef float (*vec_dot_q_mul_mat_cuda_t)(
+ const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
+ const int * __restrict__ y_qs, const half2 * __restrict__ y_ms, const int & i, const int & j, const int & k);
//================================= k-quants
@@ -143,14 +178,17 @@ typedef float (*vec_dot_q_cuda_t)(const void * __restrict__ vbq, const block_q8_
#define K_SCALE_SIZE 12
#endif
+#define QR2_K 4
+#define QI2_K (QK_K / (4*QR2_K))
typedef struct {
uint8_t scales[QK_K/16]; // scales and mins, quantized with 4 bits
uint8_t qs[QK_K/4]; // quants
- half d; // super-block scale for quantized scales
- half dmin; // super-block scale for quantized mins
+ half2 dm; // super-block scale for quantized scales/mins
} block_q2_K;
static_assert(sizeof(block_q2_K) == 2*sizeof(ggml_fp16_t) + QK_K/16 + QK_K/4, "wrong q2_K block size/padding");
+#define QR3_K 4
+#define QI3_K (QK_K / (4*QR3_K))
typedef struct {
uint8_t hmask[QK_K/8]; // quants - high bit
uint8_t qs[QK_K/4]; // quants - low 2 bits
@@ -163,6 +201,8 @@ typedef struct {
} block_q3_K;
//static_assert(sizeof(block_q3_K) == sizeof(ggml_fp16_t) + QK_K / 4 + QK_K / 8 + K_SCALE_SIZE, "wrong q3_K block size/padding");
+#define QR4_K 2
+#define QI4_K (QK_K / (4*QR4_K))
#ifdef GGML_QKK_64
typedef struct {
half d[2]; // super-block scales/mins
@@ -172,14 +212,15 @@ typedef struct {
static_assert(sizeof(block_q4_K) == 2*sizeof(ggml_fp16_t) + QK_K/2 + 2, "wrong q4_K block size/padding");
#else
typedef struct {
- half d; // super-block scale for quantized scales
- half dmin; // super-block scale for quantized mins
+ half2 dm; // super-block scale for quantized scales/mins
uint8_t scales[3*QK_K/64]; // scales, quantized with 6 bits
uint8_t qs[QK_K/2]; // 4--bit quants
} block_q4_K;
static_assert(sizeof(block_q4_K) == 2*sizeof(ggml_fp16_t) + 3*QK_K/64 + QK_K/2, "wrong q4_K block size/padding");
#endif
+#define QR5_K 2
+#define QI5_K (QK_K / (4*QR5_K))
#ifdef GGML_QKK_64
typedef struct {
half d; // super-block scale
@@ -190,15 +231,16 @@ typedef struct {
static_assert(sizeof(block_q5_K) == sizeof(ggml_fp16_t) + QK_K/2 + QK_K/8 + QK_K/16, "wrong q5_K block size/padding");
#else
typedef struct {
- half d; // super-block scale for quantized scales
- half dmin; // super-block scale for quantized mins
- uint8_t scales[K_SCALE_SIZE]; // scales and mins, quantized with 6 bits
- uint8_t qh[QK_K/8]; // quants, high bit
- uint8_t qs[QK_K/2]; // quants, low 4 bits
+ half2 dm; // super-block scale for quantized scales/mins
+ uint8_t scales[K_SCALE_SIZE]; // scales and mins, quantized with 6 bits
+ uint8_t qh[QK_K/8]; // quants, high bit
+ uint8_t qs[QK_K/2]; // quants, low 4 bits
} block_q5_K;
static_assert(sizeof(block_q5_K) == 2*sizeof(ggml_fp16_t) + K_SCALE_SIZE + QK_K/2 + QK_K/8, "wrong q5_K block size/padding");
#endif
+#define QR6_K 2
+#define QI6_K (QK_K / (4*QR6_K))
typedef struct {
uint8_t ql[QK_K/2]; // quants, lower 4 bits
uint8_t qh[QK_K/4]; // quants, upper 2 bits
@@ -208,10 +250,11 @@ typedef struct {
static_assert(sizeof(block_q6_K) == sizeof(ggml_fp16_t) + 13*QK_K/16, "wrong q6_K block size/padding");
#define WARP_SIZE 32
-#define MATRIX_ROW_PADDING 256 // last row of quant. matrices is a multiple of this to avoid out-of-bounds memory accesses
+#define MATRIX_ROW_PADDING 512 // last row of quant. matrices is a multiple of this to avoid out-of-bounds memory accesses
#define CUDA_ADD_BLOCK_SIZE 256
#define CUDA_MUL_BLOCK_SIZE 256
+#define CUDA_GELU_BLOCK_SIZE 256
#define CUDA_SILU_BLOCK_SIZE 256
#define CUDA_CPY_BLOCK_SIZE 32
#define CUDA_SCALE_BLOCK_SIZE 256
@@ -239,13 +282,27 @@ struct ggml_tensor_extra_gpu {
cudaEvent_t events[GGML_CUDA_MAX_DEVICES]; // events for synchronizing multiple GPUs
};
-static __global__ void add_f32(const float * x, const float * y, float * dst, const int k) {
+static int g_device_count = -1;
+static int g_main_device = 0;
+static int g_compute_capabilities[GGML_CUDA_MAX_DEVICES];
+static float g_tensor_split[GGML_CUDA_MAX_DEVICES] = {0};
+static bool g_mul_mat_q = false;
+
+static void * g_scratch_buffer = nullptr;
+static size_t g_scratch_size = 1024*1024*1024; // 1 GB by default
+static size_t g_scratch_offset = 0;
+
+static cublasHandle_t g_cublas_handles[GGML_CUDA_MAX_DEVICES] = {nullptr};
+
+static cudaStream_t g_cudaStreams_main[GGML_CUDA_MAX_DEVICES] = { nullptr };
+
+static __global__ void add_f32(const float * x, const float * y, float * dst, const int kx, const int ky) {
const int i = blockDim.x*blockIdx.x + threadIdx.x;
- if (i >= k) {
+ if (i >= kx) {
return;
}
- dst[i] = x[i] + y[i];
+ dst[i] = x[i] + y[i%ky];
}
static __global__ void add_f16_f32_f16(const half * x, const float * y, half * dst, const int k) {
@@ -266,6 +323,19 @@ static __global__ void mul_f32(const float * x, const float * y, float * dst, co
dst[i] = x[i] * y[i%ky];
}
+static __global__ void gelu_f32(const float * x, float * dst, const int k) {
+ const float GELU_COEF_A = 0.044715f;
+ const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
+ const int i = blockDim.x*blockIdx.x + threadIdx.x;
+
+ if (i >= k) {
+ return;
+ }
+
+ float xi = x[i];
+ dst[i] = 0.5f*xi*(1.0f + tanhf(SQRT_2_OVER_PI*xi*(1.0f + GELU_COEF_A*xi*xi)));
+}
+
static __global__ void silu_f32(const float * x, float * dst, const int k) {
const int i = blockDim.x*blockIdx.x + threadIdx.x;
@@ -306,12 +376,10 @@ static __global__ void norm_f32(const float * x, float * dst, const int ncols) {
}
}
-static __global__ void rms_norm_f32(const float * x, float * dst, const int ncols) {
+static __global__ void rms_norm_f32(const float * x, float * dst, const int ncols, const float eps) {
const int row = blockIdx.x*blockDim.y + threadIdx.y;
const int tid = threadIdx.x;
- const float eps = 1e-6f;
-
float tmp = 0.0f; // partial sum for thread in warp
for (int col = tid; col < ncols; col += WARP_SIZE) {
@@ -343,33 +411,33 @@ static __device__ __forceinline__ void dequantize_q4_0(const void * vx, const in
v.x = vui & 0xF;
v.y = vui >> 4;
-#ifdef GGML_CUDA_DMMV_F16
+#ifdef GGML_CUDA_F16
v = __hsub2(v, {8.0f, 8.0f});
v = __hmul2(v, {d, d});
#else
v.x = (v.x - 8.0f) * d;
v.y = (v.y - 8.0f) * d;
-#endif // GGML_CUDA_DMMV_F16
+#endif // GGML_CUDA_F16
}
static __device__ __forceinline__ void dequantize_q4_1(const void * vx, const int ib, const int iqs, dfloat2 & v){
const block_q4_1 * x = (const block_q4_1 *) vx;
- const dfloat d = x[ib].d;
- const dfloat m = x[ib].m;
+ const dfloat d = x[ib].dm.x;
+ const dfloat m = x[ib].dm.y;
const int vui = x[ib].qs[iqs];
v.x = vui & 0xF;
v.y = vui >> 4;
-#ifdef GGML_CUDA_DMMV_F16
+#ifdef GGML_CUDA_F16
v = __hmul2(v, {d, d});
v = __hadd2(v, {m, m});
#else
v.x = (v.x * d) + m;
v.y = (v.y * d) + m;
-#endif // GGML_CUDA_DMMV_F16
+#endif // GGML_CUDA_F16
}
static __device__ __forceinline__ void dequantize_q5_0(const void * vx, const int ib, const int iqs, dfloat2 & v){
@@ -386,20 +454,20 @@ static __device__ __forceinline__ void dequantize_q5_0(const void * vx, const in
v.x = ((x[ib].qs[iqs] & 0xf) | xh_0);
v.y = ((x[ib].qs[iqs] >> 4) | xh_1);
-#ifdef GGML_CUDA_DMMV_F16
+#ifdef GGML_CUDA_F16
v = __hsub2(v, {16.0f, 16.0f});
v = __hmul2(v, {d, d});
#else
v.x = (v.x - 16.0f) * d;
v.y = (v.y - 16.0f) * d;
-#endif // GGML_CUDA_DMMV_F16
+#endif // GGML_CUDA_F16
}
static __device__ __forceinline__ void dequantize_q5_1(const void * vx, const int ib, const int iqs, dfloat2 & v){
const block_q5_1 * x = (const block_q5_1 *) vx;
- const dfloat d = x[ib].d;
- const dfloat m = x[ib].m;
+ const dfloat d = x[ib].dm.x;
+ const dfloat m = x[ib].dm.y;
uint32_t qh;
memcpy(&qh, x[ib].qh, sizeof(qh));
@@ -410,13 +478,13 @@ static __device__ __forceinline__ void dequantize_q5_1(const void * vx, const in
v.x = ((x[ib].qs[iqs] & 0xf) | xh_0);
v.y = ((x[ib].qs[iqs] >> 4) | xh_1);
-#ifdef GGML_CUDA_DMMV_F16
+#ifdef GGML_CUDA_F16
v = __hmul2(v, {d, d});
v = __hadd2(v, {m, m});
#else
v.x = (v.x * d) + m;
v.y = (v.y * d) + m;
-#endif // GGML_CUDA_DMMV_F16
+#endif // GGML_CUDA_F16
}
static __device__ __forceinline__ void dequantize_q8_0(const void * vx, const int ib, const int iqs, dfloat2 & v){
@@ -427,12 +495,12 @@ static __device__ __forceinline__ void dequantize_q8_0(const void * vx, const in
v.x = x[ib].qs[iqs + 0];
v.y = x[ib].qs[iqs + 1];
-#ifdef GGML_CUDA_DMMV_F16
+#ifdef GGML_CUDA_F16
v = __hmul2(v, {d, d});
#else
v.x *= d;
v.y *= d;
-#endif // GGML_CUDA_DMMV_F16
+#endif // GGML_CUDA_F16
}
//================================== k-quants
@@ -451,8 +519,8 @@ static __global__ void dequantize_block_q2_K(const void * __restrict__ vx, float
const uint8_t q = x[i].qs[32*n + l];
float * y = yy + i*QK_K + 128*n;
- float dall = x[i].d;
- float dmin = x[i].dmin;
+ float dall = x[i].dm.x;
+ float dmin = x[i].dm.y;
y[l+ 0] = dall * (x[i].scales[is+0] & 0xF) * ((q >> 0) & 3) - dmin * (x[i].scales[is+0] >> 4);
y[l+32] = dall * (x[i].scales[is+2] & 0xF) * ((q >> 2) & 3) - dmin * (x[i].scales[is+2] >> 4);
y[l+64] = dall * (x[i].scales[is+4] & 0xF) * ((q >> 4) & 3) - dmin * (x[i].scales[is+4] >> 4);
@@ -462,8 +530,8 @@ static __global__ void dequantize_block_q2_K(const void * __restrict__ vx, float
const int il = tid%16; // 0...15
const uint8_t q = x[i].qs[il] >> (2*is);
float * y = yy + i*QK_K + 16*is + il;
- float dall = x[i].d;
- float dmin = x[i].dmin;
+ float dall = x[i].dm.x;
+ float dmin = x[i].dm.y;
y[ 0] = dall * (x[i].scales[is+0] & 0xF) * ((q >> 0) & 3) - dmin * (x[i].scales[is+0] >> 4);
y[32] = dall * (x[i].scales[is+2] & 0xF) * ((q >> 4) & 3) - dmin * (x[i].scales[is+2] >> 4);
#endif
@@ -549,8 +617,8 @@ static __global__ void dequantize_block_q4_K(const void * __restrict__ vx, float
float * y = yy + i*QK_K + 64*il + n*ir;
- const float dall = x[i].d;
- const float dmin = x[i].dmin;
+ const float dall = x[i].dm.x;
+ const float dmin = x[i].dm.y;
const uint8_t * q = x[i].qs + 32*il + n*ir;
@@ -588,8 +656,8 @@ static __global__ void dequantize_block_q5_K(const void * __restrict__ vx, float
float * y = yy + i*QK_K + 64*il + 2*ir;
- const float dall = x[i].d;
- const float dmin = x[i].dmin;
+ const float dall = x[i].dm.x;
+ const float dmin = x[i].dm.y;
const uint8_t * ql = x[i].qs + 32*il + 2*ir;
const uint8_t * qh = x[i].qh + 2*ir;
@@ -701,8 +769,8 @@ static __global__ void dequantize_mul_mat_vec_q2_k(const void * __restrict__ vx,
const float * y = yy + i * QK_K + y_offset;
const uint8_t * q = x[i].qs + q_offset;
- const float dall = x[i].d;
- const float dmin = x[i].dmin;
+ const float dall = x[i].dm.x;
+ const float dmin = x[i].dm.y;
const uint32_t * a = (const uint32_t *)(x[i].scales + s_offset);
aux[0] = a[0] & 0x0f0f0f0f;
@@ -744,9 +812,7 @@ static __global__ void dequantize_mul_mat_vec_q2_k(const void * __restrict__ vx,
uaux[0] = s[0] & 0x0f0f0f0f;
uaux[1] = (s[0] >> 4) & 0x0f0f0f0f;
- const half2 * dh = (const half2 *)&x[i].d;
-
- const float2 dall = __half22float2(dh[0]);
+ const float2 dall = __half22float2(x[i].dm);
float sum1 = 0, sum2 = 0;
for (int l = 0; l < K_QUANTS_PER_ITERATION; ++l) {
@@ -909,17 +975,23 @@ static __global__ void dequantize_mul_mat_vec_q4_k(const void * __restrict__ vx,
uint16_t aux[4];
const uint8_t * sc = (const uint8_t *)aux;
+#if K_QUANTS_PER_ITERATION == 2
+ uint32_t q32[4];
+ const uint8_t * q4 = (const uint8_t *)q32;
+#else
+ uint16_t q16[4];
+ const uint8_t * q4 = (const uint8_t *)q16;
+#endif
+
float tmp = 0; // partial sum for thread in warp
for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
- const uint8_t * q1 = x[i].qs + q_offset;
- const uint8_t * q2 = q1 + 64;
const float * y1 = yy + i*QK_K + y_offset;
const float * y2 = y1 + 128;
- const float dall = x[i].d;
- const float dmin = x[i].dmin;
+ const float dall = x[i].dm.x;
+ const float dmin = x[i].dm.y;
const uint16_t * a = (const uint16_t *)x[i].scales;
aux[0] = a[im+0] & kmask1;
@@ -927,14 +999,41 @@ static __global__ void dequantize_mul_mat_vec_q4_k(const void * __restrict__ vx,
aux[2] = ((a[im+4] >> 0) & kmask2) | ((a[im+0] & kmask3) >> 2);
aux[3] = ((a[im+4] >> 4) & kmask2) | ((a[im+2] & kmask3) >> 2);
+#if K_QUANTS_PER_ITERATION == 2
+ const uint32_t * q1 = (const uint32_t *)(x[i].qs + q_offset);
+ const uint32_t * q2 = q1 + 16;
+
+ q32[0] = q1[0] & 0x0f0f0f0f;
+ q32[1] = q1[0] & 0xf0f0f0f0;
+ q32[2] = q2[0] & 0x0f0f0f0f;
+ q32[3] = q2[0] & 0xf0f0f0f0;
+
float4 s = {0.f, 0.f, 0.f, 0.f};
float smin = 0;
- for (int l = 0; l < n; ++l) {
- s.x += y1[l] * (q1[l] & 0xF); s.y += y1[l+32] * (q1[l] >> 4);
- s.z += y2[l] * (q2[l] & 0xF); s.w += y2[l+32] * (q2[l] >> 4);
+ for (int l = 0; l < 4; ++l) {
+ s.x += y1[l] * q4[l+0]; s.y += y1[l+32] * q4[l+ 4];
+ s.z += y2[l] * q4[l+8]; s.w += y2[l+32] * q4[l+12];
smin += y1[l] * sc[2] + y1[l+32] * sc[3] + y2[l] * sc[6] + y2[l+32] * sc[7];
}
- tmp += dall * (s.x * sc[0] + s.y * sc[1] + s.z * sc[4] + s.w * sc[5]) - dmin * smin;
+ tmp += dall * (s.x * sc[0] + s.y * sc[1] * 1.f/16.f + s.z * sc[4] + s.w * sc[5] * 1.f/16.f) - dmin * smin;
+#else
+ const uint16_t * q1 = (const uint16_t *)(x[i].qs + q_offset);
+ const uint16_t * q2 = q1 + 32;
+
+ q16[0] = q1[0] & 0x0f0f;
+ q16[1] = q1[0] & 0xf0f0;
+ q16[2] = q2[0] & 0x0f0f;
+ q16[3] = q2[0] & 0xf0f0;
+
+ float4 s = {0.f, 0.f, 0.f, 0.f};
+ float smin = 0;
+ for (int l = 0; l < 2; ++l) {
+ s.x += y1[l] * q4[l+0]; s.y += y1[l+32] * q4[l+2];
+ s.z += y2[l] * q4[l+4]; s.w += y2[l+32] * q4[l+6];
+ smin += y1[l] * sc[2] + y1[l+32] * sc[3] + y2[l] * sc[6] + y2[l+32] * sc[7];
+ }
+ tmp += dall * (s.x * sc[0] + s.y * sc[1] * 1.f/16.f + s.z * sc[4] + s.w * sc[5] * 1.f/16.f) - dmin * smin;
+#endif
}
#else
@@ -1014,16 +1113,18 @@ static __global__ void dequantize_mul_mat_vec_q5_k(const void * __restrict__ vx,
uint16_t aux[4];
const uint8_t * sc = (const uint8_t *)aux;
+ uint16_t q16[8];
+ const uint8_t * q4 = (const uint8_t *)q16;
+
for (int i = ix; i < num_blocks_per_row; i += 2) {
const uint8_t * ql1 = x[i].qs + q_offset;
- const uint8_t * ql2 = ql1 + 64;
const uint8_t * qh = x[i].qh + l0;
const float * y1 = yy + i*QK_K + y_offset;
const float * y2 = y1 + 128;
- const float dall = x[i].d;
- const float dmin = x[i].dmin;
+ const float dall = x[i].dm.x;
+ const float dmin = x[i].dm.y;
const uint16_t * a = (const uint16_t *)x[i].scales;
aux[0] = a[im+0] & kmask1;
@@ -1033,15 +1134,25 @@ static __global__ void dequantize_mul_mat_vec_q5_k(const void * __restrict__ vx,
float4 sum = {0.f, 0.f, 0.f, 0.f};
float smin = 0;
+ const uint16_t * q1 = (const uint16_t *)ql1;
+ const uint16_t * q2 = q1 + 32;
+ q16[0] = q1[0] & 0x0f0f;
+ q16[1] = q1[8] & 0x0f0f;
+ q16[2] = (q1[0] >> 4) & 0x0f0f;
+ q16[3] = (q1[8] >> 4) & 0x0f0f;
+ q16[4] = q2[0] & 0x0f0f;
+ q16[5] = q2[8] & 0x0f0f;
+ q16[6] = (q2[0] >> 4) & 0x0f0f;
+ q16[7] = (q2[8] >> 4) & 0x0f0f;
for (int l = 0; l < n; ++l) {
- sum.x += y1[l+ 0] * ((ql1[l+ 0] & 0xF) + (qh[l+ 0] & (hm1 << 0) ? 16 : 0))
- + y1[l+16] * ((ql1[l+16] & 0xF) + (qh[l+16] & (hm1 << 0) ? 16 : 0));
- sum.y += y1[l+32] * ((ql1[l+ 0] >> 4) + (qh[l+ 0] & (hm1 << 1) ? 16 : 0))
- + y1[l+48] * ((ql1[l+16] >> 4) + (qh[l+16] & (hm1 << 1) ? 16 : 0));
- sum.z += y2[l+ 0] * ((ql2[l+ 0] & 0xF) + (qh[l+ 0] & (hm2 << 0) ? 16 : 0))
- + y2[l+16] * ((ql2[l+16] & 0xF) + (qh[l+16] & (hm2 << 0) ? 16 : 0));
- sum.w += y2[l+32] * ((ql2[l+ 0] >> 4) + (qh[l+ 0] & (hm2 << 1) ? 16 : 0))
- + y2[l+48] * ((ql2[l+16] >> 4) + (qh[l+16] & (hm2 << 1) ? 16 : 0));
+ sum.x += y1[l+ 0] * (q4[l +0] + (qh[l+ 0] & (hm1 << 0) ? 16 : 0))
+ + y1[l+16] * (q4[l +2] + (qh[l+16] & (hm1 << 0) ? 16 : 0));
+ sum.y += y1[l+32] * (q4[l +4] + (qh[l+ 0] & (hm1 << 1) ? 16 : 0))
+ + y1[l+48] * (q4[l +6] + (qh[l+16] & (hm1 << 1) ? 16 : 0));
+ sum.z += y2[l+ 0] * (q4[l +8] + (qh[l+ 0] & (hm2 << 0) ? 16 : 0))
+ + y2[l+16] * (q4[l+10] + (qh[l+16] & (hm2 << 0) ? 16 : 0));
+ sum.w += y2[l+32] * (q4[l+12] + (qh[l+ 0] & (hm2 << 1) ? 16 : 0))
+ + y2[l+48] * (q4[l+14] + (qh[l+16] & (hm2 << 1) ? 16 : 0));
smin += (y1[l] + y1[l+16]) * sc[2] + (y1[l+32] + y1[l+48]) * sc[3]
+ (y2[l] + y2[l+16]) * sc[6] + (y2[l+32] + y2[l+48]) * sc[7];
}
@@ -1201,19 +1312,23 @@ static __device__ void convert_f16(const void * vx, const int ib, const int iqs,
v.y = x[ib + iqs + 1];
}
-static __global__ void quantize_q8_1(const float * __restrict__ x, void * __restrict__ vy, const int ndata, const int k) {
- const int i = blockDim.x*blockIdx.x + threadIdx.x;
+static __global__ void quantize_q8_1(const float * __restrict__ x, void * __restrict__ vy, const int kx, const int kx_padded) {
+ const int ix = blockDim.x*blockIdx.x + threadIdx.x;
- if (i >= k) {
+ if (ix >= kx_padded) {
return;
}
+ const int iy = blockDim.y*blockIdx.y + threadIdx.y;
+
+ const int i_padded = iy*kx_padded + ix;
+
block_q8_1 * y = (block_q8_1 *) vy;
- const int ib = i / QK8_1; // block index
- const int iqs = i % QK8_1; // quant index
+ const int ib = i_padded / QK8_1; // block index
+ const int iqs = i_padded % QK8_1; // quant index
- const float xi = i < ndata ? x[i] : 0.0f;
+ const float xi = ix < kx ? x[iy*kx + ix] : 0.0f;
float amax = fabsf(xi);
float sum = xi;
@@ -1232,8 +1347,8 @@ static __global__ void quantize_q8_1(const float * __restrict__ x, void * __rest
return;
}
- y[ib].d = d;
- y[ib].s = sum;
+ y[ib].ds.x = d;
+ y[ib].ds.y = sum;
}
template <int qk, int qr, dequantize_kernel_t dequantize_kernel>
@@ -1257,145 +1372,1876 @@ static __global__ void dequantize_block(const void * __restrict__ vx, float * __
y[iybs + iqs + y_offset] = v.y;
}
-static __device__ __forceinline__ float vec_dot_q4_0_q8_1(const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int iqs) {
-#if __CUDA_ARCH__ >= 610 // lowest compute capability for integer intrinsics
- const block_q4_0 * bq4_0 = (const block_q4_0 *) vbq;
+// VDR = vec dot ratio, how many contiguous integers each thread processes when the vec dot kernel is called
+// MMVQ = mul_mat_vec_q, MMQ = mul_mat_q
+
+#define VDR_Q4_0_Q8_1_MMVQ 2
+#define VDR_Q4_0_Q8_1_MMQ 4
- int vi;
- memcpy(&vi, &bq4_0->qs[sizeof(int) * (iqs + 0)], sizeof(int));
- const int ui0 = *((int *) &bq8_1->qs[sizeof(int) * (iqs + 0)]);
- const int ui1 = *((int *) &bq8_1->qs[sizeof(int) * (iqs + QI4_0)]);
+template <int vdr> static __device__ __forceinline__ float vec_dot_q4_0_q8_1_impl(
+ const int * v, const int * u, const float & d4, const half2 & ds8) {
- const float d = __half2float(bq4_0->d) * __half2float(bq8_1->d);
+#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
+ int sumi = 0;
- // subtract 8 from each quantized value
- const int vi0 = __vsub4((vi >> 0) & 0x0F0F0F0F, 0x08080808);
- const int vi1 = __vsub4((vi >> 4) & 0x0F0F0F0F, 0x08080808);
+#pragma unroll
+ for (int i = 0; i < vdr; ++i) {
+ const int vi0 = (v[i] >> 0) & 0x0F0F0F0F;
+ const int vi1 = (v[i] >> 4) & 0x0F0F0F0F;
+
+ // SIMD dot product of quantized values
+ sumi = __dp4a(vi0, u[2*i+0], sumi);
+ sumi = __dp4a(vi1, u[2*i+1], sumi);
+ }
- // SIMD dot product of quantized values
- int sumi = __dp4a(vi0, ui0, 0);
- sumi = __dp4a(vi1, ui1, sumi);
+ const float2 ds8f = __half22float2(ds8);
- return sumi*d;
+ // second part effectively subtracts 8 from each quant value
+ return d4 * (sumi * ds8f.x - (8*vdr/QI4_0) * ds8f.y);
#else
return 0.0f; // only to satisfy the compiler
-#endif // __CUDA_ARCH__ >= 610
+#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
}
-static __device__ __forceinline__ float vec_dot_q4_1_q8_1(const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int iqs) {
-#if __CUDA_ARCH__ >= 610 // lowest compute capability for integer intrinsics
- const block_q4_1 * bq4_1 = (const block_q4_1 *) vbq;
+#define VDR_Q4_1_Q8_1_MMVQ 2
+#define VDR_Q4_1_Q8_1_MMQ 4
- const int vi = *((int *) &bq4_1->qs[sizeof(int) * (iqs + 0)]);
- const int ui0 = *((int *) &bq8_1->qs[sizeof(int) * (iqs + 0)]);
- const int ui1 = *((int *) &bq8_1->qs[sizeof(int) * (iqs + QI4_1)]);
+template <int vdr> static __device__ __forceinline__ float vec_dot_q4_1_q8_1_impl(
+ const int * v, const int * u, const half2 & dm4, const half2 & ds8) {
- const float d = __half2float(bq4_1->d) * __half2float(bq8_1->d);
- const float m = bq4_1->m;
- const float s = bq8_1->s;
+#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
+ int sumi = 0;
- const int vi0 = (vi >> 0) & 0x0F0F0F0F;
- const int vi1 = (vi >> 4) & 0x0F0F0F0F;
+#pragma unroll
+ for (int i = 0; i < vdr; ++i) {
+ const int vi0 = (v[i] >> 0) & 0x0F0F0F0F;
+ const int vi1 = (v[i] >> 4) & 0x0F0F0F0F;
- // SIMD dot product of quantized values
- int sumi = __dp4a(vi0, ui0, 0);
- sumi = __dp4a(vi1, ui1, sumi);
+ // SIMD dot product of quantized values
+ sumi = __dp4a(vi0, u[2*i+0], sumi);
+ sumi = __dp4a(vi1, u[2*i+1], sumi);
+ }
- return sumi*d + m*s / QI4_1; // scale sum by QI4_1 because there are QI4_1 threads working on this block
+#ifdef GGML_CUDA_F16
+ const float2 tmp = __half22float2(__hmul2(dm4, ds8));
+ const float d4d8 = tmp.x;
+ const float m4s8 = tmp.y;
+#else
+ const float2 dm4f = __half22float2(dm4);
+ const float2 ds8f = __half22float2(ds8);
+ const float d4d8 = dm4f.x * ds8f.x;
+ const float m4s8 = dm4f.y * ds8f.y;
+#endif // GGML_CUDA_F16
+
+ // scale second part of sum by QI8_1/(vdr * QR4_1) to compensate for multiple threads adding it
+ return sumi * d4d8 + m4s8 / (QI8_1 / (vdr * QR4_1));
#else
return 0.0f; // only to satisfy the compiler
-#endif // __CUDA_ARCH__ >= 610
+#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
}
-static __device__ __forceinline__ float vec_dot_q5_0_q8_1(const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int iqs) {
-#if __CUDA_ARCH__ >= 610 // lowest compute capability for integer intrinsics
- const block_q5_0 * bq5_0 = (const block_q5_0 *) vbq;
+#define VDR_Q5_0_Q8_1_MMVQ 2
+#define VDR_Q5_0_Q8_1_MMQ 4
+
+template <int vdr> static __device__ __forceinline__ float vec_dot_q5_0_q8_1_impl(
+ const int * vl, const int * vh, const int * u, const float & d5, const half2 & ds8) {
- int qs;
- memcpy(&qs, &bq5_0->qs[sizeof(int) * (iqs + 0)], sizeof(int));
- const int qh0 = bq5_0->qh[iqs/2 + 0] >> 4*(iqs%2);
- const int qh1 = bq5_0->qh[iqs/2 + 2] >> 4*(iqs%2);
- const int ui0 = *((int *) &bq8_1->qs[sizeof(int) * (iqs + 0)]);
- const int ui1 = *((int *) &bq8_1->qs[sizeof(int) * (iqs + QI5_0)]);
-
- const float d = __half2float(bq5_0->d) * __half2float(bq8_1->d);
-
- int vi0 = (qs >> 0) & 0x0F0F0F0F; // lower 4 qs bits, still need qh0 as 5th bits
- vi0 |= (qh0 << 4) & 0x00000010; // 1 -> 5
- vi0 |= (qh0 << 11) & 0x00001000; // 2 -> 13
- vi0 |= (qh0 << 18) & 0x00100000; // 3 -> 21
- vi0 |= (qh0 << 25) & 0x10000000; // 4 -> 29
- vi0 = __vsub4(vi0, 0x10101010); // subtract 16 from quantized values
- int sumi = __dp4a(vi0, ui0, 0); // SIMD dot product of quantized values
-
- int vi1 = (qs >> 4) & 0x0F0F0F0F; // upper 4 qs bits, still need qh1 as 5th bits
- vi1 |= (qh1 << 4) & 0x00000010; // 1 -> 5
- vi1 |= (qh1 << 11) & 0x00001000; // 2 -> 13
- vi1 |= (qh1 << 18) & 0x00100000; // 3 -> 21
- vi1 |= (qh1 << 25) & 0x10000000; // 4 -> 29
- vi1 = __vsub4(vi1, 0x10101010); // subtract 16 from quantized values
- sumi = __dp4a(vi1, ui1, sumi); // SIMD dot product of quantized values
-
- return sumi*d;
+#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
+ int sumi = 0;
+
+#pragma unroll
+ for (int i = 0; i < vdr; ++i) {
+ int vi0 = (vl[i] >> 0) & 0x0F0F0F0F; // lower 4 qs bits, still need qh as 5th bits
+ vi0 |= (vh[i] << 4) & 0x00000010; // 0 -> 4
+ vi0 |= (vh[i] << 11) & 0x00001000; // 1 -> 12
+ vi0 |= (vh[i] << 18) & 0x00100000; // 2 -> 20
+ vi0 |= (vh[i] << 25) & 0x10000000; // 3 -> 28
+ sumi = __dp4a(vi0, u[2*i+0], sumi); // SIMD dot product of quantized values
+
+ int vi1 = (vl[i] >> 4) & 0x0F0F0F0F; // upper 4 qs bits, still need qh as 5th bits
+ vi1 |= (vh[i] >> 12) & 0x00000010; // 16 -> 4
+ vi1 |= (vh[i] >> 5) & 0x00001000; // 17 -> 12
+ vi1 |= (vh[i] << 2) & 0x00100000; // 18 -> 20
+ vi1 |= (vh[i] << 9) & 0x10000000; // 19 -> 28
+ sumi = __dp4a(vi1, u[2*i+1], sumi); // SIMD dot product of quantized values
+ }
+
+ const float2 ds8f = __half22float2(ds8);
+
+ // second part effectively subtracts 16 from each quant value
+ return d5 * (sumi * ds8f.x - (16*vdr/QI5_0) * ds8f.y);
#else
return 0.0f; // only to satisfy the compiler
-#endif // __CUDA_ARCH__ >= 610
+#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
}
-static __device__ __forceinline__ float vec_dot_q5_1_q8_1(const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int iqs) {
-#if __CUDA_ARCH__ >= 610 // lowest compute capability for integer intrinsics
- const block_q5_1 * bq5_1 = (const block_q5_1 *) vbq;
+#define VDR_Q5_1_Q8_1_MMVQ 2
+#define VDR_Q5_1_Q8_1_MMQ 4
+
+template <int vdr> static __device__ __forceinline__ float vec_dot_q5_1_q8_1_impl(
+ const int * vl, const int * vh, const int * u, const half2 & dm5, const half2 & ds8) {
+
+#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
+ int sumi = 0;
+
+#pragma unroll
+ for (int i = 0; i < vdr; ++i) {
+ int vi0 = (vl[i] >> 0) & 0x0F0F0F0F; // lower 4 qs bits, still need qh as 5th bits
+ vi0 |= (vh[i] << 4) & 0x00000010; // 0 -> 4
+ vi0 |= (vh[i] << 11) & 0x00001000; // 1 -> 12
+ vi0 |= (vh[i] << 18) & 0x00100000; // 2 -> 20
+ vi0 |= (vh[i] << 25) & 0x10000000; // 3 -> 28
+ sumi = __dp4a(vi0, u[2*i+0], sumi); // SIMD dot product of quantized values
+
+ int vi1 = (vl[i] >> 4) & 0x0F0F0F0F; // upper 4 qs bits, still need qh as 5th bits
+ vi1 |= (vh[i] >> 12) & 0x00000010; // 16 -> 4
+ vi1 |= (vh[i] >> 5) & 0x00001000; // 17 -> 12
+ vi1 |= (vh[i] << 2) & 0x00100000; // 18 -> 20
+ vi1 |= (vh[i] << 9) & 0x10000000; // 19 -> 28
+ sumi = __dp4a(vi1, u[2*i+1], sumi); // SIMD dot product of quantized values
+ }
+
+#ifdef GGML_CUDA_F16
+ const float2 tmp = __half22float2(__hmul2(dm5, ds8));
+ const float d5d8 = tmp.x;
+ const float m5s8 = tmp.y;
+#else
+ const float2 dm5f = __half22float2(dm5);
+ const float2 ds8f = __half22float2(ds8);
+ const float d5d8 = dm5f.x * ds8f.x;
+ const float m5s8 = dm5f.y * ds8f.y;
+#endif // GGML_CUDA_F16
+
+ // scale second part of sum by QI5_1 / vdr to compensate for multiple threads adding it
+ return sumi*d5d8 + m5s8 / (QI5_1 / vdr);
+
+#else
+ return 0.0f; // only to satisfy the compiler
+#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
+}
+
+#define VDR_Q8_0_Q8_1_MMVQ 2
+#define VDR_Q8_0_Q8_1_MMQ 8
+
+template <int vdr> static __device__ __forceinline__ float vec_dot_q8_0_q8_1_impl(
+ const int * v, const int * u, const float & d8_0, const float & d8_1) {
+
+#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
+ int sumi = 0;
+
+#pragma unroll
+ for (int i = 0; i < vdr; ++i) {
+ // SIMD dot product of quantized values
+ sumi = __dp4a(v[i], u[i], sumi);
+ }
+
+ return d8_0*d8_1 * sumi;
+#else
+ return 0.0f; // only to satisfy the compiler
+#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
+}
+
+template <int vdr> static __device__ __forceinline__ float vec_dot_q8_1_q8_1_impl(
+ const int * v, const int * u, const half2 & dm8, const half2 & ds8) {
+
+#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
+ int sumi = 0;
+
+#pragma unroll
+ for (int i = 0; i < vdr; ++i) {
+ // SIMD dot product of quantized values
+ sumi = __dp4a(v[i], u[i], sumi);
+ }
+
+#ifdef GGML_CUDA_F16
+ const float2 tmp = __half22float2(__hmul2(dm8, ds8));
+ const float d8d8 = tmp.x;
+ const float m8s8 = tmp.y;
+#else
+ const float2 dm8f = __half22float2(dm8);
+ const float2 ds8f = __half22float2(ds8);
+ const float d8d8 = dm8f.x * ds8f.x;
+ const float m8s8 = dm8f.y * ds8f.y;
+#endif // GGML_CUDA_F16
+
+ // scale second part of sum by QI8_1/ vdr to compensate for multiple threads adding it
+ return sumi*d8d8 + m8s8 / (QI8_1 / vdr);
+#else
+ return 0.0f; // only to satisfy the compiler
+#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
+}
+
+#define VDR_Q2_K_Q8_1_MMVQ 1
+#define VDR_Q2_K_Q8_1_MMQ 2
+
+// contiguous v/x values
+static __device__ __forceinline__ float vec_dot_q2_K_q8_1_impl_mmvq(
+ const int & v, const int * __restrict__ u, const uint8_t * __restrict__ scales,
+ const half2 & dm2, const float * __restrict__ d8) {
+
+#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
+ float sumf_d = 0.0f;
+ float sumf_m = 0.0f;
+
+#pragma unroll
+ for (int i = 0; i < QR2_K; ++i) {
+ const int sc = scales[2*i];
+
+ const int vi = (v >> (2*i)) & 0x03030303;
+
+ sumf_d += d8[i] * (__dp4a(vi, u[i], 0) * (sc & 0xF)); // SIMD dot product
+
+ // fill int with 4x m
+ int m = sc >> 4;
+ m |= m << 8;
+ m |= m << 16;
+ sumf_m += d8[i] * __dp4a(m, u[i], 0); // multiply constant q2_K part with sum of q8_1 values
+ }
+
+ const float2 dm2f = __half22float2(dm2);
+
+ return dm2f.x*sumf_d - dm2f.y*sumf_m;
+#else
+ return 0.0f; // only to satisfy the compiler
+#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
+}
+
+// contiguous u/y values
+static __device__ __forceinline__ float vec_dot_q2_K_q8_1_impl_mmq(
+ const int * __restrict__ v, const int * __restrict__ u, const uint8_t * __restrict__ scales,
+ const half2 & dm2, const float & d8) {
+
+#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
+ int sumi_d = 0;
+ int sumi_m = 0;
+
+#pragma unroll
+ for (int i0 = 0; i0 < QI8_1; i0 += QI8_1/2) {
+ int sumi_d_sc = 0;
+
+ const int sc = scales[i0 / (QI8_1/2)];
+
+ // fill int with 4x m
+ int m = sc >> 4;
+ m |= m << 8;
+ m |= m << 16;
+
+#pragma unroll
+ for (int i = i0; i < i0 + QI8_1/2; ++i) {
+ sumi_d_sc = __dp4a(v[i], u[i], sumi_d_sc); // SIMD dot product
+ sumi_m = __dp4a(m, u[i], sumi_m); // multiply sum of q8_1 values with m
+ }
+
+ sumi_d += sumi_d_sc * (sc & 0xF);
+ }
+
+ const float2 dm2f = __half22float2(dm2);
+
+ return d8 * (dm2f.x*sumi_d - dm2f.y*sumi_m);
+#else
+ return 0.0f; // only to satisfy the compiler
+#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
+}
+
+#define VDR_Q3_K_Q8_1_MMVQ 1
+#define VDR_Q3_K_Q8_1_MMQ 2
+
+// contiguous v/x values
+static __device__ __forceinline__ float vec_dot_q3_K_q8_1_impl_mmvq(
+ const int & vl, const int & vh, const int * __restrict__ u, const uint8_t * __restrict__ scales,
+ const int & scale_offset, const float & d3, const float * __restrict__ d8) {
+
+#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
+ float sumf = 0.0f;
+
+#pragma unroll
+ for (int i = 0; i < QR3_K; ++i) {
+ const int isc = scale_offset + 2*i;
+
+ const int isc_low = isc % (QK_K/32);
+ const int sc_shift_low = 4 * (isc / (QK_K/32));
+ const int sc_low = (scales[isc_low] >> sc_shift_low) & 0xF;
- const int qs = *((int *) &bq5_1->qs[sizeof(int) * (iqs + 0)]);
- const int qh0 = bq5_1->qh[iqs/2 + 0] >> 4*(iqs%2);
- const int qh1 = bq5_1->qh[iqs/2 + 2] >> 4*(iqs%2);
- const int ui0 = *((int *) &bq8_1->qs[sizeof(int) * (iqs + 0)]);
- const int ui1 = *((int *) &bq8_1->qs[sizeof(int) * (iqs + QI5_1)]);
-
- const float d = __half2float(bq5_1->d) * __half2float(bq8_1->d);
- const float m = bq5_1->m;
- const float s = bq8_1->s;
-
- int vi0 = (qs >> 0) & 0x0F0F0F0F; // lower 4 qs bits, still need qh0 as 5th bits
- vi0 |= (qh0 << 4) & 0x00000010; // 1 -> 5
- vi0 |= (qh0 << 11) & 0x00001000; // 2 -> 13
- vi0 |= (qh0 << 18) & 0x00100000; // 3 -> 21
- vi0 |= (qh0 << 25) & 0x10000000; // 4 -> 29
- int sumi = __dp4a(vi0, ui0, 0); // SIMD dot product of quantized values
-
- int vi1 = (qs >> 4) & 0x0F0F0F0F; // upper 4 qs bits, still need qh1 as 5th bits
- vi1 |= (qh1 << 4) & 0x00000010; // 1 -> 5
- vi1 |= (qh1 << 11) & 0x00001000; // 2 -> 13
- vi1 |= (qh1 << 18) & 0x00100000; // 3 -> 21
- vi1 |= (qh1 << 25) & 0x10000000; // 4 -> 29
- sumi = __dp4a(vi1, ui1, sumi); // SIMD dot product of quantized values
-
- return sumi*d + m*s / QI5_1; // scale sum by QI5_1 because there are QI5_1 threads working on this block
+ const int isc_high = isc % (QK_K/64);
+ const int sc_shift_high = 2 * (isc / (QK_K/64));
+ const int sc_high = ((scales[(QK_K/32) + isc_high] >> sc_shift_high) & 3) << 4;
+
+ const int sc = (sc_low | sc_high) - 32;
+
+ const int vil = (vl >> (2*i)) & 0x03030303;
+
+ const int vih = ((vh >> i) << 2) & 0x04040404;
+
+ const int vi = __vsubss4(vil, vih);
+
+ sumf += d8[i] * (__dp4a(vi, u[i], 0) * sc); // SIMD dot product
+ }
+
+ return d3 * sumf;
+#else
+ return 0.0f; // only to satisfy the compiler
+#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
+}
+
+// contiguous u/y values
+static __device__ __forceinline__ float vec_dot_q3_K_q8_1_impl_mmq(
+ const int * __restrict__ v, const int * __restrict__ u, const int8_t * __restrict__ scales,
+ const float & d3, const float & d8) {
+
+#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
+ int sumi = 0;
+
+#pragma unroll
+ for (int i0 = 0; i0 < QR3_K*VDR_Q3_K_Q8_1_MMQ; i0 += QI8_1/2) {
+ int sumi_sc = 0;
+
+ for (int i = i0; i < i0 + QI8_1/2; ++i) {
+ sumi_sc = __dp4a(v[i], u[i], sumi_sc); // SIMD dot product
+ }
+
+ sumi += sumi_sc * scales[i0 / (QI8_1/2)];
+ }
+
+ return d3*d8 * sumi;
+#else
+ return 0.0f; // only to satisfy the compiler
+#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
+}
+
+#define VDR_Q4_K_Q8_1_MMVQ 2
+#define VDR_Q4_K_Q8_1_MMQ 8
+
+// contiguous v/x values
+static __device__ __forceinline__ float vec_dot_q4_K_q8_1_impl_vmmq(
+ const int * __restrict__ v, const int * __restrict__ u, const uint8_t * __restrict__ sc,
+ const uint8_t * __restrict__ m, const half2 & dm4, const float * __restrict__ d8) {
+
+#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
+ float sumf_d = 0.0f;
+ float sumf_m = 0.0f;
+
+#pragma unroll
+ for (int i = 0; i < QR4_K; ++i) {
+ const int v0i = (v[0] >> (4*i)) & 0x0F0F0F0F;
+ const int v1i = (v[1] >> (4*i)) & 0x0F0F0F0F;
+
+ const int dot1 = __dp4a(v1i, u[2*i+1], __dp4a(v0i, u[2*i+0], 0)); // SIMD dot product
+ const int dot2 = __dp4a(0x01010101, u[2*i+1], __dp4a(0x01010101, u[2*i+0], 0)); // sum of u
+
+ sumf_d += d8[i] * (dot1 * sc[i]);
+ sumf_m += d8[i] * (dot2 * m[i]); // multiply constant part of q4_K with sum of q8_1 values
+ }
+
+ const float2 dm4f = __half22float2(dm4);
+
+ return dm4f.x*sumf_d - dm4f.y*sumf_m;
+
+#else
+ return 0.0f; // only to satisfy the compiler
+#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
+}
+
+// contiguous u/y values
+// also used for q5_K
+static __device__ __forceinline__ float vec_dot_q4_K_q8_1_impl_mmq(
+ const int * __restrict__ v, const int * __restrict__ u, const uint8_t * __restrict__ sc,
+ const uint8_t * __restrict__ m, const half2 & dm4, const half2 * __restrict__ ds8) {
+
+#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
+ float sumf_d = 0.0f;
+ float sumf_m = 0.0f;
+
+#pragma unroll
+ for (int i0 = 0; i0 < VDR_Q4_K_Q8_1_MMQ; i0 += (QI8_1/QR4_K)) {
+ int sumi_d = 0;
+
+#pragma unroll
+ for (int i = i0; i < i0 + (QI8_1/QR4_K); ++i) {
+ sumi_d = __dp4a(v[2*i+0], u[2*i+0], sumi_d); // SIMD dot product
+ sumi_d = __dp4a(v[2*i+1], u[2*i+1], sumi_d); // SIMD dot product
+ }
+
+ const float2 ds8f = __half22float2(ds8[i0 / 4]);
+
+ sumf_d += ds8f.x * (sc[i0/4] * sumi_d);
+ sumf_m += ds8f.y * m[i0/4]; // sum of q8_1 block * q4_K min val
+ }
+
+ const float2 dm4f = __half22float2(dm4);
+
+ return dm4f.x*sumf_d - dm4f.y*sumf_m;
+
+#else
+ return 0.0f; // only to satisfy the compiler
+#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
+}
+
+#define VDR_Q5_K_Q8_1_MMVQ 2
+#define VDR_Q5_K_Q8_1_MMQ 8
+
+// contiguous v/x values
+static __device__ __forceinline__ float vec_dot_q5_K_q8_1_impl(
+ const int * __restrict__ vl, const int * __restrict__ vh, const int * __restrict__ u, const uint8_t * __restrict__ sc,
+ const uint8_t * __restrict__ m, const half2 & dm5, const float * __restrict__ d8) {
+
+#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
+ float sumf_d = 0.0f;
+ float sumf_m = 0.0f;
+
+#pragma unroll
+ for (int i = 0; i < QR5_K; ++i) {
+ const int vl0i = (vl[0] >> (4*i)) & 0x0F0F0F0F;
+ const int vl1i = (vl[1] >> (4*i)) & 0x0F0F0F0F;
+
+ const int vh0i = ((vh[0] >> i) << 4) & 0x10101010;
+ const int vh1i = ((vh[1] >> i) << 4) & 0x10101010;
+
+ const int v0i = vl0i | vh0i;
+ const int v1i = vl1i | vh1i;
+
+ const int dot1 = __dp4a(v0i, u[2*i+0], __dp4a(v1i, u[2*i+1], 0)); // SIMD dot product
+ const int dot2 = __dp4a(0x01010101, u[2*i+0], __dp4a(0x01010101, u[2*i+1], 0)); // sum of u
+
+ sumf_d += d8[i] * (dot1 * sc[i]);
+ sumf_m += d8[i] * (dot2 * m[i]);
+
+ }
+
+ const float2 dm5f = __half22float2(dm5);
+
+ return dm5f.x*sumf_d - dm5f.y*sumf_m;
+
+#else
+ return 0.0f; // only to satisfy the compiler
+#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
+}
+
+#define VDR_Q6_K_Q8_1_MMVQ 1
+#define VDR_Q6_K_Q8_1_MMQ 8
+
+// contiguous v/x values
+static __device__ __forceinline__ float vec_dot_q6_K_q8_1_impl_mmvq(
+ const int & vl, const int & vh, const int * __restrict__ u, const int8_t * __restrict__ scales,
+ const float & d, const float * __restrict__ d8) {
+
+#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
+ float sumf = 0.0f;
+
+#pragma unroll
+ for (int i = 0; i < QR6_K; ++i) {
+ const int sc = scales[4*i];
+
+ const int vil = (vl >> (4*i)) & 0x0F0F0F0F;
+
+ const int vih = ((vh >> (4*i)) << 4) & 0x30303030;
+
+ const int vi = __vsubss4((vil | vih), 0x20202020); // vi = (vil | vih) - 32
+
+ sumf += d8[i] * (__dp4a(vi, u[i], 0) * sc); // SIMD dot product
+ }
+
+ return d*sumf;
#else
return 0.0f; // only to satisfy the compiler
-#endif // __CUDA_ARCH__ >= 610
+#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
+}
+
+// contiguous u/y values
+static __device__ __forceinline__ float vec_dot_q6_K_q8_1_impl_mmq(
+ const int * __restrict__ v, const int * __restrict__ u, const int8_t * __restrict__ sc,
+ const float & d6, const float * __restrict__ d8) {
+
+#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
+ float sumf_d = 0.0f;
+
+#pragma unroll
+ for (int i0 = 0; i0 < VDR_Q6_K_Q8_1_MMQ; i0 += 4) {
+ int2 sumi_d = {0, 0}; // 2 q6_K scales per q8_1 scale
+
+#pragma unroll
+ for (int i = i0; i < i0 + 2; ++i) {
+ sumi_d.x = __dp4a(v[2*i+0], u[2*i+0], sumi_d.x); // SIMD dot product
+ sumi_d.x = __dp4a(v[2*i+1], u[2*i+1], sumi_d.x); // SIMD dot product
+
+ sumi_d.y = __dp4a(v[2*i+4], u[2*i+4], sumi_d.y); // SIMD dot product
+ sumi_d.y = __dp4a(v[2*i+5], u[2*i+5], sumi_d.y); // SIMD dot product
+ }
+
+ sumf_d += d8[i0/4] * (sc[i0/2+0]*sumi_d.x + sc[i0/2+1]*sumi_d.y);
+ }
+
+ return d6 * sumf_d;
+
+#else
+ return 0.0f; // only to satisfy the compiler
+#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
+}
+
+static __device__ __forceinline__ float vec_dot_q4_0_q8_1(
+ const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
+
+ const block_q4_0 * bq4_0 = (const block_q4_0 *) vbq;
+
+ int v[VDR_Q4_0_Q8_1_MMVQ];
+ int u[2*VDR_Q4_0_Q8_1_MMVQ];
+
+#pragma unroll
+ for (int i = 0; i < VDR_Q4_0_Q8_1_MMVQ; ++i) {
+ v[i] = get_int_from_uint8(bq4_0->qs, iqs + i);
+ u[2*i+0] = get_int_from_int8_aligned(bq8_1->qs, iqs + i);
+ u[2*i+1] = get_int_from_int8_aligned(bq8_1->qs, iqs + i + QI4_0);
+ }
+
+ return vec_dot_q4_0_q8_1_impl<VDR_Q4_0_Q8_1_MMVQ>(v, u, bq4_0->d, bq8_1->ds);
+}
+
+template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q4_0(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
+
+ __shared__ int tile_x_qs[mmq_y * (WARP_SIZE) + mmq_y];
+ __shared__ float tile_x_d[mmq_y * (WARP_SIZE/QI4_0) + mmq_y/QI4_0];
+
+ *x_ql = tile_x_qs;
+ *x_dm = (half2 *) tile_x_d;
+}
+
+template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q4_0(
+ const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
+ int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
+
+ __builtin_assume(i_offset >= 0);
+ __builtin_assume(i_offset < nwarps);
+ __builtin_assume(k >= 0);
+ __builtin_assume(k < WARP_SIZE);
+
+ const int kbx = k / QI4_0;
+ const int kqsx = k % QI4_0;
+
+ const block_q4_0 * bx0 = (block_q4_0 *) vx;
+
+ float * x_dmf = (float *) x_dm;
+
+#pragma unroll
+ for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
+ int i = i0 + i_offset;
+
+ if (need_check) {
+ i = min(i, i_max);
+ }
+
+ const block_q4_0 * bxi = bx0 + i*blocks_per_row + kbx;
+
+ x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_uint8(bxi->qs, kqsx);
+ // x_dmf[i * (WARP_SIZE/QI4_0) + i / QI4_0 + kbx] = bxi->d;
+ }
+
+ const int blocks_per_tile_x_row = WARP_SIZE / QI4_0;
+ const int kbxd = k % blocks_per_tile_x_row;
+
+#pragma unroll
+ for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI4_0) {
+ int i = i0 + i_offset * QI4_0 + k / blocks_per_tile_x_row;
+
+ if (need_check) {
+ i = min(i, i_max);
+ }
+
+ const block_q4_0 * bxi = bx0 + i*blocks_per_row + kbxd;
+
+ x_dmf[i * (WARP_SIZE/QI4_0) + i / QI4_0 + kbxd] = bxi->d;
+ }
}
-static __device__ __forceinline__ float vec_dot_q8_0_q8_1(const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int iqs) {
-#if __CUDA_ARCH__ >= 610 // lowest compute capability for integer intrinsics
+static __device__ __forceinline__ float vec_dot_q4_0_q8_1_mul_mat(
+ const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
+ const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
+
+ const int kyqs = k % (QI8_1/2) + QI8_1 * (k / (QI8_1/2));
+ const float * x_dmf = (float *) x_dm;
+
+ int u[2*VDR_Q4_0_Q8_1_MMQ];
+
+#pragma unroll
+ for (int l = 0; l < VDR_Q4_0_Q8_1_MMQ; ++l) {
+ u[2*l+0] = y_qs[j * WARP_SIZE + (kyqs + l) % WARP_SIZE];
+ u[2*l+1] = y_qs[j * WARP_SIZE + (kyqs + l + QI4_0) % WARP_SIZE];
+ }
+
+ return vec_dot_q4_0_q8_1_impl<VDR_Q4_0_Q8_1_MMQ>
+ (&x_ql[i * (WARP_SIZE + 1) + k], u, x_dmf[i * (WARP_SIZE/QI4_0) + i/QI4_0 + k/QI4_0],
+ y_ds[j * (WARP_SIZE/QI8_1) + (2*k/QI8_1) % (WARP_SIZE/QI8_1)]);
+}
+
+static __device__ __forceinline__ float vec_dot_q4_1_q8_1(
+ const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
+
+ const block_q4_1 * bq4_1 = (const block_q4_1 *) vbq;
+
+ int v[VDR_Q4_1_Q8_1_MMVQ];
+ int u[2*VDR_Q4_1_Q8_1_MMVQ];
+
+#pragma unroll
+ for (int i = 0; i < VDR_Q4_1_Q8_1_MMVQ; ++i) {
+ v[i] = get_int_from_uint8_aligned(bq4_1->qs, iqs + i);
+ u[2*i+0] = get_int_from_int8_aligned(bq8_1->qs, iqs + i);
+ u[2*i+1] = get_int_from_int8_aligned(bq8_1->qs, iqs + i + QI4_1);
+ }
+
+ return vec_dot_q4_1_q8_1_impl<VDR_Q4_1_Q8_1_MMVQ>(v, u, bq4_1->dm, bq8_1->ds);
+}
+
+template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q4_1(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
+
+ __shared__ int tile_x_qs[mmq_y * (WARP_SIZE) + + mmq_y];
+ __shared__ half2 tile_x_dm[mmq_y * (WARP_SIZE/QI4_1) + mmq_y/QI4_1];
+
+ *x_ql = tile_x_qs;
+ *x_dm = tile_x_dm;
+}
+
+template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q4_1(
+ const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
+ int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
+
+ __builtin_assume(i_offset >= 0);
+ __builtin_assume(i_offset < nwarps);
+ __builtin_assume(k >= 0);
+ __builtin_assume(k < WARP_SIZE);
+
+ const int kbx = k / QI4_1;
+ const int kqsx = k % QI4_1;
+
+ const block_q4_1 * bx0 = (block_q4_1 *) vx;
+
+#pragma unroll
+ for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
+ int i = i0 + i_offset;
+
+ if (need_check) {
+ i = min(i, i_max);
+ }
+
+ const block_q4_1 * bxi = bx0 + i*blocks_per_row + kbx;
+
+ x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_uint8_aligned(bxi->qs, kqsx);
+ }
+
+ const int blocks_per_tile_x_row = WARP_SIZE / QI4_1;
+ const int kbxd = k % blocks_per_tile_x_row;
+
+#pragma unroll
+ for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI4_1) {
+ int i = i0 + i_offset * QI4_1 + k / blocks_per_tile_x_row;
+
+ if (need_check) {
+ i = min(i, i_max);
+ }
+
+ const block_q4_1 * bxi = bx0 + i*blocks_per_row + kbxd;
+
+ x_dm[i * (WARP_SIZE/QI4_1) + i / QI4_1 + kbxd] = bxi->dm;
+ }
+}
+
+static __device__ __forceinline__ float vec_dot_q4_1_q8_1_mul_mat(
+ const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
+ const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
+
+ const int kyqs = k % (QI8_1/2) + QI8_1 * (k / (QI8_1/2));
+
+ int u[2*VDR_Q4_1_Q8_1_MMQ];
+
+#pragma unroll
+ for (int l = 0; l < VDR_Q4_1_Q8_1_MMQ; ++l) {
+ u[2*l+0] = y_qs[j * WARP_SIZE + (kyqs + l) % WARP_SIZE];
+ u[2*l+1] = y_qs[j * WARP_SIZE + (kyqs + l + QI4_1) % WARP_SIZE];
+ }
+
+ return vec_dot_q4_1_q8_1_impl<VDR_Q4_1_Q8_1_MMQ>
+ (&x_ql[i * (WARP_SIZE + 1) + k], u, x_dm[i * (WARP_SIZE/QI4_1) + i/QI4_1 + k/QI4_1],
+ y_ds[j * (WARP_SIZE/QI8_1) + (2*k/QI8_1) % (WARP_SIZE/QI8_1)]);
+}
+
+static __device__ __forceinline__ float vec_dot_q5_0_q8_1(
+ const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
+
+ const block_q5_0 * bq5_0 = (const block_q5_0 *) vbq;
+
+ int vl[VDR_Q5_0_Q8_1_MMVQ];
+ int vh[VDR_Q5_0_Q8_1_MMVQ];
+ int u[2*VDR_Q5_0_Q8_1_MMVQ];
+
+#pragma unroll
+ for (int i = 0; i < VDR_Q5_0_Q8_1_MMVQ; ++i) {
+ vl[i] = get_int_from_uint8(bq5_0->qs, iqs + i);
+ vh[i] = get_int_from_uint8(bq5_0->qh, 0) >> (4 * (iqs + i));
+ u[2*i+0] = get_int_from_int8_aligned(bq8_1->qs, iqs + i);
+ u[2*i+1] = get_int_from_int8_aligned(bq8_1->qs, iqs + i + QI5_0);
+ }
+
+ return vec_dot_q5_0_q8_1_impl<VDR_Q5_0_Q8_1_MMVQ>(vl, vh, u, bq5_0->d, bq8_1->ds);
+}
+
+template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q5_0(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
+
+ __shared__ int tile_x_ql[mmq_y * (2*WARP_SIZE) + mmq_y];
+ __shared__ float tile_x_d[mmq_y * (WARP_SIZE/QI5_0) + mmq_y/QI5_0];
+
+ *x_ql = tile_x_ql;
+ *x_dm = (half2 *) tile_x_d;
+}
+
+template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q5_0(
+ const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
+ int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
+
+ __builtin_assume(i_offset >= 0);
+ __builtin_assume(i_offset < nwarps);
+ __builtin_assume(k >= 0);
+ __builtin_assume(k < WARP_SIZE);
+
+ const int kbx = k / QI5_0;
+ const int kqsx = k % QI5_0;
+
+ const block_q5_0 * bx0 = (block_q5_0 *) vx;
+
+#pragma unroll
+ for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
+ int i = i0 + i_offset;
+
+ if (need_check) {
+ i = min(i, i_max);
+ }
+
+ const block_q5_0 * bxi = bx0 + i*blocks_per_row + kbx;
+
+ const int ql = get_int_from_uint8(bxi->qs, kqsx);
+ const int qh = get_int_from_uint8(bxi->qh, 0) >> (4 * (k % QI5_0));
+
+ int qs0 = (ql >> 0) & 0x0F0F0F0F;
+ qs0 |= (qh << 4) & 0x00000010; // 0 -> 4
+ qs0 |= (qh << 11) & 0x00001000; // 1 -> 12
+ qs0 |= (qh << 18) & 0x00100000; // 2 -> 20
+ qs0 |= (qh << 25) & 0x10000000; // 3 -> 28
+ qs0 = __vsubss4(qs0, 0x10101010); // subtract 16
+
+ x_ql[i * (2*WARP_SIZE + 1) + 2*k+0] = qs0;
+
+ int qs1 = (ql >> 4) & 0x0F0F0F0F;
+ qs1 |= (qh >> 12) & 0x00000010; // 16 -> 4
+ qs1 |= (qh >> 5) & 0x00001000; // 17 -> 12
+ qs1 |= (qh << 2) & 0x00100000; // 18 -> 20
+ qs1 |= (qh << 9) & 0x10000000; // 19 -> 28
+ qs1 = __vsubss4(qs1, 0x10101010); // subtract 16
+
+ x_ql[i * (2*WARP_SIZE + 1) + 2*k+1] = qs1;
+ }
+
+ const int blocks_per_tile_x_row = WARP_SIZE / QI5_0;
+ const int kbxd = k % blocks_per_tile_x_row;
+ float * x_dmf = (float *) x_dm;
+
+#pragma unroll
+ for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI5_0) {
+ int i = i0 + i_offset * QI5_0 + k / blocks_per_tile_x_row;
+
+ if (need_check) {
+ i = min(i, i_max);
+ }
+
+ const block_q5_0 * bxi = bx0 + i*blocks_per_row + kbxd;
+
+ x_dmf[i * (WARP_SIZE/QI5_0) + i / QI5_0 + kbxd] = bxi->d;
+ }
+}
+
+static __device__ __forceinline__ float vec_dot_q5_0_q8_1_mul_mat(
+ const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
+ const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
+
+ const int kyqs = k % (QI8_1/2) + QI8_1 * (k / (QI8_1/2));
+ const int index_bx = i * (WARP_SIZE/QI5_0) + i/QI5_0 + k/QI5_0;
+ const float * x_dmf = (const float *) x_dm;
+ const float * y_df = (const float *) y_ds;
+
+ int u[2*VDR_Q5_0_Q8_1_MMQ];
+
+#pragma unroll
+ for (int l = 0; l < VDR_Q5_0_Q8_1_MMQ; ++l) {
+ u[2*l+0] = y_qs[j * WARP_SIZE + (kyqs + l) % WARP_SIZE];
+ u[2*l+1] = y_qs[j * WARP_SIZE + (kyqs + l + QI5_0) % WARP_SIZE];
+ }
+
+ return vec_dot_q8_0_q8_1_impl<QR5_0*VDR_Q5_0_Q8_1_MMQ>
+ (&x_ql[i * (2*WARP_SIZE + 1) + 2 * k], u, x_dmf[index_bx], y_df[j * (WARP_SIZE/QI8_1) + (2*k/QI8_1) % (WARP_SIZE/QI8_1)]);
+}
+
+static __device__ __forceinline__ float vec_dot_q5_1_q8_1(
+ const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
+
+ const block_q5_1 * bq5_1 = (const block_q5_1 *) vbq;
+
+ int vl[VDR_Q5_1_Q8_1_MMVQ];
+ int vh[VDR_Q5_1_Q8_1_MMVQ];
+ int u[2*VDR_Q5_1_Q8_1_MMVQ];
+
+#pragma unroll
+ for (int i = 0; i < VDR_Q5_1_Q8_1_MMVQ; ++i) {
+ vl[i] = get_int_from_uint8_aligned(bq5_1->qs, iqs + i);
+ vh[i] = get_int_from_uint8_aligned(bq5_1->qh, 0) >> (4 * (iqs + i));
+ u[2*i+0] = get_int_from_int8_aligned(bq8_1->qs, iqs + i);
+ u[2*i+1] = get_int_from_int8_aligned(bq8_1->qs, iqs + i + QI5_1);
+ }
+
+ return vec_dot_q5_1_q8_1_impl<VDR_Q5_1_Q8_1_MMVQ>(vl, vh, u, bq5_1->dm, bq8_1->ds);
+}
+
+template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q5_1(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
+
+ __shared__ int tile_x_ql[mmq_y * (2*WARP_SIZE) + mmq_y];
+ __shared__ half2 tile_x_dm[mmq_y * (WARP_SIZE/QI5_1) + mmq_y/QI5_1];
+
+ *x_ql = tile_x_ql;
+ *x_dm = tile_x_dm;
+}
+
+template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q5_1(
+ const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
+ int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
+
+ __builtin_assume(i_offset >= 0);
+ __builtin_assume(i_offset < nwarps);
+ __builtin_assume(k >= 0);
+ __builtin_assume(k < WARP_SIZE);
+
+ const int kbx = k / QI5_1;
+ const int kqsx = k % QI5_1;
+
+ const block_q5_1 * bx0 = (block_q5_1 *) vx;
+
+#pragma unroll
+ for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
+ int i = i0 + i_offset;
+
+ if (need_check) {
+ i = min(i, i_max);
+ }
+
+ const block_q5_1 * bxi = bx0 + i*blocks_per_row + kbx;
+
+ const int ql = get_int_from_uint8_aligned(bxi->qs, kqsx);
+ const int qh = get_int_from_uint8_aligned(bxi->qh, 0) >> (4 * (k % QI5_1));
+
+ int qs0 = (ql >> 0) & 0x0F0F0F0F;
+ qs0 |= (qh << 4) & 0x00000010; // 0 -> 4
+ qs0 |= (qh << 11) & 0x00001000; // 1 -> 12
+ qs0 |= (qh << 18) & 0x00100000; // 2 -> 20
+ qs0 |= (qh << 25) & 0x10000000; // 3 -> 28
+
+ x_ql[i * (2*WARP_SIZE + 1) + 2*k+0] = qs0;
+
+ int qs1 = (ql >> 4) & 0x0F0F0F0F;
+ qs1 |= (qh >> 12) & 0x00000010; // 16 -> 4
+ qs1 |= (qh >> 5) & 0x00001000; // 17 -> 12
+ qs1 |= (qh << 2) & 0x00100000; // 18 -> 20
+ qs1 |= (qh << 9) & 0x10000000; // 19 -> 28
+
+ x_ql[i * (2*WARP_SIZE + 1) + 2*k+1] = qs1;
+ }
+
+ const int blocks_per_tile_x_row = WARP_SIZE / QI5_1;
+ const int kbxd = k % blocks_per_tile_x_row;
+
+#pragma unroll
+ for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI5_1) {
+ int i = i0 + i_offset * QI5_1 + k / blocks_per_tile_x_row;
+
+ if (need_check) {
+ i = min(i, i_max);
+ }
+
+ const block_q5_1 * bxi = bx0 + i*blocks_per_row + kbxd;
+
+ x_dm[i * (WARP_SIZE/QI5_1) + i / QI5_1 + kbxd] = bxi->dm;
+ }
+}
+
+static __device__ __forceinline__ float vec_dot_q5_1_q8_1_mul_mat(
+ const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
+ const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
+
+ const int kyqs = k % (QI8_1/2) + QI8_1 * (k / (QI8_1/2));
+ const int index_bx = i * (WARP_SIZE/QI5_1) + + i/QI5_1 + k/QI5_1;
+
+ int u[2*VDR_Q5_1_Q8_1_MMQ];
+
+#pragma unroll
+ for (int l = 0; l < VDR_Q5_1_Q8_1_MMQ; ++l) {
+ u[2*l+0] = y_qs[j * WARP_SIZE + (kyqs + l) % WARP_SIZE];
+ u[2*l+1] = y_qs[j * WARP_SIZE + (kyqs + l + QI5_1) % WARP_SIZE];
+ }
+
+ return vec_dot_q8_1_q8_1_impl<QR5_1*VDR_Q5_1_Q8_1_MMQ>
+ (&x_ql[i * (2*WARP_SIZE + 1) + 2 * k], u, x_dm[index_bx], y_ds[j * (WARP_SIZE/QI8_1) + (2*k/QI8_1) % (WARP_SIZE/QI8_1)]);
+}
+
+static __device__ __forceinline__ float vec_dot_q8_0_q8_1(
+ const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
+
const block_q8_0 * bq8_0 = (const block_q8_0 *) vbq;
- int vi;
- memcpy(&vi, &bq8_0->qs[sizeof(int) * (iqs + 0)], sizeof(int));
- const int ui = *((int *) &bq8_1->qs[sizeof(int) * (iqs + 0)]);
+ int v[VDR_Q8_0_Q8_1_MMVQ];
+ int u[VDR_Q8_0_Q8_1_MMVQ];
+
+#pragma unroll
+ for (int i = 0; i < VDR_Q8_0_Q8_1_MMVQ; ++i) {
+ v[i] = get_int_from_int8(bq8_0->qs, iqs + i);
+ u[i] = get_int_from_int8_aligned(bq8_1->qs, iqs + i);
+ }
+
+ return vec_dot_q8_0_q8_1_impl<VDR_Q8_0_Q8_1_MMVQ>(v, u, bq8_0->d, bq8_1->ds.x);
+}
+
+template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q8_0(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
+
+ __shared__ int tile_x_qs[mmq_y * (WARP_SIZE) + mmq_y];
+ __shared__ float tile_x_d[mmq_y * (WARP_SIZE/QI8_0) + mmq_y/QI8_0];
+
+ *x_ql = tile_x_qs;
+ *x_dm = (half2 *) tile_x_d;
+}
- const float d = __half2float(bq8_0->d) * __half2float(bq8_1->d);
+template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q8_0(
+ const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
+ int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
- // SIMD dot product of quantized values
- int sumi = __dp4a(vi, ui, 0);
+ __builtin_assume(i_offset >= 0);
+ __builtin_assume(i_offset < nwarps);
+ __builtin_assume(k >= 0);
+ __builtin_assume(k < WARP_SIZE);
+
+ const int kbx = k / QI8_0;
+ const int kqsx = k % QI8_0;
+ float * x_dmf = (float *) x_dm;
+
+ const block_q8_0 * bx0 = (block_q8_0 *) vx;
+
+#pragma unroll
+ for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
+ int i = i0 + i_offset;
+
+ if (need_check) {
+ i = min(i, i_max);
+ }
+
+ const block_q8_0 * bxi = bx0 + i*blocks_per_row + kbx;
+
+ x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_int8(bxi->qs, kqsx);
+ }
+
+ const int blocks_per_tile_x_row = WARP_SIZE / QI8_0;
+ const int kbxd = k % blocks_per_tile_x_row;
+
+#pragma unroll
+ for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI8_0) {
+ int i = i0 + i_offset * QI8_0 + k / blocks_per_tile_x_row;
+
+ if (need_check) {
+ i = min(i, i_max);
+ }
+
+ const block_q8_0 * bxi = bx0 + i*blocks_per_row + kbxd;
+
+ x_dmf[i * (WARP_SIZE/QI8_0) + i / QI8_0 + kbxd] = bxi->d;
+ }
+}
+
+static __device__ __forceinline__ float vec_dot_q8_0_q8_1_mul_mat(
+ const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
+ const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
+
+ const float * x_dmf = (const float *) x_dm;
+ const float * y_df = (const float *) y_ds;
+
+ return vec_dot_q8_0_q8_1_impl<VDR_Q8_0_Q8_1_MMQ>
+ (&x_ql[i * (WARP_SIZE + 1) + k], &y_qs[j * WARP_SIZE + k], x_dmf[i * (WARP_SIZE/QI8_0) + i/QI8_0 + k/QI8_0],
+ y_df[j * (WARP_SIZE/QI8_1) + k/QI8_1]);
+}
+
+static __device__ __forceinline__ float vec_dot_q2_K_q8_1(
+ const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
+
+ const block_q2_K * bq2_K = (const block_q2_K *) vbq;
+
+ const int bq8_offset = QR2_K * (iqs / QI8_1);
+ const int scale_offset = iqs - iqs % QI8_1 + (iqs % QI8_1) / (QI8_1/2);
+
+ const uint8_t * scales = bq2_K->scales + scale_offset;
+
+ const int v = get_int_from_uint8_aligned(bq2_K->qs, iqs);
+ int u[QR2_K];
+ float d8[QR2_K];
+
+#pragma unroll
+ for (int i = 0; i < QR2_K; ++ i) {
+ u[i] = get_int_from_int8_aligned(bq8_1[bq8_offset + i].qs, iqs % QI8_1);
+ d8[i] = bq8_1[bq8_offset + i].ds.x;
+ }
+
+ return vec_dot_q2_K_q8_1_impl_mmvq(v, u, scales, bq2_K->dm, d8);
+}
+
+template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q2_K(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
+
+ __shared__ int tile_x_ql[mmq_y * (WARP_SIZE) + mmq_y];
+ __shared__ half2 tile_x_dm[mmq_y * (WARP_SIZE/QI2_K) + mmq_y/QI2_K];
+ __shared__ int tile_x_sc[mmq_y * (WARP_SIZE/4) + mmq_y/4];
+
+ *x_ql = tile_x_ql;
+ *x_dm = tile_x_dm;
+ *x_sc = tile_x_sc;
+}
+
+template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q2_K(
+ const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
+ int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
+
+ __builtin_assume(i_offset >= 0);
+ __builtin_assume(i_offset < nwarps);
+ __builtin_assume(k >= 0);
+ __builtin_assume(k < WARP_SIZE);
+
+ const int kbx = k / QI2_K;
+ const int kqsx = k % QI2_K;
+
+ const block_q2_K * bx0 = (block_q2_K *) vx;
+
+#pragma unroll
+ for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
+ int i = i0 + i_offset;
+
+ if (need_check) {
+ i = min(i, i_max);
+ }
+
+ const block_q2_K * bxi = bx0 + i*blocks_per_row + kbx;
+
+ x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_uint8_aligned(bxi->qs, kqsx);
+ }
+
+ const int blocks_per_tile_x_row = WARP_SIZE / QI2_K;
+ const int kbxd = k % blocks_per_tile_x_row;
+
+#pragma unroll
+ for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI2_K) {
+ int i = (i0 + i_offset * QI2_K + k / blocks_per_tile_x_row) % mmq_y;
+
+ if (need_check) {
+ i = min(i, i_max);
+ }
+
+ const block_q2_K * bxi = bx0 + i*blocks_per_row + kbxd;
+
+ x_dm[i * (WARP_SIZE/QI2_K) + i / QI2_K + kbxd] = bxi->dm;
+ }
+
+#pragma unroll
+ for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 4) {
+ int i = i0 + i_offset * 4 + k / (WARP_SIZE/4);
+
+ if (need_check) {
+ i = min(i, i_max);
+ }
+
+ const block_q2_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/4)) / (QI2_K/4);
+
+ x_sc[i * (WARP_SIZE/4) + i / 4 + k % (WARP_SIZE/4)] = get_int_from_uint8_aligned(bxi->scales, k % (QI2_K/4));
+ }
+}
+
+static __device__ __forceinline__ float vec_dot_q2_K_q8_1_mul_mat(
+ const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
+ const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
+
+ const int kbx = k / QI2_K;
+ const int ky = (k % QI2_K) * QR2_K;
+ const float * y_df = (const float *) y_ds;
+
+ int v[QR2_K*VDR_Q2_K_Q8_1_MMQ];
+
+ const int kqsx = i * (WARP_SIZE + 1) + kbx*QI2_K + (QI2_K/2) * (ky/(2*QI2_K)) + ky % (QI2_K/2);
+ const int shift = 2 * ((ky % (2*QI2_K)) / (QI2_K/2));
+
+#pragma unroll
+ for (int l = 0; l < QR2_K*VDR_Q2_K_Q8_1_MMQ; ++l) {
+ v[l] = (x_ql[kqsx + l] >> shift) & 0x03030303;
+ }
+
+ const uint8_t * scales = ((const uint8_t *) &x_sc[i * (WARP_SIZE/4) + i/4 + kbx*4]) + ky/4;
+
+ const int index_y = j * WARP_SIZE + (QR2_K*k) % WARP_SIZE;
+ return vec_dot_q2_K_q8_1_impl_mmq(v, &y_qs[index_y], scales, x_dm[i * (WARP_SIZE/QI2_K) + i/QI2_K + kbx], y_df[index_y/QI8_1]);
+}
+
+static __device__ __forceinline__ float vec_dot_q3_K_q8_1(
+ const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
+
+ const block_q3_K * bq3_K = (const block_q3_K *) vbq;
+
+ const int bq8_offset = QR3_K * (iqs / (QI3_K/2));
+ const int scale_offset = iqs - iqs % QI8_1 + (iqs % QI8_1) / (QI8_1/2);
+
+ const float d = bq3_K->d;
+
+ const int vl = get_int_from_uint8(bq3_K->qs, iqs);
+
+ // invert the mask with ~ so that a 0/1 results in 4/0 being subtracted
+ const int vh = ~get_int_from_uint8(bq3_K->hmask, iqs % (QI3_K/2)) >> bq8_offset;
+
+ int u[QR3_K];
+ float d8[QR3_K];
+
+#pragma unroll
+ for (int i = 0; i < QR3_K; ++i) {
+ u[i] = get_int_from_int8_aligned(bq8_1[bq8_offset + i].qs, iqs % QI8_1);
+ d8[i] = bq8_1[bq8_offset + i].ds.x;
+ }
+
+ return vec_dot_q3_K_q8_1_impl_mmvq(vl, vh, u, bq3_K->scales, scale_offset, d, d8);
+}
+
+template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q3_K(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
+
+ __shared__ int tile_x_ql[mmq_y * (WARP_SIZE) + mmq_y];
+ __shared__ half2 tile_x_dm[mmq_y * (WARP_SIZE/QI3_K) + mmq_y/QI3_K];
+ __shared__ int tile_x_qh[mmq_y * (WARP_SIZE/2) + mmq_y/2];
+ __shared__ int tile_x_sc[mmq_y * (WARP_SIZE/4) + mmq_y/4];
+
+ *x_ql = tile_x_ql;
+ *x_dm = tile_x_dm;
+ *x_qh = tile_x_qh;
+ *x_sc = tile_x_sc;
+}
+
+template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q3_K(
+ const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
+ int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
+
+ __builtin_assume(i_offset >= 0);
+ __builtin_assume(i_offset < nwarps);
+ __builtin_assume(k >= 0);
+ __builtin_assume(k < WARP_SIZE);
+
+ const int kbx = k / QI3_K;
+ const int kqsx = k % QI3_K;
+
+ const block_q3_K * bx0 = (block_q3_K *) vx;
+
+#pragma unroll
+ for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
+ int i = i0 + i_offset;
+
+ if (need_check) {
+ i = min(i, i_max);
+ }
+
+ const block_q3_K * bxi = bx0 + i*blocks_per_row + kbx;
+
+ x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_uint8(bxi->qs, kqsx);
+ }
+
+ const int blocks_per_tile_x_row = WARP_SIZE / QI3_K;
+ const int kbxd = k % blocks_per_tile_x_row;
+ float * x_dmf = (float *) x_dm;
+
+#pragma unroll
+ for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI3_K) {
+ int i = (i0 + i_offset * QI3_K + k / blocks_per_tile_x_row) % mmq_y;
+
+ if (need_check) {
+ i = min(i, i_max);
+ }
+
+ const block_q3_K * bxi = bx0 + i*blocks_per_row + kbxd;
+
+ x_dmf[i * (WARP_SIZE/QI3_K) + i / QI3_K + kbxd] = bxi->d;
+ }
+
+#pragma unroll
+ for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 2) {
+ int i = i0 + i_offset * 2 + k / (WARP_SIZE/2);
+
+ if (need_check) {
+ i = min(i, i_max);
+ }
+
+ const block_q3_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/2)) / (QI3_K/2);
+
+ // invert the mask with ~ so that a 0/1 results in 4/0 being subtracted
+ x_qh[i * (WARP_SIZE/2) + i / 2 + k % (WARP_SIZE/2)] = ~get_int_from_uint8(bxi->hmask, k % (QI3_K/2));
+ }
+
+#pragma unroll
+ for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 4) {
+ int i = i0 + i_offset * 4 + k / (WARP_SIZE/4);
+
+ if (need_check) {
+ i = min(i, i_max);
+ }
+
+ const block_q3_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/4)) / (QI3_K/4);
+
+ const int ksc = k % (QI3_K/4);
+
+ const int ksc_low = ksc % (QI3_K/8);
+ const int shift_low = 4 * (ksc / (QI3_K/8));
+ const int sc_low = (get_int_from_uint8(bxi->scales, ksc_low) >> shift_low) & 0x0F0F0F0F;
+
+ const int ksc_high = QI3_K/8;
+ const int shift_high = 2 * ksc;
+ const int sc_high = ((get_int_from_uint8(bxi->scales, ksc_high) >> shift_high) << 4) & 0x30303030;
+
+ const int sc = __vsubss4(sc_low | sc_high, 0x20202020);
+
+ x_sc[i * (WARP_SIZE/4) + i / 4 + k % (WARP_SIZE/4)] = sc;
+ }
+}
+
+static __device__ __forceinline__ float vec_dot_q3_K_q8_1_mul_mat(
+ const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
+ const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
+
+ const int kbx = k / QI3_K;
+ const int ky = (k % QI3_K) * QR3_K;
+ const float * x_dmf = (const float *) x_dm;
+ const float * y_df = (const float *) y_ds;
+
+ const int8_t * scales = ((int8_t *) (x_sc + i * (WARP_SIZE/4) + i/4 + kbx*4)) + ky/4;
+
+ int v[QR3_K*VDR_Q3_K_Q8_1_MMQ];
+
+#pragma unroll
+ for (int l = 0; l < QR3_K*VDR_Q3_K_Q8_1_MMQ; ++l) {
+ const int kqsx = i * (WARP_SIZE + 1) + kbx*QI3_K + (QI3_K/2) * (ky/(2*QI3_K)) + ky % (QI3_K/2);
+ const int shift = 2 * ((ky % 32) / 8);
+ const int vll = (x_ql[kqsx + l] >> shift) & 0x03030303;
+
+ const int vh = x_qh[i * (WARP_SIZE/2) + i/2 + kbx * (QI3_K/2) + (ky+l)%8] >> ((ky+l) / 8);
+ const int vlh = (vh << 2) & 0x04040404;
+
+ v[l] = __vsubss4(vll, vlh);
+ }
+
+ const int index_y = j * WARP_SIZE + (k*QR3_K) % WARP_SIZE;
+ return vec_dot_q3_K_q8_1_impl_mmq(v, &y_qs[index_y], scales, x_dmf[i * (WARP_SIZE/QI3_K) + i/QI3_K + kbx], y_df[index_y/QI8_1]);
+}
+
+static __device__ __forceinline__ float vec_dot_q4_K_q8_1(
+ const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
+
+#ifndef GGML_QKK_64
+ const block_q4_K * bq4_K = (const block_q4_K *) vbq;
+
+ int v[2];
+ int u[2*QR4_K];
+ float d8[QR4_K];
+
+ // iqs is in 0,2..30. bq8_offset = iqs/4 -> bq8_offset = 0, 2, 4, 6
+ const int bq8_offset = QR4_K * ((iqs/2) / (QI8_1/2));
+
+ // iqs = 0....3 -> bq8_offset = 0, want q4_offset = 0, 4, 8, 12
+ // iqs = 4....7 -> bq8_offset = 2, want q4_offset = 32, 36, 40, 44
+ // iqs = 8...11 -> bq8_offset = 4, want q4_offset = 64, 68, 72, 76
+ // iqs = 12..15 -> bq8_offset = 6, want q4_offset = 96, 100, 104, 108
+
+ const int * q4 = (const int *)(bq4_K->qs + 16 * bq8_offset + 4 * ((iqs/2)%4));
+ v[0] = q4[0];
+ v[1] = q4[4];
+
+ const uint16_t * scales = (const uint16_t *)bq4_K->scales;
+ uint16_t aux[2];
+ const int j = bq8_offset/2;
+ if (j < 2) {
+ aux[0] = scales[j+0] & 0x3f3f;
+ aux[1] = scales[j+2] & 0x3f3f;
+ } else {
+ aux[0] = ((scales[j+2] >> 0) & 0x0f0f) | ((scales[j-2] & 0xc0c0) >> 2);
+ aux[1] = ((scales[j+2] >> 4) & 0x0f0f) | ((scales[j-0] & 0xc0c0) >> 2);
+ }
+ const uint8_t * sc = (const uint8_t *)aux;
+ const uint8_t * m = sc + 2;
+
+ for (int i = 0; i < QR4_K; ++i) {
+ const block_q8_1 * bq8i = bq8_1 + bq8_offset + i;
+ d8[i] = bq8i->ds.x;
+
+ const int * q8 = (const int *)bq8i->qs + ((iqs/2)%4);
+ u[2*i+0] = q8[0];
+ u[2*i+1] = q8[4];
+ }
+
+ return vec_dot_q4_K_q8_1_impl_vmmq(v, u, sc, m, bq4_K->dm, d8);
+
+#else
+
+#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
+ const block_q4_K * bq4_K = (const block_q4_K *) vbq;
+
+ float sumf_d = 0.0f;
+ float sumf_m = 0.0f;
+
+ uint16_t aux16[2];
+ const uint8_t * s = (const uint8_t *)aux16;
+
+ const uint16_t * a = (const uint16_t *)bq4_K->scales;
+ aux16[0] = a[0] & 0x0f0f;
+ aux16[1] = (a[0] >> 4) & 0x0f0f;
+
+ const float dall = bq4_K->d[0];
+ const float dmin = bq4_K->d[1];
+
+ const float d8_1 = bq8_1[0].ds.x;
+ const float d8_2 = bq8_1[1].ds.x;
+
+ const int ui1 = *((const int *)bq8_1[0].qs + (iqs/2));
+ const int ui2 = *((const int *)bq8_1[0].qs + (iqs/2) + 4);
+ const int ui3 = *((const int *)bq8_1[1].qs + (iqs/2));
+ const int ui4 = *((const int *)bq8_1[1].qs + (iqs/2) + 4);
+
+ const int * q4 = (const int *)bq4_K->qs + (iqs/2);
+ const int v1 = q4[0];
+ const int v2 = q4[4];
+
+ const int dot1 = __dp4a(ui2, v2 & 0x0f0f0f0f, __dp4a(ui1, v1 & 0x0f0f0f0f, 0));
+ const int dot2 = __dp4a(ui4, (v2 >> 4) & 0x0f0f0f0f, __dp4a(ui3, (v1 >> 4) & 0x0f0f0f0f, 0));
+ const int dot3 = __dp4a(0x01010101, ui2, __dp4a(0x01010101, ui1, 0));
+ const int dot4 = __dp4a(0x01010101, ui4, __dp4a(0x01010101, ui3, 0));
+
+ sumf_d += d8_1 * (dot1 * s[0]) + d8_2 * (dot2 * s[1]);
+ sumf_m += d8_1 * (dot3 * s[2]) + d8_2 * (dot4 * s[3]);
+
+ return dall * sumf_d - dmin * sumf_m;
+
+#else
+ return 0.0f; // only to satisfy the compiler
+#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
+
+#endif
+}
+
+template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q4_K(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
+
+ __shared__ int tile_x_ql[mmq_y * (WARP_SIZE) + mmq_y];
+ __shared__ half2 tile_x_dm[mmq_y * (WARP_SIZE/QI4_K) + mmq_y/QI4_K];
+ __shared__ int tile_x_sc[mmq_y * (WARP_SIZE/8) + mmq_y/8];
+
+ *x_ql = tile_x_ql;
+ *x_dm = tile_x_dm;
+ *x_sc = tile_x_sc;
+}
+
+template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q4_K(
+ const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
+ int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
+
+ __builtin_assume(i_offset >= 0);
+ __builtin_assume(i_offset < nwarps);
+ __builtin_assume(k >= 0);
+ __builtin_assume(k < WARP_SIZE);
+
+ const int kbx = k / QI4_K; // == 0 if QK_K == 256
+ const int kqsx = k % QI4_K; // == k if QK_K == 256
+
+ const block_q4_K * bx0 = (block_q4_K *) vx;
+
+#pragma unroll
+ for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
+ int i = i0 + i_offset;
+
+ if (need_check) {
+ i = min(i, i_max);
+ }
+
+ const block_q4_K * bxi = bx0 + i*blocks_per_row + kbx;
+
+ x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_uint8_aligned(bxi->qs, kqsx);
+ }
+
+ const int blocks_per_tile_x_row = WARP_SIZE / QI4_K; // == 1 if QK_K == 256
+ const int kbxd = k % blocks_per_tile_x_row; // == 0 if QK_K == 256
+
+#pragma unroll
+ for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI4_K) {
+ int i = (i0 + i_offset * QI4_K + k / blocks_per_tile_x_row) % mmq_y;
+
+ if (need_check) {
+ i = min(i, i_max);
+ }
+
+ const block_q4_K * bxi = bx0 + i*blocks_per_row + kbxd;
+
+ x_dm[i * (WARP_SIZE/QI4_K) + i / QI4_K + kbxd] = bxi->dm;
+ }
+
+#pragma unroll
+ for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 8) {
+ int i = (i0 + i_offset * 8 + k / (WARP_SIZE/8)) % mmq_y;
+
+ if (need_check) {
+ i = min(i, i_max);
+ }
+
+ const block_q4_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/8)) / (QI4_K/8);
+
+ const int * scales = (int *) bxi->scales;
+
+ const int ksc = k % (WARP_SIZE/8);
+
+ // scale arrangement after the following two lines: sc0,...,sc3, sc4,...,sc7, m0,...,m3, m4,...,m8
+ int scales8 = (scales[(ksc%2) + (ksc!=0)] >> (4 * (ksc & (ksc/2)))) & 0x0F0F0F0F; // lower 4 bits
+ scales8 |= (scales[ksc/2] >> (2 * (ksc % 2))) & 0x30303030; // upper 2 bits
+
+ x_sc[i * (WARP_SIZE/8) + i / 8 + ksc] = scales8;
+ }
+}
+
+static __device__ __forceinline__ float vec_dot_q4_K_q8_1_mul_mat(
+ const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
+ const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
+
+ int v[QR4_K*VDR_Q4_K_Q8_1_MMQ];
+
+#pragma unroll
+ for (int l = 0; l < VDR_Q4_K_Q8_1_MMQ; ++l) {
+ v[l + 0] = (x_ql[i * (WARP_SIZE + 1) + k + l] >> 0) & 0x0F0F0F0F;
+ v[l + (QI4_K/4)] = (x_ql[i * (WARP_SIZE + 1) + k + l] >> 4) & 0x0F0F0F0F;
+ }
+
+ const uint8_t * sc = ((const uint8_t *) &x_sc[i * (WARP_SIZE/8) + i/8 + k/16]) + 2*((k % 16) / 8);
+
+ const int index_y = j * WARP_SIZE + (QR4_K*k) % WARP_SIZE;
+ return vec_dot_q4_K_q8_1_impl_mmq(v, &y_qs[index_y], sc, sc+8, x_dm[i * (WARP_SIZE/QI4_K) + i/QI4_K], &y_ds[index_y/QI8_1]);
+}
+
+static __device__ __forceinline__ float vec_dot_q5_K_q8_1(
+ const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
+
+#ifndef GGML_QKK_64
+ const block_q5_K * bq5_K = (const block_q5_K *) vbq;
+
+ int vl[2];
+ int vh[2];
+ int u[2*QR5_K];
+ float d8[QR5_K];
+
+ const int bq8_offset = QR5_K * ((iqs/2) / (QI8_1/2));
+ const int * ql = (const int *)(bq5_K->qs + 16 * bq8_offset + 4 * ((iqs/2)%4));
+ const int * qh = (const int *)(bq5_K->qh + 4 * ((iqs/2)%4));
+
+ vl[0] = ql[0];
+ vl[1] = ql[4];
+
+ vh[0] = qh[0] >> bq8_offset;
+ vh[1] = qh[4] >> bq8_offset;
+
+ const uint16_t * scales = (const uint16_t *)bq5_K->scales;
+ uint16_t aux[2];
+ const int j = bq8_offset/2;
+ if (j < 2) {
+ aux[0] = scales[j+0] & 0x3f3f;
+ aux[1] = scales[j+2] & 0x3f3f;
+ } else {
+ aux[0] = ((scales[j+2] >> 0) & 0x0f0f) | ((scales[j-2] & 0xc0c0) >> 2);
+ aux[1] = ((scales[j+2] >> 4) & 0x0f0f) | ((scales[j-0] & 0xc0c0) >> 2);
+ }
+ const uint8_t * sc = (const uint8_t *)aux;
+ const uint8_t * m = sc + 2;
+
+#pragma unroll
+ for (int i = 0; i < QR5_K; ++i) {
+ const block_q8_1 * bq8i = bq8_1 + bq8_offset + i;
+ d8[i] = bq8i->ds.x;
+
+ const int * q8 = (const int *)bq8i->qs + ((iqs/2)%4);
+ u[2*i+0] = q8[0];
+ u[2*i+1] = q8[4];
+ }
+
+ return vec_dot_q5_K_q8_1_impl(vl, vh, u, sc, m, bq5_K->dm, d8);
+
+#else
+
+#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
+ const block_q5_K * bq5_K = (const block_q5_K *) vbq;
+
+ const int8_t * s = bq5_K->scales;
+
+ const float d = bq5_K->d;
+
+ const float d8_1 = bq8_1[0].ds.x;
+ const float d8_2 = bq8_1[1].ds.x;
+
+ const int ui1 = *((const int *)bq8_1[0].qs + (iqs/2));
+ const int ui2 = *((const int *)bq8_1[0].qs + (iqs/2) + 4);
+ const int ui3 = *((const int *)bq8_1[1].qs + (iqs/2));
+ const int ui4 = *((const int *)bq8_1[1].qs + (iqs/2) + 4);
+
+ const int * ql = (const int *)bq5_K->qs + (iqs/2);
+ const int vl1 = ql[0];
+ const int vl2 = ql[4];
+
+ const int step = 4 * (iqs/2); // 0, 4, 8, 12
+ const int im = step/8; // = 0 for iqs = 0, 2, = 1 for iqs = 4, 6
+ const int in = step%8; // 0, 4, 0, 4
+ const int vh = (*((const int *)(bq5_K->qh + in))) >> im;
+
+ const int v1 = (((vh << 4) & 0x10101010) ^ 0x10101010) | ((vl1 >> 0) & 0x0f0f0f0f);
+ const int v2 = (((vh << 2) & 0x10101010) ^ 0x10101010) | ((vl2 >> 0) & 0x0f0f0f0f);
+ const int v3 = (((vh >> 0) & 0x10101010) ^ 0x10101010) | ((vl1 >> 4) & 0x0f0f0f0f);
+ const int v4 = (((vh >> 2) & 0x10101010) ^ 0x10101010) | ((vl2 >> 4) & 0x0f0f0f0f);
+
+ const float sumf_d = d8_1 * (__dp4a(ui1, v1, 0) * s[0] + __dp4a(ui2, v2, 0) * s[1])
+ + d8_2 * (__dp4a(ui3, v3, 0) * s[2] + __dp4a(ui4, v4, 0) * s[3]);
+
+ return d * sumf_d;
- return sumi*d;
#else
return 0.0f; // only to satisfy the compiler
-#endif // __CUDA_ARCH__ >= 610
+#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
+
+#endif
+}
+
+template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q5_K(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
+
+ __shared__ int tile_x_ql[mmq_y * (2*WARP_SIZE) + mmq_y];
+ __shared__ half2 tile_x_dm[mmq_y * (WARP_SIZE/QI5_K) + mmq_y/QI5_K];
+ __shared__ int tile_x_sc[mmq_y * (WARP_SIZE/8) + mmq_y/8];
+
+ *x_ql = tile_x_ql;
+ *x_dm = tile_x_dm;
+ *x_sc = tile_x_sc;
+}
+
+template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q5_K(
+ const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
+ int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
+
+ __builtin_assume(i_offset >= 0);
+ __builtin_assume(i_offset < nwarps);
+ __builtin_assume(k >= 0);
+ __builtin_assume(k < WARP_SIZE);
+
+ const int kbx = k / QI5_K; // == 0 if QK_K == 256
+ const int kqsx = k % QI5_K; // == k if QK_K == 256
+
+ const block_q5_K * bx0 = (block_q5_K *) vx;
+
+#pragma unroll
+ for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
+ int i = i0 + i_offset;
+
+ if (need_check) {
+ i = min(i, i_max);
+ }
+
+ const block_q5_K * bxi = bx0 + i*blocks_per_row + kbx;
+ const int ky = QR5_K*kqsx;
+
+ const int ql = get_int_from_uint8_aligned(bxi->qs, kqsx);
+ const int ql0 = (ql >> 0) & 0x0F0F0F0F;
+ const int ql1 = (ql >> 4) & 0x0F0F0F0F;
+
+ const int qh = get_int_from_uint8_aligned(bxi->qh, kqsx % (QI5_K/4));
+ const int qh0 = ((qh >> (2 * (kqsx / (QI5_K/4)) + 0)) << 4) & 0x10101010;
+ const int qh1 = ((qh >> (2 * (kqsx / (QI5_K/4)) + 1)) << 4) & 0x10101010;
+
+ const int kq0 = ky - ky % (QI5_K/2) + k % (QI5_K/4) + 0;
+ const int kq1 = ky - ky % (QI5_K/2) + k % (QI5_K/4) + (QI5_K/4);
+
+ x_ql[i * (2*WARP_SIZE + 1) + kq0] = ql0 | qh0;
+ x_ql[i * (2*WARP_SIZE + 1) + kq1] = ql1 | qh1;
+ }
+
+ const int blocks_per_tile_x_row = WARP_SIZE / QI5_K; // == 1 if QK_K == 256
+ const int kbxd = k % blocks_per_tile_x_row; // == 0 if QK_K == 256
+
+#pragma unroll
+ for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI5_K) {
+ int i = (i0 + i_offset * QI5_K + k / blocks_per_tile_x_row) % mmq_y;
+
+ if (need_check) {
+ i = min(i, i_max);
+ }
+
+ const block_q5_K * bxi = bx0 + i*blocks_per_row + kbxd;
+
+ x_dm[i * (WARP_SIZE/QI5_K) + i / QI5_K + kbxd] = bxi->dm;
+ }
+
+#pragma unroll
+ for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 8) {
+ int i = (i0 + i_offset * 8 + k / (WARP_SIZE/8)) % mmq_y;
+
+ if (need_check) {
+ i = min(i, i_max);
+ }
+
+ const block_q5_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/8)) / (QI5_K/8);
+
+ const int * scales = (int *) bxi->scales;
+
+ const int ksc = k % (WARP_SIZE/8);
+
+ // scale arrangement after the following two lines: sc0,...,sc3, sc4,...,sc7, m0,...,m3, m4,...,m8
+ int scales8 = (scales[(ksc%2) + (ksc!=0)] >> (4 * (ksc & (ksc/2)))) & 0x0F0F0F0F; // lower 4 bits
+ scales8 |= (scales[ksc/2] >> (2 * (ksc % 2))) & 0x30303030; // upper 2 bits
+
+ x_sc[i * (WARP_SIZE/8) + i / 8 + ksc] = scales8;
+ }
}
-template <int qk, int qi, typename block_q_t, vec_dot_q_cuda_t vec_dot_q_cuda>
+static __device__ __forceinline__ float vec_dot_q5_K_q8_1_mul_mat(
+ const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
+ const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
+
+ const uint8_t * sc = ((const uint8_t *) &x_sc[i * (WARP_SIZE/8) + i/8 + k/16]) + 2 * ((k % 16) / 8);
+
+ const int index_x = i * (QR5_K*WARP_SIZE + 1) + QR5_K*k;
+ const int index_y = j * WARP_SIZE + (QR5_K*k) % WARP_SIZE;
+ return vec_dot_q4_K_q8_1_impl_mmq(&x_ql[index_x], &y_qs[index_y], sc, sc+8, x_dm[i * (WARP_SIZE/QI5_K) + i/QI5_K], &y_ds[index_y/QI8_1]);
+}
+
+static __device__ __forceinline__ float vec_dot_q6_K_q8_1(
+ const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
+
+ const block_q6_K * bq6_K = (const block_q6_K *) vbq;
+
+ const int bq8_offset = 2 * QR6_K * (iqs / (QI6_K/2)) + (iqs % (QI6_K/2)) / (QI6_K/4);
+ const int scale_offset = (QI6_K/4) * (iqs / (QI6_K/2)) + (iqs % (QI6_K/2)) / (QI6_K/8);
+ const int vh_shift = 2 * ((iqs % (QI6_K/2)) / (QI6_K/4));
+
+ const int vl = get_int_from_uint8(bq6_K->ql, iqs);
+ const int vh = get_int_from_uint8(bq6_K->qh, (QI6_K/4) * (iqs / (QI6_K/2)) + iqs % (QI6_K/4)) >> vh_shift;
+
+ const int8_t * scales = bq6_K->scales + scale_offset;
+
+ int u[QR6_K];
+ float d8[QR6_K];
+
+#pragma unroll
+ for (int i = 0; i < QR6_K; ++i) {
+ u[i] = get_int_from_int8_aligned(bq8_1[bq8_offset + 2*i].qs, iqs % QI8_1);
+ d8[i] = bq8_1[bq8_offset + 2*i].ds.x;
+ }
+
+ return vec_dot_q6_K_q8_1_impl_mmvq(vl, vh, u, scales, bq6_K->d, d8);
+}
+
+template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q6_K(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
+
+ __shared__ int tile_x_ql[mmq_y * (2*WARP_SIZE) + mmq_y];
+ __shared__ half2 tile_x_dm[mmq_y * (WARP_SIZE/QI6_K) + mmq_y/QI6_K];
+ __shared__ int tile_x_sc[mmq_y * (WARP_SIZE/8) + mmq_y/8];
+
+ *x_ql = tile_x_ql;
+ *x_dm = tile_x_dm;
+ *x_sc = tile_x_sc;
+}
+
+template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q6_K(
+ const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
+ int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
+
+ __builtin_assume(i_offset >= 0);
+ __builtin_assume(i_offset < nwarps);
+ __builtin_assume(k >= 0);
+ __builtin_assume(k < WARP_SIZE);
+
+ const int kbx = k / QI6_K; // == 0 if QK_K == 256
+ const int kqsx = k % QI6_K; // == k if QK_K == 256
+
+ const block_q6_K * bx0 = (block_q6_K *) vx;
+
+#pragma unroll
+ for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
+ int i = i0 + i_offset;
+
+ if (need_check) {
+ i = min(i, i_max);
+ }
+
+ const block_q6_K * bxi = bx0 + i*blocks_per_row + kbx;
+ const int ky = QR6_K*kqsx;
+
+ const int ql = get_int_from_uint8(bxi->ql, kqsx);
+ const int ql0 = (ql >> 0) & 0x0F0F0F0F;
+ const int ql1 = (ql >> 4) & 0x0F0F0F0F;
+
+ const int qh = get_int_from_uint8(bxi->qh, (QI6_K/4) * (kqsx / (QI6_K/2)) + kqsx % (QI6_K/4));
+ const int qh0 = ((qh >> (2 * ((kqsx % (QI6_K/2)) / (QI6_K/4)))) << 4) & 0x30303030;
+ const int qh1 = (qh >> (2 * ((kqsx % (QI6_K/2)) / (QI6_K/4)))) & 0x30303030;
+
+ const int kq0 = ky - ky % QI6_K + k % (QI6_K/2) + 0;
+ const int kq1 = ky - ky % QI6_K + k % (QI6_K/2) + (QI6_K/2);
+
+ x_ql[i * (2*WARP_SIZE + 1) + kq0] = __vsubss4(ql0 | qh0, 0x20202020);
+ x_ql[i * (2*WARP_SIZE + 1) + kq1] = __vsubss4(ql1 | qh1, 0x20202020);
+ }
+
+ const int blocks_per_tile_x_row = WARP_SIZE / QI6_K; // == 1 if QK_K == 256
+ const int kbxd = k % blocks_per_tile_x_row; // == 0 if QK_K == 256
+ float * x_dmf = (float *) x_dm;
+
+#pragma unroll
+ for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI6_K) {
+ int i = (i0 + i_offset * QI6_K + k / blocks_per_tile_x_row) % mmq_y;
+
+ if (need_check) {
+ i = min(i, i_max);
+ }
+
+ const block_q6_K * bxi = bx0 + i*blocks_per_row + kbxd;
+
+ x_dmf[i * (WARP_SIZE/QI6_K) + i / QI6_K + kbxd] = bxi->d;
+ }
+
+#pragma unroll
+ for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 8) {
+ int i = (i0 + i_offset * 8 + k / (WARP_SIZE/8)) % mmq_y;
+
+ if (need_check) {
+ i = min(i, i_max);
+ }
+
+ const block_q6_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/8)) / 4;
+
+ x_sc[i * (WARP_SIZE/8) + i / 8 + k % (WARP_SIZE/8)] = get_int_from_int8(bxi->scales, k % (QI6_K/8));
+ }
+}
+
+static __device__ __forceinline__ float vec_dot_q6_K_q8_1_mul_mat(
+ const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
+ const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
+
+ const float * x_dmf = (const float *) x_dm;
+ const float * y_df = (const float *) y_ds;
+
+ const int8_t * sc = ((const int8_t *) &x_sc[i * (WARP_SIZE/8) + i/8 + k/8]);
+
+ const int index_x = i * (QR6_K*WARP_SIZE + 1) + QR6_K*k;
+ const int index_y = j * WARP_SIZE + (QR6_K*k) % WARP_SIZE;
+ return vec_dot_q6_K_q8_1_impl_mmq(&x_ql[index_x], &y_qs[index_y], sc, x_dmf[i * (WARP_SIZE/QI6_K) + i/QI6_K], &y_df[index_y/QI8_1]);
+}
+
+template <int qk, int qr, int qi, bool need_sum, typename block_q_t, int mmq_x, int mmq_y, int nwarps,
+ allocate_tiles_cuda_t allocate_tiles, load_tiles_cuda_t load_tiles, int vdr, vec_dot_q_mul_mat_cuda_t vec_dot>
+static __global__ void mul_mat_q(
+ const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
+ const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
+
+ const block_q_t * x = (const block_q_t *) vx;
+ const block_q8_1 * y = (const block_q8_1 *) vy;
+
+ const int blocks_per_row_x = ncols_x / qk;
+ const int blocks_per_col_y = nrows_y / QK8_1;
+ const int blocks_per_warp = WARP_SIZE / qi;
+
+ const int & ncols_dst = ncols_y;
+
+ const int row_dst_0 = blockIdx.x*mmq_y;
+ const int & row_x_0 = row_dst_0;
+ const int row_dst = row_dst_0 + threadIdx.x;
+
+ const int col_dst_0 = blockIdx.y*mmq_x;
+ const int & col_y_0 = col_dst_0;
+
+ int * tile_x_ql = nullptr;
+ half2 * tile_x_dm = nullptr;
+ int * tile_x_qh = nullptr;
+ int * tile_x_sc = nullptr;
+
+ allocate_tiles(&tile_x_ql, &tile_x_dm, &tile_x_qh, &tile_x_sc);
+
+ __shared__ int tile_y_qs[mmq_x * WARP_SIZE];
+ __shared__ half2 tile_y_ds[mmq_x * WARP_SIZE/QI8_1];
+
+ float sum[mmq_y/WARP_SIZE][mmq_x/nwarps] = {0.0f};
+
+ for (int ib0 = 0; ib0 < blocks_per_row_x; ib0 += blocks_per_warp) {
+
+ load_tiles(x + row_x_0*blocks_per_row_x + ib0, tile_x_ql, tile_x_dm, tile_x_qh, tile_x_sc,
+ threadIdx.y, nrows_x-row_x_0-1, threadIdx.x, blocks_per_row_x);
+
+#pragma unroll
+ for (int ir = 0; ir < qr; ++ir) {
+ const int kqs = ir*WARP_SIZE + threadIdx.x;
+ const int kbxd = kqs / QI8_1;
+
+#pragma unroll
+ for (int i = 0; i < mmq_x; i += nwarps) {
+ const int col_y_eff = min(col_y_0 + threadIdx.y + i, ncols_y-1); // to prevent out-of-bounds memory accesses
+
+ const block_q8_1 * by0 = &y[col_y_eff*blocks_per_col_y + ib0 * (qk/QK8_1) + kbxd];
+
+ const int index_y = (threadIdx.y + i) * WARP_SIZE + kqs % WARP_SIZE;
+ tile_y_qs[index_y] = get_int_from_int8_aligned(by0->qs, threadIdx.x % QI8_1);
+ }
+
+#pragma unroll
+ for (int ids0 = 0; ids0 < mmq_x; ids0 += nwarps * QI8_1) {
+ const int ids = (ids0 + threadIdx.y * QI8_1 + threadIdx.x / (WARP_SIZE/QI8_1)) % mmq_x;
+ const int kby = threadIdx.x % (WARP_SIZE/QI8_1);
+ const int col_y_eff = min(col_y_0 + ids, ncols_y-1);
+
+ // if the sum is not needed it's faster to transform the scale to f32 ahead of time
+ const half2 * dsi_src = &y[col_y_eff*blocks_per_col_y + ib0 * (qk/QK8_1) + ir*(WARP_SIZE/QI8_1) + kby].ds;
+ half2 * dsi_dst = &tile_y_ds[ids * (WARP_SIZE/QI8_1) + kby];
+ if (need_sum) {
+ *dsi_dst = *dsi_src;
+ } else {
+ float * dfi_dst = (float *) dsi_dst;
+ *dfi_dst = (*dsi_src).x;
+ }
+ }
+
+ __syncthreads();
+
+// #pragma unroll // unrolling this loop causes too much register pressure
+ for (int k = ir*WARP_SIZE/qr; k < (ir+1)*WARP_SIZE/qr; k += vdr) {
+#pragma unroll
+ for (int j = 0; j < mmq_x; j += nwarps) {
+#pragma unroll
+ for (int i = 0; i < mmq_y; i += WARP_SIZE) {
+ sum[i/WARP_SIZE][j/nwarps] += vec_dot(
+ tile_x_ql, tile_x_dm, tile_x_qh, tile_x_sc, tile_y_qs, tile_y_ds,
+ threadIdx.x + i, threadIdx.y + j, k);
+ }
+ }
+ }
+
+ __syncthreads();
+ }
+ }
+
+
+ if (row_dst >= nrows_dst) {
+ return;
+ }
+
+ for (int j = 0; j < mmq_x; j += nwarps) {
+ const int col_dst = col_dst_0 + j + threadIdx.y;
+
+ if (col_dst >= ncols_dst) {
+ return;
+ }
+
+ for (int i = 0; i < mmq_y; i += WARP_SIZE) {
+ dst[col_dst*nrows_dst + row_dst + i] = sum[i/WARP_SIZE][j/nwarps];
+ }
+ }
+}
+
+template <int qk, int qi, typename block_q_t, int vdr, vec_dot_q_cuda_t vec_dot_q_cuda>
static __global__ void mul_mat_vec_q(const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst, const int ncols, const int nrows) {
const int row = blockIdx.y*blockDim.y + threadIdx.y;
@@ -1404,7 +3250,7 @@ static __global__ void mul_mat_vec_q(const void * __restrict__ vx, const void *
}
const int blocks_per_row = ncols / qk;
- const int blocks_per_warp = WARP_SIZE / qi;
+ const int blocks_per_warp = vdr * WARP_SIZE / qi;
// partial sum for each thread
float tmp = 0.0f;
@@ -1413,11 +3259,11 @@ static __global__ void mul_mat_vec_q(const void * __restrict__ vx, const void *
const block_q8_1 * y = (const block_q8_1 *) vy;
for (int i = 0; i < blocks_per_row; i += blocks_per_warp) {
- const int ibx = row*blocks_per_row + i + threadIdx.x / qi; // x block index
+ const int ibx = row*blocks_per_row + i + threadIdx.x / (qi/vdr); // x block index
- const int iby = i + threadIdx.x / qi; // y block index
+ const int iby = (i + threadIdx.x / (qi/vdr)) * (qk/QK8_1); // y block index that aligns with ibx
- const int iqs = threadIdx.x % qi; // x block quant index when casting the quants to int
+ const int iqs = vdr * (threadIdx.x % (qi/vdr)); // x block quant index when casting the quants to int
tmp += vec_dot_q_cuda(&x[ibx], &y[iby], iqs);
}
@@ -1450,11 +3296,11 @@ static __global__ void dequantize_mul_mat_vec(const void * __restrict__ vx, cons
const int y_offset = qr == 1 ? 1 : qk/2;
// partial sum for each thread
-#ifdef GGML_CUDA_DMMV_F16
+#ifdef GGML_CUDA_F16
half2 tmp = {0.0f, 0.0f}; // two sums for f16 to take advantage of half2 intrinsics
#else
float tmp = 0.0f;
-#endif // GGML_CUDA_DMMV_F16
+#endif // GGML_CUDA_F16
for (int i = 0; i < ncols; i += iter_stride) {
const int col = i + vals_per_iter*tid;
@@ -1474,7 +3320,7 @@ static __global__ void dequantize_mul_mat_vec(const void * __restrict__ vx, cons
// matrix multiplication
// for qr = 2 the y index needs to increase by 1 per j iter because of y_offset = qk/2
-#ifdef GGML_CUDA_DMMV_F16
+#ifdef GGML_CUDA_F16
tmp += __hmul2(v, {
y[iybs + iqs + j/qr + 0],
y[iybs + iqs + j/qr + y_offset]
@@ -1482,7 +3328,7 @@ static __global__ void dequantize_mul_mat_vec(const void * __restrict__ vx, cons
#else
tmp += v.x * y[iybs + iqs + j/qr + 0];
tmp += v.y * y[iybs + iqs + j/qr + y_offset];
-#endif // GGML_CUDA_DMMV_F16
+#endif // GGML_CUDA_F16
}
}
@@ -1493,19 +3339,23 @@ static __global__ void dequantize_mul_mat_vec(const void * __restrict__ vx, cons
}
if (tid == 0) {
-#ifdef GGML_CUDA_DMMV_F16
+#ifdef GGML_CUDA_F16
dst[row] = tmp.x + tmp.y;
#else
dst[row] = tmp;
-#endif // GGML_CUDA_DMMV_F16
+#endif // GGML_CUDA_F16
}
}
-static __global__ void mul_mat_p021_f16_f32(const void * __restrict__ vx, const float * __restrict__ y, float * __restrict__ dst, const int ncols_x, const int nrows_x, const int nchannels_x) {
+static __global__ void mul_mat_p021_f16_f32(
+ const void * __restrict__ vx, const float * __restrict__ y, float * __restrict__ dst,
+ const int ncols_x, const int nrows_x, const int nchannels_x, const int nchannels_y) {
+
const half * x = (const half *) vx;
const int row_x = blockDim.y*blockIdx.y + threadIdx.y;
const int channel = blockDim.z*blockIdx.z + threadIdx.z;
+ const int channel_x = channel / (nchannels_y / nchannels_x);
const int nrows_y = ncols_x;
const int nrows_dst = nrows_x;
@@ -1521,7 +3371,7 @@ static __global__ void mul_mat_p021_f16_f32(const void * __restrict__ vx, const
}
// x is transposed and permuted
- const int ix = row_x*nchannels_x*ncols_x + channel*ncols_x + col_x;
+ const int ix = row_x*nchannels_x*ncols_x + channel_x*ncols_x + col_x;
const float xi = __half2float(x[ix]);
const int row_y = col_x;
@@ -1549,12 +3399,13 @@ static __global__ void mul_mat_p021_f16_f32(const void * __restrict__ vx, const
static __global__ void mul_mat_vec_nc_f16_f32( // nc == non-contiguous
const void * __restrict__ vx, const float * __restrict__ y, float * __restrict__ dst, const int ncols_x, const int nrows_x,
- const int row_stride_x, const int channel_stride_x) {
+ const int row_stride_x, const int channel_stride_x, const int channel_x_divisor) {
const half * x = (const half *) vx;
const int row_x = blockDim.y*blockIdx.y + threadIdx.y;
const int channel = blockDim.z*blockIdx.z + threadIdx.z;
+ const int channel_x = channel / channel_x_divisor;
const int nrows_y = ncols_x;
const int nrows_dst = nrows_x;
@@ -1571,7 +3422,7 @@ static __global__ void mul_mat_vec_nc_f16_f32( // nc == non-contiguous
break;
}
- const int ix = channel*channel_stride_x + row_x*row_stride_x + col_x;
+ const int ix = channel_x*channel_stride_x + row_x*row_stride_x + col_x;
const float xi = __half2float(x[ix]);
const int row_y = col_x;
@@ -1632,7 +3483,8 @@ static __global__ void cpy_f32_f16(const char * cx, char * cdst, const int ne,
}
// rope == RoPE == rotary positional embedding
-static __global__ void rope_f32(const float * x, float * dst, const int ncols, const float p, const float theta_scale) {
+static __global__ void rope_f32(const float * x, float * dst, const int ncols, const float p0,
+ const float p_delta, const int p_delta_rows, const float theta_scale) {
const int col = 2*(blockDim.x*blockIdx.x + threadIdx.x);
if (col >= ncols) {
@@ -1642,7 +3494,7 @@ static __global__ void rope_f32(const float * x, float * dst, const int ncols, c
const int row = blockDim.y*blockIdx.y + threadIdx.y;
const int i = row*ncols + col;
- const float theta = p*powf(theta_scale, col/2);
+ const float theta = (p0 + p_delta * (row/p_delta_rows))*powf(theta_scale, col/2);
const float sin_theta = sinf(theta);
const float cos_theta = cosf(theta);
@@ -1653,6 +3505,40 @@ static __global__ void rope_f32(const float * x, float * dst, const int ncols, c
dst[i + 1] = x0*sin_theta + x1*cos_theta;
}
+static __global__ void rope_glm_f32(const float * x, float * dst, const int ncols, const float p, const float block_p, const float theta_scale) {
+ const int col = blockDim.x*blockIdx.x + threadIdx.x;
+ const int half_n_dims = ncols/4;
+
+ if (col >= half_n_dims) {
+ return;
+ }
+
+ const int row = blockDim.y*blockIdx.y + threadIdx.y;
+ const int i = row*ncols + col;
+
+ const float col_theta_scale = powf(theta_scale, col);
+
+ const float theta = p*col_theta_scale;
+ const float sin_theta = sinf(theta);
+ const float cos_theta = cosf(theta);
+
+ const float x0 = x[i + 0];
+ const float x1 = x[i + half_n_dims];
+
+ dst[i + 0] = x0*cos_theta - x1*sin_theta;
+ dst[i + half_n_dims] = x0*sin_theta + x1*cos_theta;
+
+ const float block_theta = block_p*col_theta_scale;
+ const float sin_block_theta = sinf(block_theta);
+ const float cos_block_theta = cosf(block_theta);
+
+ const float x2 = x[i + half_n_dims * 2];
+ const float x3 = x[i + half_n_dims * 3];
+
+ dst[i + half_n_dims * 2] = x2*cos_block_theta - x3*sin_block_theta;
+ dst[i + half_n_dims * 3] = x2*sin_block_theta + x3*cos_block_theta;
+}
+
static __global__ void diag_mask_inf_f32(const float * x, float * dst, const int ncols, const int rows_per_channel, const int n_past) {
const int col = blockDim.x*blockIdx.x + threadIdx.x;
const int row = blockDim.y*blockIdx.y + threadIdx.y;
@@ -1718,9 +3604,9 @@ static __global__ void scale_f32(const float * x, float * dst, const float scale
dst[i] = scale * x[i];
}
-static void add_f32_cuda(const float * x, const float * y, float * dst, const int k, cudaStream_t stream) {
- const int num_blocks = (k + CUDA_ADD_BLOCK_SIZE - 1) / CUDA_ADD_BLOCK_SIZE;
- add_f32<<<num_blocks, CUDA_ADD_BLOCK_SIZE, 0, stream>>>(x, y, dst, k);
+static void add_f32_cuda(const float * x, const float * y, float * dst, const int kx, const int ky, cudaStream_t stream) {
+ const int num_blocks = (kx + CUDA_ADD_BLOCK_SIZE - 1) / CUDA_ADD_BLOCK_SIZE;
+ add_f32<<<num_blocks, CUDA_ADD_BLOCK_SIZE, 0, stream>>>(x, y, dst, kx, ky);
}
static void add_f16_f32_f16_cuda(const half * x, const float * y, half * dst, const int k, cudaStream_t stream) {
@@ -1733,6 +3619,11 @@ static void mul_f32_cuda(const float * x, const float * y, float * dst, const in
mul_f32<<<num_blocks, CUDA_MUL_BLOCK_SIZE, 0, stream>>>(x, y, dst, kx, ky);
}
+static void gelu_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
+ const int num_blocks = (k + CUDA_GELU_BLOCK_SIZE - 1) / CUDA_GELU_BLOCK_SIZE;
+ gelu_f32<<<num_blocks, CUDA_GELU_BLOCK_SIZE, 0, stream>>>(x, dst, k);
+}
+
static void silu_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
const int num_blocks = (k + CUDA_SILU_BLOCK_SIZE - 1) / CUDA_SILU_BLOCK_SIZE;
silu_f32<<<num_blocks, CUDA_SILU_BLOCK_SIZE, 0, stream>>>(x, dst, k);
@@ -1744,15 +3635,17 @@ static void norm_f32_cuda(const float * x, float * dst, const int ncols, const i
norm_f32<<<nrows, block_dims, 0, stream>>>(x, dst, ncols);
}
-static void rms_norm_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
+static void rms_norm_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, const float eps, cudaStream_t stream) {
GGML_ASSERT(ncols % WARP_SIZE == 0);
const dim3 block_dims(WARP_SIZE, 1, 1);
- rms_norm_f32<<<nrows, block_dims, 0, stream>>>(x, dst, ncols);
+ rms_norm_f32<<<nrows, block_dims, 0, stream>>>(x, dst, ncols, eps);
}
-static void quantize_row_q8_1_cuda(const float * x, void * vy, const int ndata, const int k, cudaStream_t stream) {
- const int num_blocks = (k + CUDA_QUANTIZE_BLOCK_SIZE - 1) / CUDA_QUANTIZE_BLOCK_SIZE;
- quantize_q8_1<<<num_blocks, CUDA_QUANTIZE_BLOCK_SIZE, 0, stream>>>(x, vy, ndata, k);
+static void quantize_row_q8_1_cuda(const float * x, void * vy, const int kx, const int ky, const int kx_padded, cudaStream_t stream) {
+ const int block_num_x = (kx_padded + CUDA_QUANTIZE_BLOCK_SIZE - 1) / CUDA_QUANTIZE_BLOCK_SIZE;
+ const dim3 num_blocks(block_num_x, ky, 1);
+ const dim3 block_size(CUDA_DEQUANTIZE_BLOCK_SIZE, 1, 1);
+ quantize_q8_1<<<num_blocks, block_size, 0, stream>>>(x, vy, kx, kx_padded);
}
static void dequantize_row_q4_0_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
@@ -1909,47 +3802,92 @@ static void dequantize_mul_mat_vec_q6_K_cuda(const void * vx, const float * y, f
}
static void mul_mat_vec_q4_0_q8_1_cuda(const void * vx, const void * vy, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
- GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
+ GGML_ASSERT(ncols % QK4_0 == 0);
const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
const dim3 block_nums(1, block_num_y, 1);
const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
- mul_mat_vec_q<QK4_0, QI4_0, block_q4_0, vec_dot_q4_0_q8_1>
+ mul_mat_vec_q<QK4_0, QI4_0, block_q4_0, VDR_Q4_0_Q8_1_MMVQ, vec_dot_q4_0_q8_1>
<<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols, nrows);
}
static void mul_mat_vec_q4_1_q8_1_cuda(const void * vx, const void * vy, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
- GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
+ GGML_ASSERT(ncols % QK4_1 == 0);
const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
const dim3 block_nums(1, block_num_y, 1);
const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
- mul_mat_vec_q<QK4_0, QI4_1, block_q4_1, vec_dot_q4_1_q8_1>
+ mul_mat_vec_q<QK4_0, QI4_1, block_q4_1, VDR_Q4_1_Q8_1_MMVQ, vec_dot_q4_1_q8_1>
<<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols, nrows);
}
static void mul_mat_vec_q5_0_q8_1_cuda(const void * vx, const void * vy, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
- GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
+ GGML_ASSERT(ncols % QK5_0 == 0);
const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
const dim3 block_nums(1, block_num_y, 1);
const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
- mul_mat_vec_q<QK5_0, QI5_0, block_q5_0, vec_dot_q5_0_q8_1>
+ mul_mat_vec_q<QK5_0, QI5_0, block_q5_0, VDR_Q5_0_Q8_1_MMVQ, vec_dot_q5_0_q8_1>
<<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols, nrows);
}
static void mul_mat_vec_q5_1_q8_1_cuda(const void * vx, const void * vy, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
- GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
+ GGML_ASSERT(ncols % QK5_1 == 0);
const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
const dim3 block_nums(1, block_num_y, 1);
const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
- mul_mat_vec_q<QK5_1, QI5_1, block_q5_1, vec_dot_q5_1_q8_1>
+ mul_mat_vec_q<QK5_1, QI5_1, block_q5_1, VDR_Q5_1_Q8_1_MMVQ, vec_dot_q5_1_q8_1>
<<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols, nrows);
}
static void mul_mat_vec_q8_0_q8_1_cuda(const void * vx, const void * vy, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
- GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
+ GGML_ASSERT(ncols % QK8_0 == 0);
+ const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
+ const dim3 block_nums(1, block_num_y, 1);
+ const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
+ mul_mat_vec_q<QK8_0, QI8_0, block_q8_0, VDR_Q8_0_Q8_1_MMVQ, vec_dot_q8_0_q8_1>
+ <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols, nrows);
+}
+
+static void mul_mat_vec_q2_K_q8_1_cuda(const void * vx, const void * vy, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
+ GGML_ASSERT(ncols % QK_K == 0);
const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
const dim3 block_nums(1, block_num_y, 1);
const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
- mul_mat_vec_q<QK8_0, QI8_0, block_q8_0, vec_dot_q8_0_q8_1>
+ mul_mat_vec_q<QK_K, QI2_K, block_q2_K, VDR_Q2_K_Q8_1_MMVQ, vec_dot_q2_K_q8_1>
+ <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols, nrows);
+}
+
+static void mul_mat_vec_q3_K_q8_1_cuda(const void * vx, const void * vy, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
+ GGML_ASSERT(ncols % QK_K == 0);
+ const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
+ const dim3 block_nums(1, block_num_y, 1);
+ const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
+ mul_mat_vec_q<QK_K, QI3_K, block_q3_K, VDR_Q3_K_Q8_1_MMVQ, vec_dot_q3_K_q8_1>
+ <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols, nrows);
+}
+
+static void mul_mat_vec_q4_K_q8_1_cuda(const void * vx, const void * vy, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
+ GGML_ASSERT(ncols % QK_K == 0);
+ const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
+ const dim3 block_nums(1, block_num_y, 1);
+ const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
+ mul_mat_vec_q<QK_K, QI4_K, block_q4_K, VDR_Q4_K_Q8_1_MMVQ, vec_dot_q4_K_q8_1>
+ <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols, nrows);
+}
+
+static void mul_mat_vec_q5_K_q8_1_cuda(const void * vx, const void * vy, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
+ GGML_ASSERT(ncols % QK_K == 0);
+ const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
+ const dim3 block_nums(1, block_num_y, 1);
+ const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
+ mul_mat_vec_q<QK_K, QI5_K, block_q5_K, VDR_Q5_K_Q8_1_MMVQ, vec_dot_q5_K_q8_1>
+ <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols, nrows);
+}
+
+static void mul_mat_vec_q6_K_q8_1_cuda(const void * vx, const void * vy, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
+ GGML_ASSERT(ncols % QK_K == 0);
+ const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
+ const dim3 block_nums(1, block_num_y, 1);
+ const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
+ mul_mat_vec_q<QK_K, QI6_K, block_q6_K, VDR_Q6_K_Q8_1_MMVQ, vec_dot_q6_K_q8_1>
<<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols, nrows);
}
@@ -1996,20 +3934,554 @@ static to_fp32_cuda_t ggml_get_to_fp32_cuda(ggml_type type) {
}
}
-static void ggml_mul_mat_p021_f16_f32_cuda(const void * vx, const float * y, float * dst, const int ncols_x, const int nrows_x, const int nchannels_x, cudaStream_t stream) {
- const dim3 block_nums(1, nrows_x, nchannels_x);
+static void ggml_mul_mat_q4_0_q8_1_cuda(
+ const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x,
+ const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {
+
+ int id;
+ CUDA_CHECK(cudaGetDevice(&id));
+ const int compute_capability = g_compute_capabilities[id];
+
+ if (compute_capability >= CC_TURING) {
+ const int mmq_x = 64;
+ const int mmq_y = 128;
+ const int nwarps = 4;
+
+ const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
+ const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
+ const dim3 block_nums(block_num_x, block_num_y, 1);
+ const dim3 block_dims(WARP_SIZE, nwarps, 1);
+
+ if (nrows_x % mmq_y == 0) {
+ const bool need_check = false;
+ mul_mat_q<QK4_0, QR4_0, QI4_0, true, block_q4_0, mmq_x, mmq_y, nwarps, allocate_tiles_q4_0<mmq_y>,
+ load_tiles_q4_0<mmq_y, nwarps, need_check>, VDR_Q4_0_Q8_1_MMQ, vec_dot_q4_0_q8_1_mul_mat>
+ <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+ } else {
+ const bool need_check = true;
+ mul_mat_q<QK4_0, QR4_0, QI4_0, true, block_q4_0, mmq_x, mmq_y, nwarps, allocate_tiles_q4_0<mmq_y>,
+ load_tiles_q4_0<mmq_y, nwarps, need_check>, VDR_Q4_0_Q8_1_MMQ, vec_dot_q4_0_q8_1_mul_mat>
+ <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+ }
+ } else {
+ const int mmq_x = 64;
+ const int mmq_y = 64;
+ const int nwarps = 4;
+
+ const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
+ const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
+ const dim3 block_nums(block_num_x, block_num_y, 1);
+ const dim3 block_dims(WARP_SIZE, nwarps, 1);
+
+ if (nrows_x % mmq_y == 0) {
+ const bool need_check = false;
+ mul_mat_q<QK4_0, QR4_0, QI4_0, true, block_q4_0, mmq_x, mmq_y, nwarps, allocate_tiles_q4_0<mmq_y>,
+ load_tiles_q4_0<mmq_y, nwarps, need_check>, VDR_Q4_0_Q8_1_MMQ, vec_dot_q4_0_q8_1_mul_mat>
+ <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+ } else {
+ const bool need_check = true;
+ mul_mat_q<QK4_0, QR4_0, QI4_0, true, block_q4_0, mmq_x, mmq_y, nwarps, allocate_tiles_q4_0<mmq_y>,
+ load_tiles_q4_0<mmq_y, nwarps, need_check>, VDR_Q4_0_Q8_1_MMQ, vec_dot_q4_0_q8_1_mul_mat>
+ <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+ }
+ }
+}
+
+static void ggml_mul_mat_q4_1_q8_1_cuda(
+ const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x,
+ const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {
+
+ int id;
+ CUDA_CHECK(cudaGetDevice(&id));
+ const int compute_capability = g_compute_capabilities[id];
+
+ if (compute_capability >= CC_TURING) {
+ const int mmq_x = 64;
+ const int mmq_y = 128;
+ const int nwarps = 4;
+
+ const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
+ const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
+ const dim3 block_nums(block_num_x, block_num_y, 1);
+ const dim3 block_dims(WARP_SIZE, nwarps, 1);
+
+ if (nrows_x % mmq_y == 0) {
+ const bool need_check = false;
+ mul_mat_q<QK4_1, QR4_1, QI4_1, true, block_q4_1, mmq_x, mmq_y, nwarps, allocate_tiles_q4_1<mmq_y>,
+ load_tiles_q4_1<mmq_y, nwarps, need_check>, VDR_Q4_1_Q8_1_MMQ, vec_dot_q4_1_q8_1_mul_mat>
+ <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+ } else {
+ const bool need_check = true;
+ mul_mat_q<QK4_1, QR4_1, QI4_1, true, block_q4_1, mmq_x, mmq_y, nwarps, allocate_tiles_q4_1<mmq_y>,
+ load_tiles_q4_1<mmq_y, nwarps, need_check>, VDR_Q4_1_Q8_1_MMQ, vec_dot_q4_1_q8_1_mul_mat>
+ <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+ }
+ } else {
+ const int mmq_x = 64;
+ const int mmq_y = 64;
+ const int nwarps = 8;
+
+ const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
+ const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
+ const dim3 block_nums(block_num_x, block_num_y, 1);
+ const dim3 block_dims(WARP_SIZE, nwarps, 1);
+
+ if (nrows_x % mmq_y == 0) {
+ const bool need_check = false;
+ mul_mat_q<QK4_1, QR4_1, QI4_1, true, block_q4_1, mmq_x, mmq_y, nwarps, allocate_tiles_q4_1<mmq_y>,
+ load_tiles_q4_1<mmq_y, nwarps, need_check>, VDR_Q4_1_Q8_1_MMQ, vec_dot_q4_1_q8_1_mul_mat>
+ <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+ } else {
+ const bool need_check = true;
+ mul_mat_q<QK4_1, QR4_1, QI4_1, true, block_q4_1, mmq_x, mmq_y, nwarps, allocate_tiles_q4_1<mmq_y>,
+ load_tiles_q4_1<mmq_y, nwarps, need_check>, VDR_Q4_1_Q8_1_MMQ, vec_dot_q4_1_q8_1_mul_mat>
+ <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+ }
+
+ }
+}
+
+static void ggml_mul_mat_q5_0_q8_1_cuda(
+ const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x,
+ const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {
+
+ int id;
+ CUDA_CHECK(cudaGetDevice(&id));
+ const int compute_capability = g_compute_capabilities[id];
+
+ if (compute_capability >= CC_TURING) {
+ const int mmq_x = 128;
+ const int mmq_y = 64;
+ const int nwarps = 4;
+
+ const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
+ const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
+ const dim3 block_nums(block_num_x, block_num_y, 1);
+ const dim3 block_dims(WARP_SIZE, nwarps, 1);
+
+ if (nrows_x % mmq_y == 0) {
+ const bool need_check = false;
+ mul_mat_q<QK5_0, QR5_0, QI5_0, false, block_q5_0, mmq_x, mmq_y, nwarps, allocate_tiles_q5_0<mmq_y>,
+ load_tiles_q5_0<mmq_y, nwarps, need_check>, VDR_Q5_0_Q8_1_MMQ, vec_dot_q5_0_q8_1_mul_mat>
+ <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+ } else {
+ const bool need_check = true;
+ mul_mat_q<QK5_0, QR5_0, QI5_0, false, block_q5_0, mmq_x, mmq_y, nwarps, allocate_tiles_q5_0<mmq_y>,
+ load_tiles_q5_0<mmq_y, nwarps, need_check>, VDR_Q5_0_Q8_1_MMQ, vec_dot_q5_0_q8_1_mul_mat>
+ <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+ }
+ } else {
+ const int mmq_x = 64;
+ const int mmq_y = 64;
+ const int nwarps = 8;
+
+ const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
+ const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
+ const dim3 block_nums(block_num_x, block_num_y, 1);
+ const dim3 block_dims(WARP_SIZE, nwarps, 1);
+
+ if (nrows_x % mmq_y == 0) {
+ const bool need_check = false;
+ mul_mat_q<QK5_0, QR5_0, QI5_0, false, block_q5_0, mmq_x, mmq_y, nwarps, allocate_tiles_q5_0<mmq_y>,
+ load_tiles_q5_0<mmq_y, nwarps, need_check>, VDR_Q5_0_Q8_1_MMQ, vec_dot_q5_0_q8_1_mul_mat>
+ <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+ } else {
+ const bool need_check = true;
+ mul_mat_q<QK5_0, QR5_0, QI5_0, false, block_q5_0, mmq_x, mmq_y, nwarps, allocate_tiles_q5_0<mmq_y>,
+ load_tiles_q5_0<mmq_y, nwarps, need_check>, VDR_Q5_0_Q8_1_MMQ, vec_dot_q5_0_q8_1_mul_mat>
+ <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+ }
+ }
+}
+
+static void ggml_mul_mat_q5_1_q8_1_cuda(
+ const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x,
+ const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {
+
+ int id;
+ CUDA_CHECK(cudaGetDevice(&id));
+ const int compute_capability = g_compute_capabilities[id];
+
+ if (compute_capability >= CC_TURING) {
+ const int mmq_x = 128;
+ const int mmq_y = 64;
+ const int nwarps = 8;
+
+ const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
+ const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
+ const dim3 block_nums(block_num_x, block_num_y, 1);
+ const dim3 block_dims(WARP_SIZE, nwarps, 1);
+
+ if (nrows_x % mmq_y == 0) {
+ const bool need_check = false;
+ mul_mat_q<QK5_1, QR5_1, QI5_1, true, block_q5_1, mmq_x, mmq_y, nwarps, allocate_tiles_q5_1<mmq_y>,
+ load_tiles_q5_1<mmq_y, nwarps, need_check>, VDR_Q5_1_Q8_1_MMQ, vec_dot_q5_1_q8_1_mul_mat>
+ <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+ } else {
+ const bool need_check = true;
+ mul_mat_q<QK5_1, QR5_1, QI5_1, true, block_q5_1, mmq_x, mmq_y, nwarps, allocate_tiles_q5_1<mmq_y>,
+ load_tiles_q5_1<mmq_y, nwarps, need_check>, VDR_Q5_1_Q8_1_MMQ, vec_dot_q5_1_q8_1_mul_mat>
+ <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+ }
+ } else {
+ const int mmq_x = 64;
+ const int mmq_y = 64;
+ const int nwarps = 8;
+
+ const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
+ const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
+ const dim3 block_nums(block_num_x, block_num_y, 1);
+ const dim3 block_dims(WARP_SIZE, nwarps, 1);
+
+ if (nrows_x % mmq_y == 0) {
+ const bool need_check = false;
+ mul_mat_q<QK5_1, QR5_1, QI5_1, true, block_q5_1, mmq_x, mmq_y, nwarps, allocate_tiles_q5_1<mmq_y>,
+ load_tiles_q5_1<mmq_y, nwarps, need_check>, VDR_Q5_1_Q8_1_MMQ, vec_dot_q5_1_q8_1_mul_mat>
+ <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+ } else {
+ const bool need_check = true;
+ mul_mat_q<QK5_1, QR5_1, QI5_1, true, block_q5_1, mmq_x, mmq_y, nwarps, allocate_tiles_q5_1<mmq_y>,
+ load_tiles_q5_1<mmq_y, nwarps, need_check>, VDR_Q5_1_Q8_1_MMQ, vec_dot_q5_1_q8_1_mul_mat>
+ <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+ }
+ }
+}
+
+static void ggml_mul_mat_q8_0_q8_1_cuda(
+ const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x,
+ const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {
+
+ int id;
+ CUDA_CHECK(cudaGetDevice(&id));
+ const int compute_capability = g_compute_capabilities[id];
+
+ if (compute_capability >= CC_TURING) {
+ const int mmq_x = 128;
+ const int mmq_y = 64;
+ const int nwarps = 4;
+
+ const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
+ const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
+ const dim3 block_nums(block_num_x, block_num_y, 1);
+ const dim3 block_dims(WARP_SIZE, nwarps, 1);
+
+ if (nrows_x % mmq_y == 0) {
+ const bool need_check = false;
+ mul_mat_q<QK8_0, QR8_0, QI8_0, false, block_q8_0, mmq_x, mmq_y, nwarps, allocate_tiles_q8_0<mmq_y>,
+ load_tiles_q8_0<mmq_y, nwarps, need_check>, VDR_Q8_0_Q8_1_MMQ, vec_dot_q8_0_q8_1_mul_mat>
+ <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+ } else {
+ const bool need_check = true;
+ mul_mat_q<QK8_0, QR8_0, QI8_0, false, block_q8_0, mmq_x, mmq_y, nwarps, allocate_tiles_q8_0<mmq_y>,
+ load_tiles_q8_0<mmq_y, nwarps, need_check>, VDR_Q8_0_Q8_1_MMQ, vec_dot_q8_0_q8_1_mul_mat>
+ <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+ }
+ } else {
+ const int mmq_x = 64;
+ const int mmq_y = 64;
+ const int nwarps = 8;
+
+ const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
+ const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
+ const dim3 block_nums(block_num_x, block_num_y, 1);
+ const dim3 block_dims(WARP_SIZE, nwarps, 1);
+
+ if (nrows_x % mmq_y == 0) {
+ const bool need_check = false;
+ mul_mat_q<QK8_0, QR8_0, QI8_0, false, block_q8_0, mmq_x, mmq_y, nwarps, allocate_tiles_q8_0<mmq_y>,
+ load_tiles_q8_0<mmq_y, nwarps, need_check>, VDR_Q8_0_Q8_1_MMQ, vec_dot_q8_0_q8_1_mul_mat>
+ <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+ } else {
+ const bool need_check = true;
+ mul_mat_q<QK8_0, QR8_0, QI8_0, false, block_q8_0, mmq_x, mmq_y, nwarps, allocate_tiles_q8_0<mmq_y>,
+ load_tiles_q8_0<mmq_y, nwarps, need_check>, VDR_Q8_0_Q8_1_MMQ, vec_dot_q8_0_q8_1_mul_mat>
+ <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+ }
+ }
+}
+
+static void ggml_mul_mat_q2_K_q8_1_cuda(
+ const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x,
+ const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {
+
+ int id;
+ CUDA_CHECK(cudaGetDevice(&id));
+ const int compute_capability = g_compute_capabilities[id];
+
+ if (compute_capability >= CC_TURING) {
+ const int mmq_x = 64;
+ const int mmq_y = 128;
+ const int nwarps = 4;
+
+ const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
+ const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
+ const dim3 block_nums(block_num_x, block_num_y, 1);
+ const dim3 block_dims(WARP_SIZE, nwarps, 1);
+
+ if (nrows_x % mmq_y == 0) {
+ const bool need_check = false;
+ mul_mat_q<QK_K, QR2_K, QI2_K, false, block_q2_K, mmq_x, mmq_y, nwarps, allocate_tiles_q2_K<mmq_y>,
+ load_tiles_q2_K<mmq_y, nwarps, need_check>, VDR_Q2_K_Q8_1_MMQ, vec_dot_q2_K_q8_1_mul_mat>
+ <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+ } else {
+ const bool need_check = true;
+ mul_mat_q<QK_K, QR2_K, QI2_K, false, block_q2_K, mmq_x, mmq_y, nwarps, allocate_tiles_q2_K<mmq_y>,
+ load_tiles_q2_K<mmq_y, nwarps, need_check>, VDR_Q2_K_Q8_1_MMQ, vec_dot_q2_K_q8_1_mul_mat>
+ <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+ }
+ } else {
+ const int mmq_x = 64;
+ const int mmq_y = 64;
+ const int nwarps = 8;
+
+ const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
+ const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
+ const dim3 block_nums(block_num_x, block_num_y, 1);
+ const dim3 block_dims(WARP_SIZE, nwarps, 1);
+
+ if (nrows_x % mmq_y == 0) {
+ const bool need_check = false;
+ mul_mat_q<QK_K, QR2_K, QI2_K, false, block_q2_K, mmq_x, mmq_y, nwarps, allocate_tiles_q2_K<mmq_y>,
+ load_tiles_q2_K<mmq_y, nwarps, need_check>, VDR_Q2_K_Q8_1_MMQ, vec_dot_q2_K_q8_1_mul_mat>
+ <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+ } else {
+ const bool need_check = true;
+ mul_mat_q<QK_K, QR2_K, QI2_K, false, block_q2_K, mmq_x, mmq_y, nwarps, allocate_tiles_q2_K<mmq_y>,
+ load_tiles_q2_K<mmq_y, nwarps, need_check>, VDR_Q2_K_Q8_1_MMQ, vec_dot_q2_K_q8_1_mul_mat>
+ <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+ }
+ }
+}
+
+static void ggml_mul_mat_q3_K_q8_1_cuda(
+ const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x,
+ const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {
+
+ int id;
+ CUDA_CHECK(cudaGetDevice(&id));
+ const int compute_capability = g_compute_capabilities[id];
+
+ if (compute_capability >= CC_TURING) {
+ const int mmq_x = 128;
+ const int mmq_y = 128;
+ const int nwarps = 4;
+
+ const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
+ const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
+ const dim3 block_nums(block_num_x, block_num_y, 1);
+ const dim3 block_dims(WARP_SIZE, nwarps, 1);
+
+ if (nrows_x % mmq_y == 0) {
+ const bool need_check = false;
+ mul_mat_q<QK_K, QR3_K, QI3_K, false, block_q3_K, mmq_x, mmq_y, nwarps, allocate_tiles_q3_K<mmq_y>,
+ load_tiles_q3_K<mmq_y, nwarps, need_check>, VDR_Q3_K_Q8_1_MMQ, vec_dot_q3_K_q8_1_mul_mat>
+ <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+ } else {
+ const bool need_check = true;
+ mul_mat_q<QK_K, QR3_K, QI3_K, false, block_q3_K, mmq_x, mmq_y, nwarps, allocate_tiles_q3_K<mmq_y>,
+ load_tiles_q3_K<mmq_y, nwarps, need_check>, VDR_Q3_K_Q8_1_MMQ, vec_dot_q3_K_q8_1_mul_mat>
+ <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+ }
+ } else {
+ const int mmq_x = 64;
+ const int mmq_y = 64;
+ const int nwarps = 8;
+
+ const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
+ const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
+ const dim3 block_nums(block_num_x, block_num_y, 1);
+ const dim3 block_dims(WARP_SIZE, nwarps, 1);
+
+ if (nrows_x % mmq_y == 0) {
+ const bool need_check = false;
+ mul_mat_q<QK_K, QR3_K, QI3_K, false, block_q3_K, mmq_x, mmq_y, nwarps, allocate_tiles_q3_K<mmq_y>,
+ load_tiles_q3_K<mmq_y, nwarps, need_check>, VDR_Q3_K_Q8_1_MMQ, vec_dot_q3_K_q8_1_mul_mat>
+ <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+ } else {
+ const bool need_check = true;
+ mul_mat_q<QK_K, QR3_K, QI3_K, false, block_q3_K, mmq_x, mmq_y, nwarps, allocate_tiles_q3_K<mmq_y>,
+ load_tiles_q3_K<mmq_y, nwarps, need_check>, VDR_Q3_K_Q8_1_MMQ, vec_dot_q3_K_q8_1_mul_mat>
+ <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+ }
+ }
+}
+
+static void ggml_mul_mat_q4_K_q8_1_cuda(
+ const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x,
+ const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {
+
+ int id;
+ CUDA_CHECK(cudaGetDevice(&id));
+ const int compute_capability = g_compute_capabilities[id];
+
+ if (compute_capability >= CC_TURING) {
+ const int mmq_x = 64;
+ const int mmq_y = 128;
+ const int nwarps = 4;
+
+ const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
+ const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
+ const dim3 block_nums(block_num_x, block_num_y, 1);
+ const dim3 block_dims(WARP_SIZE, nwarps, 1);
+
+ if (nrows_x % mmq_y == 0) {
+ const bool need_check = false;
+ mul_mat_q<QK_K, QR4_K, QI4_K, true, block_q4_K, mmq_x, mmq_y, nwarps, allocate_tiles_q4_K<mmq_y>,
+ load_tiles_q4_K<mmq_y, nwarps, need_check>, VDR_Q4_K_Q8_1_MMQ, vec_dot_q4_K_q8_1_mul_mat>
+ <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+ } else {
+ const bool need_check = true;
+ mul_mat_q<QK_K, QR4_K, QI4_K, true, block_q4_K, mmq_x, mmq_y, nwarps, allocate_tiles_q4_K<mmq_y>,
+ load_tiles_q4_K<mmq_y, nwarps, need_check>, VDR_Q4_K_Q8_1_MMQ, vec_dot_q4_K_q8_1_mul_mat>
+ <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+ }
+ } else {
+ const int mmq_x = 32;
+ const int mmq_y = 64;
+ const int nwarps = 8;
+
+ const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
+ const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
+ const dim3 block_nums(block_num_x, block_num_y, 1);
+ const dim3 block_dims(WARP_SIZE, nwarps, 1);
+
+ if (nrows_x % mmq_y == 0) {
+ const bool need_check = false;
+ mul_mat_q<QK_K, QR4_K, QI4_K, true, block_q4_K, mmq_x, mmq_y, nwarps, allocate_tiles_q4_K<mmq_y>,
+ load_tiles_q4_K<mmq_y, nwarps, need_check>, VDR_Q4_K_Q8_1_MMQ, vec_dot_q4_K_q8_1_mul_mat>
+ <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+ } else {
+ const bool need_check = true;
+ mul_mat_q<QK_K, QR4_K, QI4_K, true, block_q4_K, mmq_x, mmq_y, nwarps, allocate_tiles_q4_K<mmq_y>,
+ load_tiles_q4_K<mmq_y, nwarps, need_check>, VDR_Q4_K_Q8_1_MMQ, vec_dot_q4_K_q8_1_mul_mat>
+ <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+ }
+ }
+}
+
+static void ggml_mul_mat_q5_K_q8_1_cuda(
+ const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x,
+ const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {
+
+ int id;
+ CUDA_CHECK(cudaGetDevice(&id));
+ const int compute_capability = g_compute_capabilities[id];
+
+ if (compute_capability >= CC_TURING) {
+ const int mmq_x = 64;
+ const int mmq_y = 128;
+ const int nwarps = 4;
+
+ const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
+ const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
+ const dim3 block_nums(block_num_x, block_num_y, 1);
+ const dim3 block_dims(WARP_SIZE, nwarps, 1);
+
+ if (nrows_x % mmq_y == 0) {
+ const bool need_check = false;
+ mul_mat_q<QK_K, QR5_K, QI5_K, true, block_q5_K, mmq_x, mmq_y, nwarps, allocate_tiles_q5_K<mmq_y>,
+ load_tiles_q5_K<mmq_y, nwarps, need_check>, VDR_Q5_K_Q8_1_MMQ, vec_dot_q5_K_q8_1_mul_mat>
+ <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+ } else {
+ const bool need_check = true;
+ mul_mat_q<QK_K, QR5_K, QI5_K, true, block_q5_K, mmq_x, mmq_y, nwarps, allocate_tiles_q5_K<mmq_y>,
+ load_tiles_q5_K<mmq_y, nwarps, need_check>, VDR_Q5_K_Q8_1_MMQ, vec_dot_q5_K_q8_1_mul_mat>
+ <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+ }
+ } else {
+ const int mmq_x = 64;
+ const int mmq_y = 64;
+ const int nwarps = 8;
+
+ const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
+ const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
+ const dim3 block_nums(block_num_x, block_num_y, 1);
+ const dim3 block_dims(WARP_SIZE, nwarps, 1);
+
+ if (nrows_x % mmq_y == 0) {
+ const bool need_check = false;
+ mul_mat_q<QK_K, QR5_K, QI5_K, true, block_q5_K, mmq_x, mmq_y, nwarps, allocate_tiles_q5_K<mmq_y>,
+ load_tiles_q5_K<mmq_y, nwarps, need_check>, VDR_Q5_K_Q8_1_MMQ, vec_dot_q5_K_q8_1_mul_mat>
+ <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+ } else {
+ const bool need_check = true;
+ mul_mat_q<QK_K, QR5_K, QI5_K, true, block_q5_K, mmq_x, mmq_y, nwarps, allocate_tiles_q5_K<mmq_y>,
+ load_tiles_q5_K<mmq_y, nwarps, need_check>, VDR_Q5_K_Q8_1_MMQ, vec_dot_q5_K_q8_1_mul_mat>
+ <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+ }
+ }
+}
+
+static void ggml_mul_mat_q6_K_q8_1_cuda(
+ const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x,
+ const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {
+
+ int id;
+ CUDA_CHECK(cudaGetDevice(&id));
+ const int compute_capability = g_compute_capabilities[id];
+
+ if (compute_capability >= CC_TURING) {
+ const int mmq_x = 64;
+ const int mmq_y = 64;
+ const int nwarps = 4;
+
+ const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
+ const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
+ const dim3 block_nums(block_num_x, block_num_y, 1);
+ const dim3 block_dims(WARP_SIZE, nwarps, 1);
+
+ if (nrows_x % mmq_y == 0) {
+ const bool need_check = false;
+ mul_mat_q<QK_K, QR6_K, QI6_K, false, block_q6_K, mmq_x, mmq_y, nwarps, allocate_tiles_q6_K<mmq_y>,
+ load_tiles_q6_K<mmq_y, nwarps, need_check>, VDR_Q6_K_Q8_1_MMQ, vec_dot_q6_K_q8_1_mul_mat>
+ <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+ } else {
+ const bool need_check = true;
+ mul_mat_q<QK_K, QR6_K, QI6_K, false, block_q6_K, mmq_x, mmq_y, nwarps, allocate_tiles_q6_K<mmq_y>,
+ load_tiles_q6_K<mmq_y, nwarps, need_check>, VDR_Q6_K_Q8_1_MMQ, vec_dot_q6_K_q8_1_mul_mat>
+ <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+ }
+ } else {
+ const int mmq_x = 32;
+ const int mmq_y = 64;
+ const int nwarps = 8;
+
+ const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
+ const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
+ const dim3 block_nums(block_num_x, block_num_y, 1);
+ const dim3 block_dims(WARP_SIZE, nwarps, 1);
+
+ if (nrows_x % mmq_y == 0) {
+ const bool need_check = false;
+ mul_mat_q<QK_K, QR6_K, QI6_K, false, block_q6_K, mmq_x, mmq_y, nwarps, allocate_tiles_q6_K<mmq_y>,
+ load_tiles_q6_K<mmq_y, nwarps, need_check>, VDR_Q6_K_Q8_1_MMQ, vec_dot_q6_K_q8_1_mul_mat>
+ <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+ } else {
+ const bool need_check = true;
+ mul_mat_q<QK_K, QR6_K, QI6_K, false, block_q6_K, mmq_x, mmq_y, nwarps, allocate_tiles_q6_K<mmq_y>,
+ load_tiles_q6_K<mmq_y, nwarps, need_check>, VDR_Q6_K_Q8_1_MMQ, vec_dot_q6_K_q8_1_mul_mat>
+ <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
+ }
+ }
+}
+
+static void ggml_mul_mat_p021_f16_f32_cuda(
+ const void * vx, const float * y, float * dst, const int ncols_x, const int nrows_x,
+ const int nchannels_x, const int nchannels_y, cudaStream_t stream) {
+
+ const dim3 block_nums(1, nrows_x, nchannels_y);
const dim3 block_dims(WARP_SIZE, 1, 1);
- mul_mat_p021_f16_f32<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols_x, nrows_x, nchannels_x);
+ mul_mat_p021_f16_f32<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols_x, nrows_x, nchannels_x, nchannels_y);
}
static void ggml_mul_mat_vec_nc_f16_f32_cuda(
const void * vx, const float * y, float * dst, const int ncols_x, const int nrows_x, const int row_stride_x,
- const int nchannels_x, const int channel_stride_x, cudaStream_t stream) {
+ const int nchannels_x, const int nchannels_y, const int channel_stride_x, cudaStream_t stream) {
- const dim3 block_nums(1, nrows_x, nchannels_x);
+ const dim3 block_nums(1, nrows_x, nchannels_y);
const dim3 block_dims(WARP_SIZE, 1, 1);
mul_mat_vec_nc_f16_f32<<<block_nums, block_dims, 0, stream>>>
- (vx, y, dst, ncols_x, nrows_x, row_stride_x, channel_stride_x);
+ (vx, y, dst, ncols_x, nrows_x, row_stride_x, channel_stride_x, nchannels_y/nchannels_x);
}
static void ggml_cpy_f32_f32_cuda(
@@ -2037,12 +4509,21 @@ static void scale_f32_cuda(const float * x, float * dst, const float scale, cons
scale_f32<<<num_blocks, CUDA_SCALE_BLOCK_SIZE, 0, stream>>>(x, dst, scale, k);
}
-static void rope_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, const float p, const float theta_scale, cudaStream_t stream) {
+static void rope_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, const float p0,
+ const float p_delta, const int p_delta_rows, const float theta_scale, cudaStream_t stream) {
GGML_ASSERT(nrows % 2 == 0);
const dim3 block_dims(2*CUDA_ROPE_BLOCK_SIZE, 1, 1);
const int num_blocks_x = (ncols + 2*CUDA_ROPE_BLOCK_SIZE - 1) / (2*CUDA_ROPE_BLOCK_SIZE);
const dim3 block_nums(num_blocks_x, nrows, 1);
- rope_f32<<<block_nums, block_dims, 0, stream>>>(x, dst, ncols, p, theta_scale);
+ rope_f32<<<block_nums, block_dims, 0, stream>>>(x, dst, ncols, p0, p_delta, p_delta_rows, theta_scale);
+}
+
+static void rope_glm_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, const float p, const float block_p, const float theta_scale, cudaStream_t stream) {
+ GGML_ASSERT(nrows % 4 == 0);
+ const dim3 block_dims(4*CUDA_ROPE_BLOCK_SIZE, 1, 1);
+ const int num_blocks_x = (ncols + 4*CUDA_ROPE_BLOCK_SIZE - 1) / (4*CUDA_ROPE_BLOCK_SIZE);
+ const dim3 block_nums(num_blocks_x, nrows, 1);
+ rope_glm_f32<<<block_nums, block_dims, 0, stream>>>(x, dst, ncols, p, block_p, theta_scale);
}
static void diag_mask_inf_f32_cuda(const float * x, float * dst, const int ncols_x, const int nrows_x, const int rows_per_channel, const int n_past, cudaStream_t stream) {
@@ -2087,20 +4568,53 @@ static void * ggml_cuda_pool_malloc(size_t size, size_t * actual_size) {
scoped_spin_lock lock(g_cuda_pool_lock);
int id;
CUDA_CHECK(cudaGetDevice(&id));
-
+#ifdef DEBUG_CUDA_MALLOC
+ int nnz = 0;
+ size_t max_size = 0, tot_size = 0;
+#endif
+ size_t best_diff = 1ull << 36;
+ int ibest = -1;
for (int i = 0; i < MAX_CUDA_BUFFERS; ++i) {
cuda_buffer& b = g_cuda_buffer_pool[id][i];
- if (b.size >= size && b.ptr != nullptr) {
- void * ptr = b.ptr;
- *actual_size = b.size;
- b.ptr = nullptr;
- b.size = 0;
- return ptr;
+ if (b.ptr != nullptr) {
+#ifdef DEBUG_CUDA_MALLOC
+ ++nnz;
+ tot_size += b.size;
+ if (b.size > max_size) max_size = b.size;
+#endif
+ if (b.size >= size) {
+ size_t diff = b.size - size;
+ if (diff < best_diff) {
+ best_diff = diff;
+ ibest = i;
+ if (!best_diff) {
+ void * ptr = b.ptr;
+ *actual_size = b.size;
+ b.ptr = nullptr;
+ b.size = 0;
+ return ptr;
+ }
+ }
+ }
}
}
+ if (ibest >= 0) {
+ cuda_buffer& b = g_cuda_buffer_pool[id][ibest];
+ void * ptr = b.ptr;
+ *actual_size = b.size;
+ b.ptr = nullptr;
+ b.size = 0;
+ return ptr;
+ }
+#ifdef DEBUG_CUDA_MALLOC
+ fprintf(stderr, "%s: %d buffers, max_size = %u MB, tot_size = %u MB, requested %u MB\n", __func__, nnz,
+ (uint32_t)(max_size/1024/1024), (uint32_t)(tot_size/1024/1024), (uint32_t)(size/1024/1024));
+#endif
void * ptr;
- CUDA_CHECK(cudaMalloc((void **) &ptr, size));
- *actual_size = size;
+ size_t look_ahead_size = (size_t) (1.05 * size);
+ look_ahead_size = 256 * ((look_ahead_size + 255)/256);
+ CUDA_CHECK(cudaMalloc((void **) &ptr, look_ahead_size));
+ *actual_size = look_ahead_size;
return ptr;
}
@@ -2122,19 +4636,6 @@ static void ggml_cuda_pool_free(void * ptr, size_t size) {
}
-static void * g_scratch_buffer = nullptr;
-static size_t g_scratch_size = 1024*1024*1024; // 1 GB by default
-static size_t g_scratch_offset = 0;
-
-static int g_device_count = -1;
-static int g_main_device = 0;
-static int g_compute_capabilities[GGML_CUDA_MAX_DEVICES];
-static float g_tensor_split[GGML_CUDA_MAX_DEVICES] = {0};
-
-static cublasHandle_t g_cublas_handles[GGML_CUDA_MAX_DEVICES] = {nullptr};
-
-static cudaStream_t g_cudaStreams_main[GGML_CUDA_MAX_DEVICES] = { nullptr };
-
void ggml_init_cublas() {
static bool initialized = false;
@@ -2176,6 +4677,9 @@ void ggml_init_cublas() {
}
void ggml_cuda_set_tensor_split(const float * tensor_split) {
+ if (tensor_split == nullptr) {
+ return;
+ }
bool all_zero = true;
for (int i = 0; i < g_device_count; ++i) {
if (tensor_split[i] != 0.0f) {
@@ -2274,17 +4778,15 @@ inline void ggml_cuda_op_add(
GGML_ASSERT(src1_ddf_i != nullptr);
GGML_ASSERT(dst_ddf_i != nullptr);
- // TODO: support broadcasting
- GGML_ASSERT(ggml_nelements(src0) == ggml_nelements(src1));
-
const int64_t ne00 = src0->ne[0];
const int64_t i01_diff = i01_high - i01_low;
const int64_t ne10 = src1->ne[0];
+ const int64_t ne11 = src1->ne[1];
// compute
if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
- add_f32_cuda(src0_ddf_i, src1_ddf_i, dst_ddf_i, ne00*i01_diff, cudaStream_main);
+ add_f32_cuda(src0_ddf_i, src1_ddf_i, dst_ddf_i, ne00*i01_diff, ne10*ne11, cudaStream_main);
} else if (src0->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F16) {
add_f16_f32_f16_cuda((half *) src0_ddq_i, src1_ddf_i, (half *) dst_ddf_i, ne00*i01_diff, cudaStream_main);
} else {
@@ -2308,23 +4810,39 @@ inline void ggml_cuda_op_mul(
GGML_ASSERT(dst_ddf_i != nullptr);
const int64_t ne00 = src0->ne[0];
+ const int64_t i01_diff = i01_high - i01_low;
+
const int64_t ne10 = src1->ne[0];
const int64_t ne11 = src1->ne[1];
- for (int64_t i01 = i01_low; i01 < i01_high; i01++) {
- const int64_t i11 = i1*ne11 + i01%ne11; // broadcast src1 across src0
+ mul_f32_cuda(src0_ddf_i, src1_ddf_i, dst_ddf_i, ne00*i01_diff, ne10*ne11, cudaStream_main);
- float * src0_ddf_i01 = src0_ddf_i + i01*ne00;
- float * src1_ddf_i01 = src1_ddf_i + i11*ne10;
- float * dst_ddf_i01 = dst_ddf_i + i01*ne00;
+ (void) dst;
+ (void) src0_ddq_i;
+ (void) i02;
+ (void) i1;
+}
- // compute
- mul_f32_cuda(src0_ddf_i01, src1_ddf_i01, dst_ddf_i01, ne00, ne10, cudaStream_main);
- }
+inline void ggml_cuda_op_gelu(
+ const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, char * src0_ddq_i,
+ float * src0_ddf_i, float * src1_ddf_i, float * dst_ddf_i, int64_t i02, int64_t i01_low, int64_t i01_high, int i1,
+ cudaStream_t & cudaStream_main){
+
+ GGML_ASSERT(src0_ddf_i != nullptr);
+ GGML_ASSERT(dst_ddf_i != nullptr);
+
+ const int64_t ne00 = src0->ne[0];
+ const int64_t i01_diff = i01_high - i01_low;
+ // compute
+ gelu_f32_cuda(src0_ddf_i, dst_ddf_i, ne00*i01_diff, cudaStream_main);
+
+ (void) src1;
(void) dst;
(void) src0_ddq_i;
+ (void) src1_ddf_i;
(void) i02;
+ (void) i1;
}
inline void ggml_cuda_op_silu(
@@ -2382,8 +4900,11 @@ inline void ggml_cuda_op_rms_norm(
const int64_t ne00 = src0->ne[0];
const int64_t i01_diff = i01_high - i01_low;
+ float eps;
+ memcpy(&eps, dst->op_params, sizeof(float));
+
// compute
- rms_norm_f32_cuda(src0_ddf_i, dst_ddf_i, ne00, i01_diff, cudaStream_main);
+ rms_norm_f32_cuda(src0_ddf_i, dst_ddf_i, ne00, i01_diff, eps, cudaStream_main);
(void) src1;
(void) dst;
@@ -2393,6 +4914,114 @@ inline void ggml_cuda_op_rms_norm(
(void) i1;
}
+inline void ggml_cuda_op_mul_mat_q(
+ const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, char * src0_ddq_i,
+ float * src0_ddf_i, float * src1_ddf_i, float * dst_ddf_i, int64_t i02, int64_t i01_low, int64_t i01_high, int i1,
+ cudaStream_t & cudaStream_main){
+
+ GGML_ASSERT(src0_ddq_i != nullptr);
+ GGML_ASSERT(src1_ddf_i != nullptr);
+ GGML_ASSERT(dst_ddf_i != nullptr);
+
+ const int64_t ne00 = src0->ne[0];
+
+ const int64_t ne10 = src1->ne[0];
+ const int64_t ne11 = src1->ne[1];
+ GGML_ASSERT(ne10 % QK8_1 == 0);
+
+ const int64_t ne0 = dst->ne[0];
+
+ const int64_t i01_diff = i01_high - i01_low;
+
+ int id;
+ CUDA_CHECK(cudaGetDevice(&id));
+
+ // the main device has a larger memory buffer to hold the results from all GPUs
+ // nrows_dst == nrows of the matrix that the dequantize_mul_mat kernel writes into
+ const int64_t nrows_dst = dst->backend == GGML_BACKEND_GPU && id == g_main_device ? ne0 : i01_diff;
+
+ const int64_t padded_row_size = ne10 % MATRIX_ROW_PADDING == 0 ?
+ ne10 : ne10 - ne10 % MATRIX_ROW_PADDING + MATRIX_ROW_PADDING;
+ size_t as;
+ void * src1_q8_1 = ggml_cuda_pool_malloc(padded_row_size*ne11*sizeof(block_q8_1)/QK8_1, &as);
+ quantize_row_q8_1_cuda(src1_ddf_i, src1_q8_1, ne10, ne11, padded_row_size, cudaStream_main);
+
+ switch (src0->type) {
+ case GGML_TYPE_Q4_0:
+ ggml_mul_mat_q4_0_q8_1_cuda(src0_ddq_i, src1_q8_1, dst_ddf_i, ne00, i01_diff, ne11, padded_row_size, nrows_dst, cudaStream_main);
+ break;
+ case GGML_TYPE_Q4_1:
+ ggml_mul_mat_q4_1_q8_1_cuda(src0_ddq_i, src1_q8_1, dst_ddf_i, ne00, i01_diff, ne11, padded_row_size, nrows_dst, cudaStream_main);
+ break;
+ case GGML_TYPE_Q5_0:
+ ggml_mul_mat_q5_0_q8_1_cuda(src0_ddq_i, src1_q8_1, dst_ddf_i, ne00, i01_diff, ne11, padded_row_size, nrows_dst, cudaStream_main);
+ break;
+ case GGML_TYPE_Q5_1:
+ ggml_mul_mat_q5_1_q8_1_cuda(src0_ddq_i, src1_q8_1, dst_ddf_i, ne00, i01_diff, ne11, padded_row_size, nrows_dst, cudaStream_main);
+ break;
+ case GGML_TYPE_Q8_0:
+ ggml_mul_mat_q8_0_q8_1_cuda(src0_ddq_i, src1_q8_1, dst_ddf_i, ne00, i01_diff, ne11, padded_row_size, nrows_dst, cudaStream_main);
+ break;
+ case GGML_TYPE_Q2_K:
+ ggml_mul_mat_q2_K_q8_1_cuda(src0_ddq_i, src1_q8_1, dst_ddf_i, ne00, i01_diff, ne11, padded_row_size, nrows_dst, cudaStream_main);
+ break;
+ case GGML_TYPE_Q3_K:
+ ggml_mul_mat_q3_K_q8_1_cuda(src0_ddq_i, src1_q8_1, dst_ddf_i, ne00, i01_diff, ne11, padded_row_size, nrows_dst, cudaStream_main);
+ break;
+ case GGML_TYPE_Q4_K:
+ ggml_mul_mat_q4_K_q8_1_cuda(src0_ddq_i, src1_q8_1, dst_ddf_i, ne00, i01_diff, ne11, padded_row_size, nrows_dst, cudaStream_main);
+ break;
+ case GGML_TYPE_Q5_K:
+ ggml_mul_mat_q5_K_q8_1_cuda(src0_ddq_i, src1_q8_1, dst_ddf_i, ne00, i01_diff, ne11, padded_row_size, nrows_dst, cudaStream_main);
+ break;
+ case GGML_TYPE_Q6_K:
+ ggml_mul_mat_q6_K_q8_1_cuda(src0_ddq_i, src1_q8_1, dst_ddf_i, ne00, i01_diff, ne11, padded_row_size, nrows_dst, cudaStream_main);
+ break;
+ default:
+ GGML_ASSERT(false);
+ break;
+ }
+
+ ggml_cuda_pool_free(src1_q8_1, as);
+
+ (void) src1;
+ (void) dst;
+ (void) src0_ddf_i;
+ (void) i02;
+ (void) i1;
+}
+
+static int64_t get_row_rounding(ggml_type type) {
+ int max_compute_capability = INT_MIN;
+ for (int id = 0; id < g_device_count; ++id) {
+ if (max_compute_capability < g_compute_capabilities[id]
+ && g_tensor_split[id] < (id + 1 < g_device_count ? g_tensor_split[id + 1] : 1.0f)) {
+ max_compute_capability = g_compute_capabilities[id];
+ }
+ }
+
+ switch(type) {
+ case GGML_TYPE_Q4_0:
+ case GGML_TYPE_Q4_1:
+ return max_compute_capability >= CC_TURING ? 128 : 64;
+ case GGML_TYPE_Q5_0:
+ case GGML_TYPE_Q5_1:
+ case GGML_TYPE_Q8_0:
+ return 64;
+ case GGML_TYPE_F16:
+ return 1;
+ case GGML_TYPE_Q2_K:
+ case GGML_TYPE_Q3_K:
+ case GGML_TYPE_Q4_K:
+ case GGML_TYPE_Q5_K:
+ return max_compute_capability >= CC_TURING ? 128 : 64;
+ case GGML_TYPE_Q6_K:
+ return 64;
+ default:
+ GGML_ASSERT(false);
+ }
+}
+
inline void ggml_cuda_op_mul_mat_vec(
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, char * src0_ddq_i,
float * src0_ddf_i, float * src1_ddf_i, float * dst_ddf_i, int64_t i02, int64_t i01_low, int64_t i01_high, int i1,
@@ -2407,25 +5036,35 @@ inline void ggml_cuda_op_mul_mat_vec(
#ifdef GGML_CUDA_FORCE_DMMV
const bool use_mul_mat_vec_q = false;
+ (void) g_compute_capabilities[0];
#else
int id;
CUDA_CHECK(cudaGetDevice(&id));
- const bool mul_mat_vec_q_implemented = src0->type == GGML_TYPE_Q4_0 ||
+ bool mul_mat_vec_q_implemented =
+ src0->type == GGML_TYPE_Q4_0 ||
src0->type == GGML_TYPE_Q4_1 ||
src0->type == GGML_TYPE_Q5_0 ||
src0->type == GGML_TYPE_Q5_1 ||
src0->type == GGML_TYPE_Q8_0;
-
- const bool use_mul_mat_vec_q = g_compute_capabilities[id] >= 610 && mul_mat_vec_q_implemented;
+#if QK_K == 256
+ mul_mat_vec_q_implemented = mul_mat_vec_q_implemented ||
+ src0->type == GGML_TYPE_Q2_K ||
+ src0->type == GGML_TYPE_Q3_K ||
+ src0->type == GGML_TYPE_Q4_K ||
+ src0->type == GGML_TYPE_Q5_K ||
+ src0->type == GGML_TYPE_Q6_K;
+#endif // QK_K == 256
+
+ const bool use_mul_mat_vec_q = g_compute_capabilities[id] >= MIN_CC_DP4A && mul_mat_vec_q_implemented;
#endif
if (use_mul_mat_vec_q) {
- int64_t padded_row_size = ne00 + MATRIX_ROW_PADDING - 1;
- padded_row_size -= padded_row_size % MATRIX_ROW_PADDING;
+ const int64_t padded_row_size = ne00 % MATRIX_ROW_PADDING == 0 ?
+ ne00 : ne00 - ne00 % MATRIX_ROW_PADDING + MATRIX_ROW_PADDING;
size_t as;
void * src1_q8_1 = ggml_cuda_pool_malloc(padded_row_size*sizeof(block_q8_1)/QK8_1, &as);
- quantize_row_q8_1_cuda(src1_ddf_i, src1_q8_1, ne00, padded_row_size, cudaStream_main);
+ quantize_row_q8_1_cuda(src1_ddf_i, src1_q8_1, ne00, 1, padded_row_size, cudaStream_main);
switch (src0->type) {
case GGML_TYPE_Q4_0:
@@ -2443,6 +5082,21 @@ inline void ggml_cuda_op_mul_mat_vec(
case GGML_TYPE_Q8_0:
mul_mat_vec_q8_0_q8_1_cuda(src0_ddq_i, src1_q8_1, dst_ddf_i, ne00, nrows, cudaStream_main);
break;
+ case GGML_TYPE_Q2_K:
+ mul_mat_vec_q2_K_q8_1_cuda(src0_ddq_i, src1_q8_1, dst_ddf_i, ne00, nrows, cudaStream_main);
+ break;
+ case GGML_TYPE_Q3_K:
+ mul_mat_vec_q3_K_q8_1_cuda(src0_ddq_i, src1_q8_1, dst_ddf_i, ne00, nrows, cudaStream_main);
+ break;
+ case GGML_TYPE_Q4_K:
+ mul_mat_vec_q4_K_q8_1_cuda(src0_ddq_i, src1_q8_1, dst_ddf_i, ne00, nrows, cudaStream_main);
+ break;
+ case GGML_TYPE_Q5_K:
+ mul_mat_vec_q5_K_q8_1_cuda(src0_ddq_i, src1_q8_1, dst_ddf_i, ne00, nrows, cudaStream_main);
+ break;
+ case GGML_TYPE_Q6_K:
+ mul_mat_vec_q6_K_q8_1_cuda(src0_ddq_i, src1_q8_1, dst_ddf_i, ne00, nrows, cudaStream_main);
+ break;
default:
GGML_ASSERT(false);
break;
@@ -2451,7 +5105,7 @@ inline void ggml_cuda_op_mul_mat_vec(
ggml_cuda_pool_free(src1_q8_1, as);
} else {
// on some GPUs it is faster to convert src1 to half and to use half precision intrinsics
-#ifdef GGML_CUDA_DMMV_F16
+#ifdef GGML_CUDA_F16
size_t ash;
dfloat * src1_dfloat = nullptr; // dfloat == half
@@ -2467,7 +5121,7 @@ inline void ggml_cuda_op_mul_mat_vec(
}
#else
dfloat * src1_dfloat = src1_ddf_i; // dfloat == float, no conversion
-#endif // GGML_CUDA_DMMV_F16
+#endif // GGML_CUDA_F16
switch (src0->type) {
case GGML_TYPE_Q4_0:
@@ -2508,11 +5162,11 @@ inline void ggml_cuda_op_mul_mat_vec(
break;
}
-#ifdef GGML_CUDA_DMMV_F16
+#ifdef GGML_CUDA_F16
if (src1_convert_f16) {
ggml_cuda_pool_free(src1_dfloat, ash);
}
-#endif // GGML_CUDA_DMMV_F16
+#endif // GGML_CUDA_F16
}
(void) src1;
@@ -2572,19 +5226,35 @@ inline void ggml_cuda_op_rope(
GGML_ASSERT(dst_ddf_i != nullptr);
const int64_t ne00 = src0->ne[0];
+ const int64_t ne01 = src0->ne[1];
const int64_t i01_diff = i01_high - i01_low;
- const int n_past = ((int32_t *) src1->data)[0];
- const int n_dims = ((int32_t *) src1->data)[1];
- const int mode = ((int32_t *) src1->data)[2];
- GGML_ASSERT(mode == 0);
+ const int n_past = ((int32_t *) dst->op_params)[0];
+ const int n_dims = ((int32_t *) dst->op_params)[1];
+ const int mode = ((int32_t *) dst->op_params)[2];
+ const int n_ctx = ((int32_t *) dst->op_params)[3];
+ // RoPE alteration for extended context
+
+ float freq_base, freq_scale;
+ memcpy(&freq_base, (int32_t *) dst->op_params + 4, sizeof(float));
+ memcpy(&freq_scale, (int32_t *) dst->op_params + 5, sizeof(float));
+
+ const float theta_scale = powf(freq_base, -2.0f/n_dims);
- const float theta_scale = powf(10000.0, -2.0f/n_dims);
- const float p = ((mode & 1) == 0 ? n_past + i02 : i02);
+ const bool is_glm = mode & 4;
// compute
- rope_f32_cuda(src0_ddf_i, dst_ddf_i, ne00, i01_diff, p, theta_scale, cudaStream_main);
+ if (is_glm) {
+ const float p = (((mode & 1) == 0 ? n_past + i02 : i02)) * freq_scale;
+ const float id_p = min(p, n_ctx - 2.f);
+ const float block_p = max(p - (n_ctx - 2.f), 0.f);
+ rope_glm_f32_cuda(src0_ddf_i, dst_ddf_i, ne00, i01_diff, id_p, block_p, theta_scale, cudaStream_main);
+ } else {
+ const float p0 = (((mode & 1) == 0 ? n_past : 0)) * freq_scale;
+ rope_f32_cuda(src0_ddf_i, dst_ddf_i, ne00, i01_diff, p0, freq_scale, ne01, theta_scale, cudaStream_main);
+ }
+ (void) src1;
(void) dst;
(void) src0_ddq_i;
(void) src1_ddf_i;
@@ -2603,11 +5273,12 @@ inline void ggml_cuda_op_diag_mask_inf(
const int64_t ne01 = src0->ne[1];
const int64_t i01_diff = i01_high - i01_low;
- const int n_past = ((int32_t *) src1->data)[0];
+ const int n_past = ((int32_t *) dst->op_params)[0];
// compute
diag_mask_inf_f32_cuda(src0_ddf_i, dst_ddf_i, ne00, i01_diff, ne01, n_past, cudaStream_main);
+ (void) src1;
(void) dst;
(void) src0_ddq_i;
(void) src1_ddf_i;
@@ -2675,6 +5346,9 @@ static void ggml_cuda_op(const ggml_tensor * src0, const ggml_tensor * src1, ggm
const int64_t ne11 = use_src1 ? src1->ne[1] : 1;
const int64_t ne12 = use_src1 ? src1->ne[2] : 1;
const int64_t ne13 = use_src1 ? src1->ne[3] : 1;
+ const int64_t nrows1 = use_src1 ? ggml_nrows(src1) : 1;
+
+ GGML_ASSERT(ne03 == ne13);
const int64_t ne0 = dst->ne[0];
const int64_t ne1 = dst->ne[1];
@@ -2686,12 +5360,19 @@ static void ggml_cuda_op(const ggml_tensor * src0, const ggml_tensor * src1, ggm
GGML_ASSERT(!use_src1 || src1->backend != GGML_BACKEND_GPU_SPLIT);
// strides for iteration over dims 3 and 2
- const int64_t num_iters = flatten_rows ? 1 : ne02 * ne03;
- const int64_t stride_mod = flatten_rows ? ne02 * ne03 : 1;
+ const int64_t num_iters_0 = ne02 >= ne12 ? ne02*ne03 : ne12*ne13;
+ const int64_t num_iters = flatten_rows ? 1 : num_iters_0;
+ const int64_t stride_mod = flatten_rows ? num_iters_0 : 1;
const int64_t src0_stride = ne00 * ne01 * stride_mod;
const int64_t src1_stride = ne10 * ne11 * stride_mod;
const int64_t dst_stride = ne0 * ne1 * stride_mod;
+ const int64_t rows_per_iter = flatten_rows ? nrows0 : ne01;
+ const int64_t i03_max = flatten_rows ? 1 : ne03;
+ const int64_t i02_max = flatten_rows ? 1 : (ne02 >= ne12 ? ne02 : ne12);
+ const int64_t i02_divisor = ne02 >= ne12 ? 1 : ne12 / ne02;
+ GGML_ASSERT(!(flatten_rows && ne02 < ne12));
+
const size_t src0_ts = ggml_type_size(src0->type);
const size_t src0_bs = ggml_blck_size(src0->type);
@@ -2708,6 +5389,7 @@ static void ggml_cuda_op(const ggml_tensor * src0, const ggml_tensor * src1, ggm
dst->op == GGML_OP_SCALE || dst->op == GGML_OP_DIAG_MASK_INF || dst->op == GGML_OP_ROPE);
const bool split = src0->backend == GGML_BACKEND_GPU_SPLIT;
+ GGML_ASSERT(!(split && ne02 < ne12));
const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(src0->type);
@@ -2740,11 +5422,20 @@ static void ggml_cuda_op(const ggml_tensor * src0, const ggml_tensor * src1, ggm
int64_t row_low, row_high;
if (split) {
+ const int64_t rounding = get_row_rounding(src0->type);
+
row_low = id == 0 ? 0 : nrows0*g_tensor_split[id];
- row_high = id == g_device_count - 1 ? nrows0 : nrows0*g_tensor_split[id + 1];
+ row_low -= row_low % rounding;
+
+ if (id == g_device_count - 1) {
+ row_high = nrows0;
+ } else {
+ row_high = nrows0*g_tensor_split[id + 1];
+ row_high -= row_high % rounding;
+ }
} else {
row_low = 0;
- row_high = nrows0;
+ row_high = nrows0*i02_divisor;
}
if (row_low == row_high) {
continue;
@@ -2792,16 +5483,12 @@ static void ggml_cuda_op(const ggml_tensor * src0, const ggml_tensor * src1, ggm
dst_ddf[id] = (float *) ggml_cuda_pool_malloc(size_dst_ddf, &dst_asf[id]);
}
- const int64_t i03_max = flatten_rows ? 1 : ne03;
- const int64_t i02_max = flatten_rows ? 1 : ne02;
- const int64_t rows_per_iter = flatten_rows ? nrows0 : ne01;
-
for (int64_t i03 = 0; i03 < i03_max; i03++) {
const int64_t i13 = i03 % ne13;
for (int64_t i02 = 0; i02 < i02_max; i02++) {
const int64_t i12 = i02 % ne12;
- const int64_t i0 = i03*ne02 + i02;
+ const int64_t i0 = i03*i02_max + i02;
// i0 values that contain the lower/upper rows for a split tensor when using multiple GPUs
const int64_t i0_offset_low = row_low/rows_per_iter;
@@ -2835,10 +5522,10 @@ static void ggml_cuda_op(const ggml_tensor * src0, const ggml_tensor * src1, ggm
const int64_t i11 = i13*ne12 + i12;
// for split tensors the data begins at i0 == i0_offset_low
- char * src0_ddq_i = src0_ddq[id] + (i0 - i0_offset_low)*src0_stride*src0_ts/src0_bs;
- float * src0_ddf_i = src0_ddf[id] + (i0 - i0_offset_low)*src0_stride;
+ char * src0_ddq_i = src0_ddq[id] + (i0/i02_divisor - i0_offset_low)*src0_stride*src0_ts/src0_bs;
+ float * src0_ddf_i = src0_ddf[id] + (i0/i02_divisor - i0_offset_low)*src0_stride;
float * src1_ddf_i = src1_ddf[id] + i11*src1_stride;
- float * dst_ddf_i = dst_ddf[id] + (i0 - i0_offset_low)*dst_stride;
+ float * dst_ddf_i = dst_ddf[id] + (i0 - i0_offset_low)*dst_stride;
// for split tensors the data pointer needs to be rounded down
// to the bin edge for i03, i02 bins beyond the first
@@ -2877,11 +5564,11 @@ static void ggml_cuda_op(const ggml_tensor * src0, const ggml_tensor * src1, ggm
}
}
- if (!src0_on_device || !src0_is_contiguous) {
+ if ((!src0_on_device || !src0_is_contiguous) && i02 % i02_divisor == 0) {
if (src0_is_f32) {
- CUDA_CHECK(ggml_cuda_cpy_tensor_2d(src0_ddf_i, src0, i03, i02, i01_low, i01_high, cudaStream_main));
+ CUDA_CHECK(ggml_cuda_cpy_tensor_2d(src0_ddf_i, src0, i03, i02/i02_divisor, i01_low, i01_high, cudaStream_main));
} else {
- CUDA_CHECK(ggml_cuda_cpy_tensor_2d(src0_ddq_i, src0, i03, i02, i01_low, i01_high, cudaStream_main));
+ CUDA_CHECK(ggml_cuda_cpy_tensor_2d(src0_ddq_i, src0, i03, i02/i02_divisor, i01_low, i01_high, cudaStream_main));
}
}
@@ -2911,13 +5598,12 @@ static void ggml_cuda_op(const ggml_tensor * src0, const ggml_tensor * src1, ggm
if (split) {
// src0 = weight matrix is saved as a transposed matrix for better memory layout.
// dst is NOT transposed.
- // The outputs of cuBLAS matrix matrix multiplications can therefore NOT simply be concatenated for >1 GPU.
+ // The outputs of matrix matrix multiplications can therefore NOT simply be concatenated for >1 GPU.
// Instead they need to be copied to the correct slice in ne0 = dst row index.
// If dst is a vector with ne0 == 1 then you don't have to do this but it still produces correct results.
- for (int64_t j = 0; j < ne1; ++j) {
- float * dhf_dst_i = (float *) ((char *) dst_off_device + (j*ne0 + i01_low)*sizeof(float) + i02*nb2 + i03*nb3);
- CUDA_CHECK(cudaMemcpyAsync(dhf_dst_i, dst_ddf_i + j*i01_diff, i01_diff*sizeof(float), kind, cudaStream_main));
- }
+ float * dhf_dst_i = (float *) ((char *) dst_off_device + i01_low*sizeof(float) + i02*nb2 + i03*nb3);
+ CUDA_CHECK(cudaMemcpy2DAsync(dhf_dst_i, ne0*sizeof(float), dst_ddf_i, i01_diff*sizeof(float),
+ i01_diff*sizeof(float), ne1, kind, cudaStream_main));
} else {
float * dhf_dst_i = (float *) ((char *) dst_off_device + i02*nb2 + i03*nb3);
CUDA_CHECK(cudaMemcpyAsync(dhf_dst_i, dst_ddf_i, dst_stride*sizeof(float), kind, cudaStream_main));
@@ -2958,7 +5644,7 @@ static void ggml_cuda_op(const ggml_tensor * src0, const ggml_tensor * src1, ggm
if (split && g_device_count > 1) {
CUDA_CHECK(cudaSetDevice(g_main_device));
for (int id = 0; id < g_device_count; ++id) {
- if (id != g_main_device) {
+ if (id != g_main_device && src0_extra->events[id]) {
CUDA_CHECK(cudaStreamWaitEvent(g_cudaStreams_main[g_main_device], src0_extra->events[id]));
}
}
@@ -2986,6 +5672,11 @@ void ggml_cuda_mul(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tens
ggml_cuda_op(src0, src1, dst, ggml_cuda_op_mul, true, false); // TODO ggml_cuda_op needs modification for flatten
}
+void ggml_cuda_gelu(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
+ GGML_ASSERT(src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32);
+ ggml_cuda_op(src0, src1, dst, ggml_cuda_op_gelu, true, true);
+}
+
void ggml_cuda_silu(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
GGML_ASSERT(src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32);
ggml_cuda_op(src0, src1, dst, ggml_cuda_op_silu, true, true);
@@ -3030,6 +5721,8 @@ void ggml_cuda_mul_mat_vec_p021(const ggml_tensor * src0, const ggml_tensor * sr
const int64_t ne01 = src0->ne[1];
const int64_t ne02 = src0->ne[2];
+ const int64_t ne12 = src1->ne[2];
+
CUDA_CHECK(cudaSetDevice(g_main_device));
cudaStream_t cudaStream_main = g_cudaStreams_main[g_main_device];
@@ -3042,7 +5735,7 @@ void ggml_cuda_mul_mat_vec_p021(const ggml_tensor * src0, const ggml_tensor * sr
struct ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra;
float * dst_ddf = (float *) dst_extra->data_device[g_main_device];
- ggml_mul_mat_p021_f16_f32_cuda(src0_ddq, src1_ddf, dst_ddf, ne00, ne01, ne02, cudaStream_main);
+ ggml_mul_mat_p021_f16_f32_cuda(src0_ddq, src1_ddf, dst_ddf, ne00, ne01, ne02, ne12, cudaStream_main);
}
void ggml_cuda_mul_mat_vec_nc(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst){
@@ -3056,6 +5749,8 @@ void ggml_cuda_mul_mat_vec_nc(const ggml_tensor * src0, const ggml_tensor * src1
const int64_t ne01 = src0->ne[1];
const int64_t ne02 = src0->ne[2];
+ const int64_t ne12 = src1->ne[2];
+
const int64_t nb01 = src0->nb[1];
const int64_t nb02 = src0->nb[2];
@@ -3074,7 +5769,7 @@ void ggml_cuda_mul_mat_vec_nc(const ggml_tensor * src0, const ggml_tensor * src1
const int row_stride_x = nb01 / sizeof(half);
const int channel_stride_x = nb02 / sizeof(half);
- ggml_mul_mat_vec_nc_f16_f32_cuda(src0_ddq, src1_ddf, dst_ddf, ne00, ne01, row_stride_x, ne02, channel_stride_x, cudaStream_main);
+ ggml_mul_mat_vec_nc_f16_f32_cuda(src0_ddq, src1_ddf, dst_ddf, ne00, ne01, row_stride_x, ne02, ne12, channel_stride_x, cudaStream_main);
}
void ggml_cuda_mul_mat(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
@@ -3091,7 +5786,19 @@ void ggml_cuda_mul_mat(const ggml_tensor * src0, const ggml_tensor * src1, ggml_
if (src1->ne[1] == 1 && src0->ne[0] % GGML_CUDA_DMMV_X == 0) {
ggml_cuda_op(src0, src1, dst, ggml_cuda_op_mul_mat_vec, false, false);
} else {
- ggml_cuda_op(src0, src1, dst, ggml_cuda_op_mul_mat_cublas, true, false);
+ int min_compute_capability = INT_MAX;
+ for (int id = 0; id < g_device_count; ++id) {
+ if (min_compute_capability > g_compute_capabilities[id]
+ && g_tensor_split[id] < (id + 1 < g_device_count ? g_tensor_split[id + 1] : 1.0f)) {
+ min_compute_capability = g_compute_capabilities[id];
+ }
+ }
+
+ if (g_mul_mat_q && ggml_is_quantized(src0->type) && min_compute_capability >= MIN_CC_DP4A) {
+ ggml_cuda_op(src0, src1, dst, ggml_cuda_op_mul_mat_q, false, false);
+ } else {
+ ggml_cuda_op(src0, src1, dst, ggml_cuda_op_mul_mat_cublas, true, false);
+ }
}
} else {
GGML_ASSERT(false);
@@ -3151,6 +5858,11 @@ void ggml_cuda_cpy(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tens
(void) dst;
}
+void ggml_cuda_dup(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
+ ggml_cuda_cpy(src0, dst, nullptr);
+ (void) src1;
+}
+
void ggml_cuda_diag_mask_inf(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
GGML_ASSERT(src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32);
ggml_cuda_op(src0, src1, dst, ggml_cuda_op_diag_mask_inf, true, true);
@@ -3163,7 +5875,10 @@ void ggml_cuda_soft_max(const ggml_tensor * src0, const ggml_tensor * src1, ggml
void ggml_cuda_rope(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
GGML_ASSERT(src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32);
- ggml_cuda_op(src0, src1, dst, ggml_cuda_op_rope, true, false); // FIXME flatten changes results
+
+ const int mode = ((int32_t *) dst->op_params)[2];
+ const bool is_glm = mode & 4;
+ ggml_cuda_op(src0, src1, dst, ggml_cuda_op_rope, true, !is_glm); // flatten support not implemented for glm
}
void ggml_cuda_nop(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
@@ -3195,8 +5910,17 @@ void ggml_cuda_transform_tensor(void * data, struct ggml_tensor * tensor) {
row_low = 0;
row_high = nrows;
} else if (backend == GGML_BACKEND_GPU_SPLIT) {
+ const int64_t rounding = get_row_rounding(tensor->type);
+
row_low = id == 0 ? 0 : nrows*g_tensor_split[id];
- row_high = id == g_device_count - 1 ? nrows : nrows*g_tensor_split[id + 1];
+ row_low -= row_low % rounding;
+
+ if (id == g_device_count - 1) {
+ row_high = nrows;
+ } else {
+ row_high = nrows*g_tensor_split[id + 1];
+ row_high -= row_high % rounding;
+ }
} else {
GGML_ASSERT(false);
}
@@ -3210,7 +5934,7 @@ void ggml_cuda_transform_tensor(void * data, struct ggml_tensor * tensor) {
size_t size = ggml_nbytes_split(tensor, nrows_split);
const size_t original_size = size;
- // pad last row to a multiple of 256 elements to avoid out-of-bounds memory accesses
+ // pad last row to a multiple of 512 elements to avoid out-of-bounds memory accesses
if (ne0 % MATRIX_ROW_PADDING != 0) {
size += (MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING)
* ggml_type_size(tensor->type)/ggml_blck_size(tensor->type);
@@ -3226,7 +5950,7 @@ void ggml_cuda_transform_tensor(void * data, struct ggml_tensor * tensor) {
}
- CUDA_CHECK(cudaMemcpy(buf, buf_host, size, cudaMemcpyHostToDevice));
+ CUDA_CHECK(cudaMemcpy(buf, buf_host, original_size, cudaMemcpyHostToDevice));
extra->data_device[id] = buf;
@@ -3260,6 +5984,22 @@ void ggml_cuda_free_data(struct ggml_tensor * tensor) {
delete extra;
}
+static struct ggml_tensor_extra_gpu * g_temp_tensor_extras = nullptr;
+static size_t g_temp_tensor_extra_index = 0;
+
+static struct ggml_tensor_extra_gpu * ggml_cuda_alloc_temp_tensor_extra() {
+ if (g_temp_tensor_extras == nullptr) {
+ g_temp_tensor_extras = new ggml_tensor_extra_gpu[GGML_MAX_NODES];
+ }
+
+ size_t alloc_index = g_temp_tensor_extra_index;
+ g_temp_tensor_extra_index = (g_temp_tensor_extra_index + 1) % GGML_MAX_NODES;
+ struct ggml_tensor_extra_gpu * extra = &g_temp_tensor_extras[alloc_index];
+ memset(extra, 0, sizeof(*extra));
+
+ return extra;
+}
+
void ggml_cuda_assign_buffers_impl(struct ggml_tensor * tensor, bool scratch, bool force_inplace) {
if (scratch && g_scratch_size == 0) {
return;
@@ -3268,7 +6008,7 @@ void ggml_cuda_assign_buffers_impl(struct ggml_tensor * tensor, bool scratch, bo
// recursively assign CUDA buffers until a compute tensor is found
if (tensor->src[0] != nullptr && tensor->src[0]->backend == GGML_BACKEND_CPU) {
const ggml_op src0_op = tensor->src[0]->op;
- if (src0_op == GGML_OP_RESHAPE || src0_op == GGML_OP_TRANSPOSE || src0_op == GGML_OP_VIEW) {
+ if (src0_op == GGML_OP_RESHAPE || src0_op == GGML_OP_TRANSPOSE || src0_op == GGML_OP_VIEW || src0_op == GGML_OP_PERMUTE) {
ggml_cuda_assign_buffers_impl(tensor->src[0], scratch, force_inplace);
}
}
@@ -3277,8 +6017,7 @@ void ggml_cuda_assign_buffers_impl(struct ggml_tensor * tensor, bool scratch, bo
}
tensor->backend = GGML_BACKEND_GPU;
- struct ggml_tensor_extra_gpu * extra = new ggml_tensor_extra_gpu;
- memset(extra, 0, sizeof(*extra));
+ struct ggml_tensor_extra_gpu * extra;
const bool inplace = (tensor->src[0] != nullptr && tensor->src[0]->data == tensor->data) ||
tensor->op == GGML_OP_VIEW ||
@@ -3291,12 +6030,14 @@ void ggml_cuda_assign_buffers_impl(struct ggml_tensor * tensor, bool scratch, bo
char * src0_ddc = (char *) src0_extra->data_device[g_main_device];
size_t offset = 0;
if (tensor->op == GGML_OP_VIEW) {
- memcpy(&offset, tensor->src[2]->data, sizeof(size_t));
+ memcpy(&offset, tensor->op_params, sizeof(size_t));
}
+ extra = ggml_cuda_alloc_temp_tensor_extra();
extra->data_device[g_main_device] = src0_ddc + offset;
} else if (tensor->op == GGML_OP_CPY) {
struct ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu * ) tensor->src[1]->extra;
void * src1_ddv = src1_extra->data_device[g_main_device];
+ extra = ggml_cuda_alloc_temp_tensor_extra();
extra->data_device[g_main_device] = src1_ddv;
} else if (scratch) {
GGML_ASSERT(size <= g_scratch_size);
@@ -3309,6 +6050,7 @@ void ggml_cuda_assign_buffers_impl(struct ggml_tensor * tensor, bool scratch, bo
CUDA_CHECK(cudaMalloc(&data, g_scratch_size));
g_scratch_buffer = data;
}
+ extra = ggml_cuda_alloc_temp_tensor_extra();
extra->data_device[g_main_device] = data + g_scratch_offset;
g_scratch_offset += size;
@@ -3318,6 +6060,8 @@ void ggml_cuda_assign_buffers_impl(struct ggml_tensor * tensor, bool scratch, bo
void * data;
CUDA_CHECK(cudaMalloc(&data, size));
CUDA_CHECK(cudaMemset(data, 0, size));
+ extra = new ggml_tensor_extra_gpu;
+ memset(extra, 0, sizeof(*extra));
extra->data_device[g_main_device] = data;
}
@@ -3350,6 +6094,10 @@ void ggml_cuda_set_main_device(int main_device) {
}
}
+void ggml_cuda_set_mul_mat_q(bool mul_mat_q) {
+ g_mul_mat_q = mul_mat_q;
+}
+
void ggml_cuda_set_scratch_size(size_t scratch_size) {
g_scratch_size = scratch_size;
}
@@ -3370,24 +6118,41 @@ bool ggml_cuda_compute_forward(struct ggml_compute_params * params, struct ggml_
|| (tensor->src[1] != nullptr && tensor->src[1]->backend == GGML_BACKEND_GPU);
switch (tensor->op) {
- case GGML_OP_ADD:
+ case GGML_OP_DUP:
if (!any_on_device) {
return false;
}
- func = ggml_cuda_add;
+ func = ggml_cuda_dup;
break;
- case GGML_OP_MUL:
+ case GGML_OP_ADD:
if (!any_on_device) {
return false;
}
- func = ggml_cuda_mul;
+ func = ggml_cuda_add;
break;
- case GGML_OP_SILU:
+ case GGML_OP_MUL:
if (!any_on_device) {
return false;
}
- func = ggml_cuda_silu;
+ func = ggml_cuda_mul;
break;
+ case GGML_OP_UNARY:
+ switch (ggml_get_unary_op(tensor)) {
+ case GGML_UNARY_OP_GELU:
+ if (!any_on_device) {
+ return false;
+ }
+ func = ggml_cuda_gelu;
+ break;
+ case GGML_UNARY_OP_SILU:
+ if (!any_on_device) {
+ return false;
+ }
+ func = ggml_cuda_silu;
+ break;
+ default:
+ return false;
+ } break;
case GGML_OP_NORM:
if (!any_on_device) {
return false;
@@ -3418,6 +6183,12 @@ bool ggml_cuda_compute_forward(struct ggml_compute_params * params, struct ggml_
}
func = ggml_cuda_cpy;
break;
+ case GGML_OP_CONT:
+ if (!any_on_device) {
+ return false;
+ }
+ func = ggml_cuda_dup;
+ break;
case GGML_OP_RESHAPE:
case GGML_OP_VIEW:
case GGML_OP_PERMUTE: