aboutsummaryrefslogtreecommitdiff
path: root/ggml.c
diff options
context:
space:
mode:
Diffstat (limited to 'ggml.c')
-rw-r--r--ggml.c24
1 files changed, 13 insertions, 11 deletions
diff --git a/ggml.c b/ggml.c
index 0c6eb74..4ec637e 100644
--- a/ggml.c
+++ b/ggml.c
@@ -7930,8 +7930,12 @@ static bool ggml_compute_forward_mul_mat_use_blas(
const int64_t ne1 = dst->ne[1];
// TODO: find the optimal values for these
- if (ggml_is_contiguous(src0) &&
- ggml_is_contiguous(src1) && ((ne0 >= 32 && ne1 >= 32 && ne10 >= 32))) {
+ if (
+#if !defined(GGML_USE_CUBLAS)
+ ggml_is_contiguous(src0) &&
+ ggml_is_contiguous(src1) &&
+#endif
+ ((ne0 >= 32 && ne1 >= 32 && ne10 >= 32))) {
/*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
return true;
@@ -8041,15 +8045,16 @@ static void ggml_compute_forward_mul_mat_f32(
for (int64_t i03 = 0; i03 < ne03; i03++) {
for (int64_t i02 = 0; i02 < ne02; i02++) {
+#if !defined(GGML_USE_CUBLAS)
const float * x = (float *) ((char *) src0->data + i02*nb02 + i03*nb03);
const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
-
+#endif
float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
#if defined(GGML_USE_CUBLAS)
// copy data to device
- CUDA_CHECK(cudaMemcpyAsync(d_X, x, sizeof(float) * x_ne, cudaMemcpyHostToDevice, g_cudaStream));
- CUDA_CHECK(cudaMemcpyAsync(d_Y, y, sizeof(float) * y_ne, cudaMemcpyHostToDevice, g_cudaStream));
+ CUDA_CHECK(ggml_cuda_h2d_tensor_2d(d_X, src0, i03, i02, g_cudaStream));
+ CUDA_CHECK(ggml_cuda_h2d_tensor_2d(d_Y, src1, i03, i02, g_cudaStream));
// compute
CUBLAS_CHECK(
@@ -8269,13 +8274,12 @@ static void ggml_compute_forward_mul_mat_f16_f32(
#endif
#if defined(GGML_USE_CUBLAS)
- const ggml_fp16_t * x = (ggml_fp16_t *) ((char *) src0->data + i02*nb02 + i03*nb03);
const ggml_fp16_t * y = (ggml_fp16_t *) wdata;
float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
// copy data to device
- CUDA_CHECK(cudaMemcpyAsync(d_X, x, sizeof(ggml_fp16_t) * x_ne, cudaMemcpyHostToDevice, g_cudaStream));
+ CUDA_CHECK(ggml_cuda_h2d_tensor_2d(d_X, src0, i03, i02, g_cudaStream));
CUDA_CHECK(cudaMemcpyAsync(d_Y, y, sizeof(ggml_fp16_t) * y_ne, cudaMemcpyHostToDevice, g_cudaStream));
// compute
@@ -8539,9 +8543,7 @@ static void ggml_compute_forward_mul_mat_q_f32(
#if defined(GGML_USE_CUBLAS)
// copy and dequantize on device
- CUDA_CHECK(
- cudaMemcpyAsync(d_Q, (char *) src0->data + i03*nb03 + i02*nb02,
- GGML_TYPE_SIZE[type] * x_ne / GGML_BLCK_SIZE[type], cudaMemcpyHostToDevice, g_cudaStream));
+ CUDA_CHECK(ggml_cuda_h2d_tensor_2d(d_Q, src0, i03, i02, g_cudaStream));
dequantize_row_q_cuda(d_Q, d_X, ne01 * ne00, g_cudaStream);
CUDA_CHECK(cudaGetLastError());
@@ -8561,7 +8563,7 @@ static void ggml_compute_forward_mul_mat_q_f32(
#if defined(GGML_USE_CUBLAS)
// copy data to device
- CUDA_CHECK(cudaMemcpyAsync(d_Y, y, sizeof(float) * y_ne, cudaMemcpyHostToDevice, g_cudaStream));
+ CUDA_CHECK(ggml_cuda_h2d_tensor_2d(d_Y, src1, i03, i02, g_cudaStream));
// compute
CUBLAS_CHECK(