aboutsummaryrefslogtreecommitdiff
path: root/README.md
blob: b231d24b8185944deee075b33cb72a2bd0933d1b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
# llama.cpp

![llama](https://user-images.githubusercontent.com/1991296/230134379-7181e485-c521-4d23-a0d6-f7b3b61ba524.png)

[![Actions Status](https://github.com/ggerganov/llama.cpp/workflows/CI/badge.svg)](https://github.com/ggerganov/llama.cpp/actions)
[![License: MIT](https://img.shields.io/badge/license-MIT-blue.svg)](https://opensource.org/licenses/MIT)

[Roadmap](https://github.com/users/ggerganov/projects/7) / [Manifesto](https://github.com/ggerganov/llama.cpp/discussions/205) / [ggml](https://github.com/ggerganov/ggml)

Inference of [LLaMA](https://arxiv.org/abs/2302.13971) model in pure C/C++

**Hot topics:**

- Simple web chat example: https://github.com/ggerganov/llama.cpp/pull/1998
- k-quants now support super-block size of 64: https://github.com/ggerganov/llama.cpp/pull/2001
- New roadmap: https://github.com/users/ggerganov/projects/7
- Azure CI brainstorming: https://github.com/ggerganov/llama.cpp/discussions/1985
- p1 : LLM-based code completion engine at the edge : https://github.com/ggml-org/p1/discussions/1

<details>
  <summary>Table of Contents</summary>
  <ol>
    <li>
      <a href="#description">Description</a>
    </li>
    <li>
      <a href="#usage">Usage</a>
      <ul>
        <li><a href="#get-the-code">Get the Code</a></li>
        <li><a href="#build">Build</a></li>
        <li><a href="#blas-build">BLAS Build</a></li>
        <li><a href="#prepare-data--run">Prepare Data & Run</a></li>
        <li><a href="#memorydisk-requirements">Memory/Disk Requirements</a></li>
        <li><a href="#quantization">Quantization</a></li>
        <li><a href="#interactive-mode">Interactive mode</a></li>
        <li><a href="#instruction-mode-with-alpaca">Instruction mode with Alpaca</a></li>
        <li><a href="#using-openllama">Using OpenLLaMA</a></li>
        <li><a href="#using-gpt4all">Using GPT4All</a></li>
        <li><a href="#using-pygmalion-7b--metharme-7b">Using Pygmalion 7B & Metharme 7B</a></li>
        <li><a href="#obtaining-the-facebook-llama-original-model-and-stanford-alpaca-model-data">Obtaining the Facebook LLaMA original model and Stanford Alpaca model data</a></li>
        <li><a href="#verifying-the-model-files">Verifying the model files</a></li>
        <li><a href="#seminal-papers-and-background-on-the-models">Seminal papers and background on the models</a></li>
        <li><a href="#perplexity-measuring-model-quality">Perplexity (measuring model quality)</a></li>
        <li><a href="#android">Android</a></li>
        <li><a href="#docker">Docker</a></li>
      </ul>
    </li>
    <li><a href="#contributing">Contributing</a></li>
    <li><a href="#coding-guidelines">Coding guidelines</a></li>
    <li><a href="#docs">Docs</a></li>
  </ol>
</details>

## Description

The main goal of `llama.cpp` is to run the LLaMA model using 4-bit integer quantization on a MacBook

- Plain C/C++ implementation without dependencies
- Apple silicon first-class citizen - optimized via ARM NEON, Accelerate and Metal frameworks
- AVX, AVX2 and AVX512 support for x86 architectures
- Mixed F16 / F32 precision
- 4-bit, 5-bit and 8-bit integer quantization support
- Supports OpenBLAS/Apple BLAS/ARM Performance Lib/ATLAS/BLIS/Intel MKL/NVHPC/ACML/SCSL/SGIMATH and [more](https://cmake.org/cmake/help/latest/module/FindBLAS.html#blas-lapack-vendors) in BLAS
- cuBLAS and CLBlast support

The original implementation of `llama.cpp` was [hacked in an evening](https://github.com/ggerganov/llama.cpp/issues/33#issuecomment-1465108022).
Since then, the project has improved significantly thanks to many contributions. This project is for educational purposes and serves
as the main playground for developing new features for the [ggml](https://github.com/ggerganov/ggml) library.

**Supported platforms:**

- [X] Mac OS
- [X] Linux
- [X] Windows (via CMake)
- [X] Docker

**Supported models:**

- [X] LLaMA 🦙
- [x] LLaMA 2 🦙🦙
- [X] [Alpaca](https://github.com/ggerganov/llama.cpp#instruction-mode-with-alpaca)
- [X] [GPT4All](https://github.com/ggerganov/llama.cpp#using-gpt4all)
- [X] [Chinese LLaMA / Alpaca](https://github.com/ymcui/Chinese-LLaMA-Alpaca)
- [X] [Vigogne (French)](https://github.com/bofenghuang/vigogne)
- [X] [Vicuna](https://github.com/ggerganov/llama.cpp/discussions/643#discussioncomment-5533894)
- [X] [Koala](https://bair.berkeley.edu/blog/2023/04/03/koala/)
- [X] [OpenBuddy 🐶 (Multilingual)](https://github.com/OpenBuddy/OpenBuddy)
- [X] [Pygmalion 7B / Metharme 7B](#using-pygmalion-7b--metharme-7b)
- [X] [WizardLM](https://github.com/nlpxucan/WizardLM)
- [X] [Baichuan-7B](https://huggingface.co/baichuan-inc/baichuan-7B) and its derivations (such as [baichuan-7b-sft](https://huggingface.co/hiyouga/baichuan-7b-sft))

**Bindings:**

- Python: [abetlen/llama-cpp-python](https://github.com/abetlen/llama-cpp-python)
- Go: [go-skynet/go-llama.cpp](https://github.com/go-skynet/go-llama.cpp)
- Node.js: [hlhr202/llama-node](https://github.com/hlhr202/llama-node)
- Ruby: [yoshoku/llama_cpp.rb](https://github.com/yoshoku/llama_cpp.rb)
- C#/.NET: [SciSharp/LLamaSharp](https://github.com/SciSharp/LLamaSharp)
- Scala 3: [donderom/llm4s](https://github.com/donderom/llm4s)

**UI:**

- [nat/openplayground](https://github.com/nat/openplayground)
- [oobabooga/text-generation-webui](https://github.com/oobabooga/text-generation-webui)

---

Here is a typical run using LLaMA-7B:

```java
make -j && ./main -m ./models/7B/ggml-model-q4_0.bin -p "Building a website can be done in 10 simple steps:" -n 512
I llama.cpp build info:
I UNAME_S:  Darwin
I UNAME_P:  arm
I UNAME_M:  arm64
I CFLAGS:   -I.              -O3 -DNDEBUG -std=c11   -fPIC -pthread -DGGML_USE_ACCELERATE
I CXXFLAGS: -I. -I./examples -O3 -DNDEBUG -std=c++11 -fPIC -pthread
I LDFLAGS:   -framework Accelerate
I CC:       Apple clang version 14.0.0 (clang-1400.0.29.202)
I CXX:      Apple clang version 14.0.0 (clang-1400.0.29.202)

make: Nothing to be done for `default'.
main: seed = 1678486056
llama_model_load: loading model from './models/7B/ggml-model-q4_0.bin' - please wait ...
llama_model_load: n_vocab = 32000
llama_model_load: n_ctx   = 512
llama_model_load: n_embd  = 4096
llama_model_load: n_mult  = 256
llama_model_load: n_head  = 32
llama_model_load: n_layer = 32
llama_model_load: n_rot   = 128
llama_model_load: f16     = 2
llama_model_load: n_ff    = 11008
llama_model_load: ggml ctx size = 4529.34 MB
llama_model_load: memory_size =   512.00 MB, n_mem = 16384
llama_model_load: .................................... done
llama_model_load: model size =  4017.27 MB / num tensors = 291

main: prompt: 'Building a website can be done in 10 simple steps:'
main: number of tokens in prompt = 15
     1 -> ''
  8893 -> 'Build'
   292 -> 'ing'
   263 -> ' a'
  4700 -> ' website'
   508 -> ' can'
   367 -> ' be'
  2309 -> ' done'
   297 -> ' in'
 29871 -> ' '
 29896 -> '1'
 29900 -> '0'
  2560 -> ' simple'
  6576 -> ' steps'
 29901 -> ':'

sampling parameters: temp = 0.800000, top_k = 40, top_p = 0.950000


Building a website can be done in 10 simple steps:
1) Select a domain name and web hosting plan
2) Complete a sitemap
3) List your products
4) Write product descriptions
5) Create a user account
6) Build the template
7) Start building the website
8) Advertise the website
9) Provide email support
10) Submit the website to search engines
A website is a collection of web pages that are formatted with HTML. HTML is the code that defines what the website looks like and how it behaves.
The HTML code is formatted into a template or a format. Once this is done, it is displayed on the user's browser.
The web pages are stored in a web server. The web server is also called a host. When the website is accessed, it is retrieved from the server and displayed on the user's computer.
A website is known as a website when it is hosted. This means that it is displayed on a host. The host is usually a web server.
A website can be displayed on different browsers. The browsers are basically the software that renders the website on the user's screen.
A website can also be viewed on different devices such as desktops, tablets and smartphones.
Hence, to have a website displayed on a browser, the website must be hosted.
A domain name is an address of a website. It is the name of the website.
The website is known as a website when it is hosted. This means that it is displayed on a host. The host is usually a web server.
A website can be displayed on different browsers. The browsers are basically the software that renders the website on the users screen.
A website can also be viewed on different devices such as desktops, tablets and smartphones. Hence, to have a website displayed on a browser, the website must be hosted.
A domain name is an address of a website. It is the name of the website.
A website is an address of a website. It is a collection of web pages that are formatted with HTML. HTML is the code that defines what the website looks like and how it behaves.
The HTML code is formatted into a template or a format. Once this is done, it is displayed on the users browser.
A website is known as a website when it is hosted

main: mem per token = 14434244 bytes
main:     load time =  1332.48 ms
main:   sample time =  1081.40 ms
main:  predict time = 31378.77 ms / 61.41 ms per token
main:    total time = 34036.74 ms
```

And here is another demo of running both LLaMA-7B and [whisper.cpp](https://github.com/ggerganov/whisper.cpp) on a single M1 Pro MacBook:

https://user-images.githubusercontent.com/1991296/224442907-7693d4be-acaa-4e01-8b4f-add84093ffff.mp4

## Usage

Here are the steps for the LLaMA-7B model.

### Get the Code

```bash
git clone https://github.com/ggerganov/llama.cpp
cd llama.cpp
```

### Build

In order to build llama.cpp you have three different options.

- Using `make`:
  - On Linux or MacOS:

      ```bash
      make
      ```

  - On Windows:

    1. Download the latest fortran version of [w64devkit](https://github.com/skeeto/w64devkit/releases).
    2. Extract `w64devkit` on your pc.
    3. Run `w64devkit.exe`.
    4. Use the `cd` command to reach the `llama.cpp` folder.
    5. From here you can run:
        ```bash
        make
        ```

- Using `CMake`:

    ```bash
    mkdir build
    cd build
    cmake ..
    cmake --build . --config Release
    ```

- Using `Zig`:

    ```bash
    zig build -Doptimize=ReleaseFast
    ```

-   Using `gmake` (FreeBSD):

    1. Install and activate [DRM in FreeBSD](https://wiki.freebsd.org/Graphics)
    2. Add your user to **video** group
    3. Install compilation dependencies.

        ```bash
        sudo pkg install gmake automake autoconf pkgconf llvm15 clinfo clover \
            opencl clblast openblas

            gmake CC=/usr/local/bin/clang15 CXX=/usr/local/bin/clang++15 -j4
        ```

    **Notes:** With this packages you can build llama.cpp with OPENBLAS and
    CLBLAST support for use OpenCL GPU acceleration in FreeBSD. Please read
    the instructions for use and activate this options in this document below.

### Metal Build

Using Metal allows the computation to be executed on the GPU for Apple devices:

- Using `make`:

  ```bash
  LLAMA_METAL=1 make
  ```

- Using `CMake`:

    ```bash
    mkdir build-metal
    cd build-metal
    cmake -DLLAMA_METAL=ON ..
    cmake --build . --config Release
    ```

When built with Metal support, you can enable GPU inference with the `--gpu-layers|-ngl` command-line argument.
Any value larger than 0 will offload the computation to the GPU. For example:

```bash
./main -m ./models/7B/ggml-model-q4_0.bin -n 128 -ngl 1
```

### MPI Build

MPI lets you distribute the computation over a cluster of machines. Because of the serial nature of LLM prediction, this won't yield any end-to-end speed-ups, but it will let you run larger models than would otherwise fit into RAM on a single machine.

First you will need MPI libraries installed on your system. The two most popular (only?) options are [MPICH](https://www.mpich.org) and [OpenMPI](https://www.open-mpi.org). Either can be installed with a package manager (`apt`, Homebrew, MacPorts, etc).

Next you will need to build the project with `LLAMA_MPI` set to true on all machines; if you're building with `make`, you will also need to specify an MPI-capable compiler (when building with CMake, this is configured automatically):

- Using `make`:

  ```bash
  make CC=mpicc CXX=mpicxx LLAMA_MPI=1
  ```

- Using `CMake`:

  ```bash
  cmake -S . -B build -DLLAMA_MPI=ON
  ```

Once the programs are built, download/convert the weights on all of the machines in your cluster. The paths to the weights and programs should be identical on all machines.

Next, ensure password-less SSH access to each machine from the primary host, and create a `hostfile` with a list of the hostnames and their relative "weights" (slots). If you want to use localhost for computation, use its local subnet IP address rather than the loopback address or "localhost".

Here is an example hostfile:

```
192.168.0.1:2
malvolio.local:1
```

The above will distribute the computation across 2 processes on the first host and 1 process on the second host. Each process will use roughly an equal amount of RAM. Try to keep these numbers small, as inter-process (intra-host) communication is expensive.

Finally, you're ready to run a computation using `mpirun`:

```bash
mpirun -hostfile hostfile -n 3 ./main -m ./models/7B/ggml-model-q4_0.bin -n 128
```

### BLAS Build

Building the program with BLAS support may lead to some performance improvements in prompt processing using batch sizes higher than 32 (the default is 512). BLAS doesn't affect the normal generation performance. There are currently three different implementations of it:

- #### Accelerate Framework:

  This is only available on Mac PCs and it's enabled by default. You can just build using the normal instructions.

- #### OpenBLAS:

  This provides BLAS acceleration using only the CPU. Make sure to have OpenBLAS installed on your machine.

  - Using `make`:
    - On Linux:
      ```bash
      make LLAMA_OPENBLAS=1
      ```

    - On Windows:

      1. Download the latest fortran version of [w64devkit](https://github.com/skeeto/w64devkit/releases).
      2. Download the latest version of [OpenBLAS for Windows](https://github.com/xianyi/OpenBLAS/releases).
      3. Extract `w64devkit` on your pc.
      4. From the OpenBLAS zip that you just downloaded copy `libopenblas.a`, located inside the `lib` folder, inside `w64devkit\x86_64-w64-mingw32\lib`.
      5. From the same OpenBLAS zip copy the content of the `include` folder inside `w64devkit\x86_64-w64-mingw32\include`.
      6. Run `w64devkit.exe`.
      7. Use the `cd` command to reach the `llama.cpp` folder.
      8. From here you can run:

          ```bash
          make LLAMA_OPENBLAS=1
          ```

  - Using `CMake` on Linux:

      ```bash
      mkdir build
      cd build
      cmake .. -DLLAMA_BLAS=ON -DLLAMA_BLAS_VENDOR=OpenBLAS
      cmake --build . --config Release
      ```

- #### BLIS

  Check [BLIS.md](docs/BLIS.md) for more information.

- #### Intel MKL

  By default, `LLAMA_BLAS_VENDOR` is set to `Generic`, so if you already sourced intel environment script and assign `-DLLAMA_BLAS=ON` in cmake, the mkl version of Blas will automatically been selected. You may also specify it by:

  ```bash
  mkdir build
  cd build
  cmake .. -DLLAMA_BLAS=ON -DLLAMA_BLAS_VENDOR=Intel10_64lp -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx
  cmake --build . --config Release
  ```

- #### cuBLAS

  This provides BLAS acceleration using the CUDA cores of your Nvidia GPU. Make sure to have the CUDA toolkit installed. You can download it from your Linux distro's package manager or from here: [CUDA Toolkit](https://developer.nvidia.com/cuda-downloads).
  - Using `make`:
    ```bash
    make LLAMA_CUBLAS=1
    ```
  - Using `CMake`:

    ```bash
    mkdir build
    cd build
    cmake .. -DLLAMA_CUBLAS=ON
    cmake --build . --config Release
    ```

  The environment variable [`CUDA_VISIBLE_DEVICES`](https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#env-vars) can be used to specify which GPU(s) will be used. The following compilation options are also available to tweak performance:

<!---
  | LLAMA_CUDA_CUBLAS       | Boolean                |   false | Use cuBLAS instead of custom CUDA kernels for prompt processing. Faster for all quantization formats except for q4_0 and q8_0, especially for k-quants. Increases VRAM usage (700 MiB for 7b, 970 MiB for 13b, 1430 MiB for 33b). |
--->
  | Option                  | Legal values           | Default | Description |
  |-------------------------|------------------------|---------|-------------|
  | LLAMA_CUDA_MMQ_Y        | Positive integer >= 32 |      64 | Tile size in y direction when using the custom CUDA kernels for prompt processing. Higher values can be faster depending on the amount of shared memory available. Power of 2 heavily recommended. |
  | LLAMA_CUDA_FORCE_DMMV   | Boolean                |   false | Force the use of dequantization + matrix vector multiplication kernels instead of using kernels that do matrix vector multiplication on quantized data. By default the decision is made based on compute capability (MMVQ for 6.1/Pascal/GTX 1000 or higher). Does not affect k-quants. |
  | LLAMA_CUDA_DMMV_X       | Positive integer >= 32 |      32 | Number of values in x direction processed by the CUDA dequantization + matrix vector multiplication kernel per iteration. Increasing this value can improve performance on fast GPUs. Power of 2 heavily recommended. Does not affect k-quants. |
  | LLAMA_CUDA_MMV_Y        | Positive integer       |       1 | Block size in y direction for the CUDA mul mat vec kernels. Increasing this value can improve performance on fast GPUs. Power of 2 recommended. Does not affect k-quants. |
  | LLAMA_CUDA_F16          | Boolean                |   false | If enabled, use half-precision floating point arithmetic for the CUDA dequantization + mul mat vec kernels and for the q4_1 and q5_1 matrix matrix multiplication kernels. Can improve performance on relatively recent GPUs. |
  | LLAMA_CUDA_KQUANTS_ITER | 1 or 2                 |       2 | Number of values processed per iteration and per CUDA thread for Q2_K and Q6_K quantization formats. Setting this value to 1 can improve performance for slow GPUs. |

- #### CLBlast

  OpenCL acceleration is provided by the matrix multiplication kernels from the [CLBlast](https://github.com/CNugteren/CLBlast) project and custom kernels for ggml that can generate tokens on the GPU.

  You will need the [OpenCL SDK](https://github.com/KhronosGroup/OpenCL-SDK).
    - For Ubuntu or Debian, the packages `opencl-headers`, `ocl-icd` may be needed.

    - <details>
        <summary>Installing the OpenCL SDK from source</summary>

        ```sh
        git clone --recurse-submodules https://github.com/KhronosGroup/OpenCL-SDK.git
        mkdir OpenCL-SDK/build
        cd OpenCL-SDK/build
        cmake .. -DBUILD_DOCS=OFF \
          -DBUILD_EXAMPLES=OFF \
          -DBUILD_TESTING=OFF \
          -DOPENCL_SDK_BUILD_SAMPLES=OFF \
          -DOPENCL_SDK_TEST_SAMPLES=OFF
        cmake --build . --config Release
        cmake --install . --prefix /some/path
        ```
      </details>

  Installing CLBlast: it may be found in your operating system's packages.

  - <details>
    <summary>If not, then installing from source:</summary>

      ```sh
      git clone https://github.com/CNugteren/CLBlast.git
      mkdir CLBlast/build
      cd CLBlast/build
      cmake .. -DBUILD_SHARED_LIBS=OFF -DTUNERS=OFF
      cmake --build . --config Release
      cmake --install . --prefix /some/path
      ```

      Where `/some/path` is where the built library will be installed (default is `/usr/local`).
    </details>

  Building:

  - Build with make:
    ```sh
    make LLAMA_CLBLAST=1
    ```
  - CMake:
    ```sh
    mkdir build
    cd build
    cmake .. -DLLAMA_CLBLAST=ON -DCLBlast_dir=/some/path
    cmake --build . --config Release
    ```

  Running:

  The CLBlast build supports `--gpu-layers|-ngl` like the CUDA version does.

  To select the correct platform (driver) and device (GPU), you can use the environment variables `GGML_OPENCL_PLATFORM` and `GGML_OPENCL_DEVICE`.
  The selection can be a number (starting from 0) or a text string to search:

  ```sh
  GGML_OPENCL_PLATFORM=1 ./main ...
  GGML_OPENCL_DEVICE=2 ./main ...
  GGML_OPENCL_PLATFORM=Intel ./main ...
  GGML_OPENCL_PLATFORM=AMD GGML_OPENCL_DEVICE=1 ./main ...
  ```

  The default behavior is to find the first GPU device, but when it is an integrated GPU on a laptop, for instance, the selectors are useful.
  Using the variables it is possible to select a CPU-based driver as well, if so desired.

  You can get a list of platforms and devices from the `clinfo -l` command, etc.

### Prepare Data & Run

```bash
# obtain the original LLaMA model weights and place them in ./models
ls ./models
65B 30B 13B 7B tokenizer_checklist.chk tokenizer.model

# install Python dependencies
python3 -m pip install -r requirements.txt

# convert the 7B model to ggml FP16 format
python3 convert.py models/7B/

# quantize the model to 4-bits (using q4_0 method)
./quantize ./models/7B/ggml-model-f16.bin ./models/7B/ggml-model-q4_0.bin q4_0

# run the inference
./main -m ./models/7B/ggml-model-q4_0.bin -n 128
```

When running the larger models, make sure you have enough disk space to store all the intermediate files.

### Memory/Disk Requirements

As the models are currently fully loaded into memory, you will need adequate disk space to save them and sufficient RAM to load them. At the moment, memory and disk requirements are the same.

| Model | Original size | Quantized size (4-bit) |
|------:|--------------:|-----------------------:|
|    7B |         13 GB |                 3.9 GB |
|   13B |         24 GB |                 7.8 GB |
|   30B |         60 GB |                19.5 GB |
|   65B |        120 GB |                38.5 GB |

### Quantization

Several quantization methods are supported. They differ in the resulting model disk size and inference speed.

| Model | Measure      | F16    | Q4_0   | Q4_1   | Q5_0   | Q5_1   | Q8_0   |
|------:|--------------|-------:|-------:|-------:|-------:|-------:|-------:|
|    7B | perplexity   | 5.9066 | 6.1565 | 6.0912 | 5.9862 | 5.9481 | 5.9070 |
|    7B | file size    |  13.0G |   3.5G |   3.9G |   4.3G |   4.7G |   6.7G |
|    7B | ms/tok @ 4th |    127 |     55 |     54 |     76 |     83 |     72 |
|    7B | ms/tok @ 8th |    122 |     43 |     45 |     52 |     56 |     67 |
|    7B | bits/weight  |   16.0 |    4.5 |    5.0 |    5.5 |    6.0 |    8.5 |
|   13B | perplexity   | 5.2543 | 5.3860 | 5.3608 | 5.2856 | 5.2706 | 5.2548 |
|   13B | file size    |  25.0G |   6.8G |   7.6G |   8.3G |   9.1G |    13G |
|   13B | ms/tok @ 4th |      - |    103 |    105 |    148 |    160 |    131 |
|   13B | ms/tok @ 8th |      - |     73 |     82 |     98 |    105 |    128 |
|   13B | bits/weight  |   16.0 |    4.5 |    5.0 |    5.5 |    6.0 |    8.5 |

### Perplexity (measuring model quality)

You can use the `perplexity` example to measure perplexity over a given prompt (lower perplexity is better).
For more information, see [https://huggingface.co/docs/transformers/perplexity](https://huggingface.co/docs/transformers/perplexity).

The perplexity measurements in table above are done against the `wikitext2` test dataset (https://paperswithcode.com/dataset/wikitext-2), with context length of 512.
The time per token is measured on a MacBook M1 Pro 32GB RAM using 4 and 8 threads.

### Interactive mode

If you want a more ChatGPT-like experience, you can run in interactive mode by passing `-i` as a parameter.
In this mode, you can always interrupt generation by pressing Ctrl+C and entering one or more lines of text, which will be converted into tokens and appended to the current context. You can also specify a *reverse prompt* with the parameter `-r "reverse prompt string"`. This will result in user input being prompted whenever the exact tokens of the reverse prompt string are encountered in the generation. A typical use is to use a prompt that makes LLaMa emulate a chat between multiple users, say Alice and Bob, and pass `-r "Alice:"`.

Here is an example of a few-shot interaction, invoked with the command

```bash
# default arguments using a 7B model
./examples/chat.sh

# advanced chat with a 13B model
./examples/chat-13B.sh

# custom arguments using a 13B model
./main -m ./models/13B/ggml-model-q4_0.bin -n 256 --repeat_penalty 1.0 --color -i -r "User:" -f prompts/chat-with-bob.txt
```

Note the use of `--color` to distinguish between user input and generated text. Other parameters are explained in more detail in the [README](examples/main/README.md) for the `main` example program.

![image](https://user-images.githubusercontent.com/1991296/224575029-2af3c7dc-5a65-4f64-a6bb-517a532aea38.png)

### Persistent Interaction

The prompt, user inputs, and model generations can be saved and resumed across calls to `./main` by leveraging `--prompt-cache` and `--prompt-cache-all`. The `./examples/chat-persistent.sh` script demonstrates this with support for long-running, resumable chat sessions. To use this example, you must provide a file to cache the initial chat prompt and a directory to save the chat session, and may optionally provide the same variables as `chat-13B.sh`. The same prompt cache can be reused for new chat sessions. Note that both prompt cache and chat directory are tied to the initial prompt (`PROMPT_TEMPLATE`) and the model file.

```bash
# Start a new chat
PROMPT_CACHE_FILE=chat.prompt.bin CHAT_SAVE_DIR=./chat/default ./examples/chat-persistent.sh

# Resume that chat
PROMPT_CACHE_FILE=chat.prompt.bin CHAT_SAVE_DIR=./chat/default ./examples/chat-persistent.sh

# Start a different chat with the same prompt/model
PROMPT_CACHE_FILE=chat.prompt.bin CHAT_SAVE_DIR=./chat/another ./examples/chat-persistent.sh

# Different prompt cache for different prompt/model
PROMPT_TEMPLATE=./prompts/chat-with-bob.txt PROMPT_CACHE_FILE=bob.prompt.bin \
    CHAT_SAVE_DIR=./chat/bob ./examples/chat-persistent.sh
```

### Instruction mode with Alpaca

1. First, download the `ggml` Alpaca model into the `./models` folder
2. Run the `main` tool like this:

```
./examples/alpaca.sh
```

Sample run:

```
== Running in interactive mode. ==
 - Press Ctrl+C to interject at any time.
 - Press Return to return control to LLaMa.
 - If you want to submit another line, end your input in '\'.

 Below is an instruction that describes a task. Write a response that appropriately completes the request.

> How many letters are there in the English alphabet?
There 26 letters in the English Alphabet
> What is the most common way of transportation in Amsterdam?
The majority (54%) are using public transit. This includes buses, trams and metros with over 100 lines throughout the city which make it very accessible for tourists to navigate around town as well as locals who commute by tram or metro on a daily basis
> List 5 words that start with "ca".
cadaver, cauliflower, cabbage (vegetable), catalpa (tree) and Cailleach.
>
```

### Using [OpenLLaMA](https://github.com/openlm-research/open_llama)

OpenLLaMA is an openly licensed reproduction of Meta's original LLaMA model. It uses the same architecture and is a drop-in replacement for the original LLaMA weights.

- Download the [3B](https://huggingface.co/openlm-research/open_llama_3b), [7B](https://huggingface.co/openlm-research/open_llama_7b), or [13B](https://huggingface.co/openlm-research/open_llama_13b) model from Hugging Face.
- Convert the model to ggml FP16 format using `python convert.py <path to OpenLLaMA directory>`

### Using [GPT4All](https://github.com/nomic-ai/gpt4all)

- Obtain the `tokenizer.model` file from LLaMA model and put it to `models`
- Obtain the `added_tokens.json` file from Alpaca model and put it to `models`
- Obtain the `gpt4all-lora-quantized.bin` file from GPT4All model and put it to `models/gpt4all-7B`
- It is distributed in the old `ggml` format which is now obsoleted
- You have to convert it to the new format using `convert.py`:

```bash
python3 convert.py models/gpt4all-7B/gpt4all-lora-quantized.bin
```

- You can now use the newly generated `models/gpt4all-7B/ggml-model-q4_0.bin` model in exactly the same way as all other models

- The newer GPT4All-J model is not yet supported!

### Using Pygmalion 7B & Metharme 7B

- Obtain the [LLaMA weights](#obtaining-the-facebook-llama-original-model-and-stanford-alpaca-model-data)
- Obtain the [Pygmalion 7B](https://huggingface.co/PygmalionAI/pygmalion-7b/) or [Metharme 7B](https://huggingface.co/PygmalionAI/metharme-7b) XOR encoded weights
- Convert the LLaMA model with [the latest HF convert script](https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/convert_llama_weights_to_hf.py)
- Merge the XOR files with the converted LLaMA weights by running the [xor_codec](https://huggingface.co/PygmalionAI/pygmalion-7b/blob/main/xor_codec.py) script
- Convert to `ggml` format using the `convert.py` script in this repo:
```bash
python3 convert.py pygmalion-7b/ --outtype q4_1
```
> The Pygmalion 7B & Metharme 7B weights are saved in [bfloat16](https://en.wikipedia.org/wiki/Bfloat16_floating-point_format) precision. If you wish to convert to `ggml` without quantizating, please specify the `--outtype` as `f32` instead of `f16`.


### Obtaining the Facebook LLaMA original model and Stanford Alpaca model data

- **Under no circumstances should IPFS, magnet links, or any other links to model downloads be shared anywhere in this repository, including in issues, discussions, or pull requests. They will be immediately deleted.**
- The LLaMA models are officially distributed by Facebook and will **never** be provided through this repository.
- Refer to [Facebook's LLaMA repository](https://github.com/facebookresearch/llama/pull/73/files) if you need to request access to the model data.

### Obtaining and using the Facebook LLaMA 2 model

- Refer to [Facebook's LLaMA download page](https://ai.meta.com/resources/models-and-libraries/llama-downloads/) if you want to access the model data.
- Alternatively, if you want to save time and space, you can download already converted and quantized models from [TheBloke](https://huggingface.co/TheBloke), including:
  - [LLaMA 2 7B base](https://huggingface.co/TheBloke/Llama-2-7B-GGML)
  - [LLaMA 2 13B base](https://huggingface.co/TheBloke/Llama-2-13B-GGML)
  - [LLaMA 2 70B base](https://huggingface.co/TheBloke/Llama-2-70B-GGML)
  - [LLaMA 2 7B chat](https://huggingface.co/TheBloke/Llama-2-7B-chat-GGML)
  - [LLaMA 2 13B chat](https://huggingface.co/TheBloke/Llama-2-13B-chat-GGML)
  - [LLaMA 2 70B chat](https://huggingface.co/TheBloke/Llama-2-70B-chat-GGML)
- Specify `-eps 1e-5` for best generation quality
- Specify `-gqa 8` for 70B models to work

### Verifying the model files

Please verify the [sha256 checksums](SHA256SUMS) of all downloaded model files to confirm that you have the correct model data files before creating an issue relating to your model files.
- The following python script will verify if you have all possible latest files in your self-installed `./models` subdirectory:

```bash
# run the verification script
./scripts/verify-checksum-models.py
```

- On linux or macOS it is also possible to run the following commands to verify if you have all possible latest files in your self-installed `./models` subdirectory:
    - On Linux: `sha256sum --ignore-missing -c SHA256SUMS`
    - on macOS: `shasum -a 256 --ignore-missing -c SHA256SUMS`

### Seminal papers and background on the models

If your issue is with model generation quality, then please at least scan the following links and papers to understand the limitations of LLaMA models. This is especially important when choosing an appropriate model size and appreciating both the significant and subtle differences between LLaMA models and ChatGPT:
- LLaMA:
    - [Introducing LLaMA: A foundational, 65-billion-parameter large language model](https://ai.facebook.com/blog/large-language-model-llama-meta-ai/)
    - [LLaMA: Open and Efficient Foundation Language Models](https://arxiv.org/abs/2302.13971)
- GPT-3
    - [Language Models are Few-Shot Learners](https://arxiv.org/abs/2005.14165)
- GPT-3.5 / InstructGPT / ChatGPT:
    - [Aligning language models to follow instructions](https://openai.com/research/instruction-following)
    - [Training language models to follow instructions with human feedback](https://arxiv.org/abs/2203.02155)

#### How to run

1. Download/extract: https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-2-raw-v1.zip?ref=salesforce-research
2. Run `./perplexity -m models/7B/ggml-model-q4_0.bin -f wiki.test.raw`
3. Output:
```
perplexity : calculating perplexity over 655 chunks
24.43 seconds per pass - ETA 4.45 hours
[1]4.5970,[2]5.1807,[3]6.0382,...
```
And after 4.45 hours, you will have the final perplexity.

### Android

#### Building the Project using Android NDK
You can easily run `llama.cpp` on Android device with [termux](https://termux.dev/).

First, install the essential packages for termux:
```
pkg install clang wget git cmake
```
Second, obtain the [Android NDK](https://developer.android.com/ndk) and then build with CMake:
```
$ mkdir build-android
$ cd build-android
$ export NDK=<your_ndk_directory>
$ cmake -DCMAKE_TOOLCHAIN_FILE=$NDK/build/cmake/android.toolchain.cmake -DANDROID_ABI=arm64-v8a -DANDROID_PLATFORM=android-23 -DCMAKE_C_FLAGS=-march=armv8.4a+dotprod ..
$ make
```
Install [termux](https://termux.dev/) on your device and run `termux-setup-storage` to get access to your SD card.
Finally, copy the `llama` binary and the model files to your device storage. Here is a demo of an interactive session running on Pixel 5 phone:

https://user-images.githubusercontent.com/271616/225014776-1d567049-ad71-4ef2-b050-55b0b3b9274c.mp4

#### Building the Project using Termux (F-Droid)
Termux from F-Droid offers an alternative route to execute the project on an Android device. This method empowers you to construct the project right from within the terminal, negating the requirement for a rooted device or SD Card.

Outlined below are the directives for installing the project using OpenBLAS and CLBlast. This combination is specifically designed to deliver peak performance on recent devices that feature a GPU.

If you opt to utilize OpenBLAS, you'll need to install the corresponding package.
```
apt install libopenblas
```

Subsequently, if you decide to incorporate CLBlast, you'll first need to install the requisite OpenCL packages:
```
apt install ocl-icd opencl-headers opencl-clhpp clinfo
```

In order to compile CLBlast, you'll need to first clone the respective Git repository, which can be found at this URL: https://github.com/CNugteren/CLBlast. Alongside this, clone this repository into your home directory. Once this is done, navigate to the CLBlast folder and execute the commands detailed below:
```
cmake .
make
cp libclblast.so* $PREFIX/lib
cp ./include/clblast.h ../llama.cpp
```

Following the previous steps, navigate to the LlamaCpp directory. To compile it with OpenBLAS and CLBlast, execute the command provided below:
```
cp /data/data/com.termux/files/usr/include/openblas/cblas.h .
cp /data/data/com.termux/files/usr/include/openblas/openblas_config.h .
make LLAMA_CLBLAST=1 //(sometimes you need to run this command twice)
```

Upon completion of the aforementioned steps, you will have successfully compiled the project. To run it using CLBlast, a slight adjustment is required: a command must be issued to direct the operations towards your device's physical GPU, rather than the virtual one. The necessary command is detailed below:
```
GGML_OPENCL_PLATFORM=0
GGML_OPENCL_DEVICE=0
export LD_LIBRARY_PATH=/vendor/lib64:$LD_LIBRARY_PATH
```

(Note: some Android devices, like the Zenfone 8, need the following command instead - "export LD_LIBRARY_PATH=/system/vendor/lib64:$LD_LIBRARY_PATH". Source: https://www.reddit.com/r/termux/comments/kc3ynp/opencl_working_in_termux_more_in_comments/ )

For easy and swift re-execution, consider documenting this final part in a .sh script file. This will enable you to rerun the process with minimal hassle.

Place your desired model into the `~/llama.cpp/models/` directory and execute the `./main (...)` script.

### Docker

#### Prerequisites
* Docker must be installed and running on your system.
* Create a folder to store big models & intermediate files (ex. /llama/models)

#### Images
We have two Docker images available for this project:

1. `ghcr.io/ggerganov/llama.cpp:full`: This image includes both the main executable file and the tools to convert LLaMA models into ggml and convert into 4-bit quantization.
2. `ghcr.io/ggerganov/llama.cpp:light`: This image only includes the main executable file.

#### Usage

The easiest way to download the models, convert them to ggml and optimize them is with the --all-in-one command which includes the full docker image.

Replace `/path/to/models` below with the actual path where you downloaded the models.

```bash
docker run -v /path/to/models:/models ghcr.io/ggerganov/llama.cpp:full --all-in-one "/models/" 7B
```

On completion, you are ready to play!

```bash
docker run -v /path/to/models:/models ghcr.io/ggerganov/llama.cpp:full --run -m /models/7B/ggml-model-q4_0.bin -p "Building a website can be done in 10 simple steps:" -n 512
```

or with a light image:

```bash
docker run -v /path/to/models:/models ghcr.io/ggerganov/llama.cpp:light -m /models/7B/ggml-model-q4_0.bin -p "Building a website can be done in 10 simple steps:" -n 512
```

### Docker With CUDA

Assuming one has the [nvidia-container-toolkit](https://github.com/NVIDIA/nvidia-container-toolkit) properly installed on Linux, or is using a GPU enabled cloud, `cuBLAS` should be accessible inside the container.

#### Building Locally

```bash
docker build -t local/llama.cpp:full-cuda -f .devops/full-cuda.Dockerfile .
docker build -t local/llama.cpp:light-cuda -f .devops/main-cuda.Dockerfile .
```

You may want to pass in some different `ARGS`, depending on the CUDA environment supported by your container host, as well as the GPU architecture.

The defaults are:

- `CUDA_VERSION` set to `11.7.1`
- `CUDA_DOCKER_ARCH` set to `all`

The resulting images, are essentially the same as the non-CUDA images:

1. `local/llama.cpp:full-cuda`: This image includes both the main executable file and the tools to convert LLaMA models into ggml and convert into 4-bit quantization.
2. `local/llama.cpp:light-cuda`: This image only includes the main executable file.

#### Usage

After building locally, Usage is similar to the non-CUDA examples, but you'll need to add the `--gpus` flag. You will also want to use the `--n-gpu-layers` flag.

```bash
docker run --gpus all -v /path/to/models:/models local/llama.cpp:full-cuda --run -m /models/7B/ggml-model-q4_0.bin -p "Building a website can be done in 10 simple steps:" -n 512 --n-gpu-layers 1
docker run --gpus all -v /path/to/models:/models local/llama.cpp:light-cuda -m /models/7B/ggml-model-q4_0.bin -p "Building a website can be done in 10 simple steps:" -n 512 --n-gpu-layers 1
```

### Contributing

- Contributors can open PRs
- Collaborators can push to branches in the `llama.cpp` repo and merge PRs into the `master` branch
- Collaborators will be invited based on contributions
- Any help with managing issues and PRs is very appreciated!
- Make sure to read this: [Inference at the edge](https://github.com/ggerganov/llama.cpp/discussions/205)
- A bit of backstory for those who are interested: [Changelog podcast](https://changelog.com/podcast/532)

### Coding guidelines

- Avoid adding third-party dependencies, extra files, extra headers, etc.
- Always consider cross-compatibility with other operating systems and architectures
- Avoid fancy looking modern STL constructs, use basic `for` loops, avoid templates, keep it simple
- There are no strict rules for the code style, but try to follow the patterns in the code (indentation, spaces, etc.). Vertical alignment makes things more readable and easier to batch edit
- Clean-up any trailing whitespaces, use 4 spaces for indentation, brackets on the same line, `void * ptr`, `int & a`
- See [good first issues](https://github.com/ggerganov/llama.cpp/issues?q=is%3Aissue+is%3Aopen+label%3A%22good+first+issue%22) for tasks suitable for first contributions

### Docs

- [main](./examples/main/README.md)
- [server](./examples/server/README.md)
- [embd-input](./examples/embd-input/README.md)
- [jeopardy](./examples/jeopardy/README.md)
- [BLIS](./docs/BLIS.md)
- [Performance troubleshooting](./docs/token_generation_performance_tips.md)
- [GGML tips & tricks](https://github.com/ggerganov/llama.cpp/wiki/GGML-Tips-&-Tricks)