aboutsummaryrefslogtreecommitdiff
path: root/convert-pth-to-ggml.py
blob: fc217c7ec3b328a613be93efa57fc793f282e641 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
# Convert a LLaMA model checkpoint to a ggml compatible file
#
# Load the model using Torch
# Iterate over all variables and write them to a binary file.
#
# For each variable, write the following:
#   - Number of dimensions (int)
#   - Name length (int)
#   - Dimensions (int[n_dims])
#   - Name (char[name_length])
#   - Data (float[n_dims])
#
# By default, the bigger matrices are converted to 16-bit floats.
# This can be disabled by adding the "use-f32" CLI argument.
#
# At the start of the ggml file we write the model parameters
# and vocabulary.
#

import sys
import json
import struct
import numpy as np
import torch

from sentencepiece import SentencePieceProcessor

if len(sys.argv) < 3:
    print("Usage: convert-ckpt-to-ggml.py dir-model ftype\n")
    print("  ftype == 0 -> float32")
    print("  ftype == 1 -> float16")
    sys.exit(1)

# output in the same directory as the model
dir_model = sys.argv[1]

fname_hparams   = sys.argv[1] + "/params.json"
fname_tokenizer = sys.argv[1] + "/../tokenizer.model"

def get_n_parts(dim):
    if dim == 4096:
        return 1
    elif dim == 5120:
        return 2
    elif dim == 6656:
        return 4
    elif dim == 8192:
        return 8
    else:
        print("Invalid dim: " + str(dim))
        sys.exit(1)

# possible data types
#   ftype == 0 -> float32
#   ftype == 1 -> float16
#
# map from ftype to string
ftype_str = ["f32", "f16"]

ftype = 1
if len(sys.argv) > 2:
    ftype = int(sys.argv[2])
    if ftype < 0 or ftype > 1:
        print("Invalid ftype: " + str(ftype))
        sys.exit(1)
    fname_out = sys.argv[1] + "/ggml-model-" + ftype_str[ftype] + ".bin"

with open(fname_hparams, "r") as f:
    hparams = json.load(f)

tokenizer = SentencePieceProcessor(fname_tokenizer)

hparams.update({"vocab_size": tokenizer.vocab_size()})

n_parts = get_n_parts(hparams["dim"])

print(hparams)
print('n_parts = ', n_parts)

for p in range(n_parts):
    print('Processing part ', p)

    #fname_model = sys.argv[1] + "/consolidated.00.pth"
    fname_model = sys.argv[1] + "/consolidated.0" + str(p) + ".pth"
    fname_out = sys.argv[1] + "/ggml-model-" + ftype_str[ftype] + ".bin"
    if (p > 0):
        fname_out = sys.argv[1] + "/ggml-model-" + ftype_str[ftype] + ".bin" + "." + str(p)

    model = torch.load(fname_model, map_location="cpu")

    fout = open(fname_out, "wb")

    fout.write(struct.pack("i", 0x67676d6c)) # magic: ggml in hex
    fout.write(struct.pack("i", hparams["vocab_size"]))
    fout.write(struct.pack("i", hparams["dim"]))
    fout.write(struct.pack("i", hparams["multiple_of"]))
    fout.write(struct.pack("i", hparams["n_heads"]))
    fout.write(struct.pack("i", hparams["n_layers"]))
    fout.write(struct.pack("i", hparams["dim"] // hparams["n_heads"])) # rot (obsolete)
    fout.write(struct.pack("i", ftype))

    # Is this correct??
    for i in range(32000):
        # TODO: this is probably wrong - not sure how this tokenizer works
        text = tokenizer.decode([29889, i]).encode('utf-8')
        # remove the first byte (it's always '.')
        text = text[1:]
        fout.write(struct.pack("i", len(text)))
        fout.write(text)

    for k, v in model.items():
        name = k
        shape = v.shape

        # skip layers.X.attention.inner_attention.rope.freqs
        if name[-5:] == "freqs":
            continue

        print("Processing variable: " + name + " with shape: ", shape, " and type: ", v.dtype)

        #data = tf.train.load_variable(dir_model, name).squeeze()
        data = v.numpy().squeeze()
        n_dims = len(data.shape);

        # for efficiency - transpose some matrices
        # "model/h.*/attn/c_attn/w"
        # "model/h.*/attn/c_proj/w"
        # "model/h.*/mlp/c_fc/w"
        # "model/h.*/mlp/c_proj/w"
        #if name[-14:] == "/attn/c_attn/w" or \
        #   name[-14:] == "/attn/c_proj/w" or \
        #   name[-11:] == "/mlp/c_fc/w" or \
        #   name[-13:] == "/mlp/c_proj/w":
        #    print("  Transposing")
        #    data = data.transpose()

        dshape = data.shape

        # default type is fp16
        ftype_cur = 1
        if ftype == 0 or n_dims == 1:
            print("  Converting to float32")
            data = data.astype(np.float32)
            ftype_cur = 0

        # header
        sname = name.encode('utf-8')
        fout.write(struct.pack("iii", n_dims, len(sname), ftype_cur))
        for i in range(n_dims):
            fout.write(struct.pack("i", dshape[n_dims - 1 - i]))
        fout.write(sname);

        # data
        data.tofile(fout)

    # I hope this deallocates the memory ..
    model = None

    fout.close()

    print("Done. Output file: " + fname_out + ", (part ", p, ")")
    print("")