aboutsummaryrefslogtreecommitdiff
path: root/convert-pth-to-ggml.py
blob: c1941a811ad26a8cdd2837dbe8861afc988dcd26 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
# Convert a LLaMA model checkpoint to a ggml compatible file
#
# Load the model using Torch
# Iterate over all variables and write them to a binary file.
#
# For each variable, write the following:
#   - Number of dimensions (int)
#   - Name length (int)
#   - Dimensions (int[n_dims])
#   - Name (char[name_length])
#   - Data (float[n_dims])
#
# By default, the bigger matrices are converted to 16-bit floats.
# This can be disabled by adding the "use-f32" CLI argument.
#
# At the start of the ggml file we write the model parameters
# and vocabulary.
#
import argparse
import sys
import json
import struct
import numpy as np
import torch
from sentencepiece import SentencePieceProcessor

def parse_args():

    parser = argparse.ArgumentParser(description='Convert a LLaMA model checkpoint to a ggml compatible file')
    parser.add_argument('dir_model', help='directory containing the model checkpoint')
    parser.add_argument('ftype', type=int, choices=[0, 1], default=1, help='file type (0: float32, 1: float16)')
    return parser.parse_args()

def get_n_parts(dim):

    mappings = {4096: 1, 5120: 2, 6656: 4, 8192: 8}
    n_parts = mappings.get(dim)
    if n_parts is None:
        print(f"Invalid dim: {dim}")
        sys.exit(1)

    print(f"n_parts = {n_parts}\n")
    return n_parts

def load_hparams_and_tokenizer(dir_model):

    fname_hparams = f"{dir_model}/params.json"
    fname_tokenizer = f"{dir_model}/../tokenizer.model"

    with open(fname_hparams, "r") as f:
        hparams = json.load(f)
        print(hparams)

    tokenizer = SentencePieceProcessor(fname_tokenizer)
    hparams.update({"vocab_size": tokenizer.vocab_size()})

    return hparams, tokenizer

def write_header(fout, hparams, ftype):

    keys = ["vocab_size", "dim", "multiple_of", "n_heads", "n_layers"]
    values = [
        0x67676d6c,  # magic: ggml in hex
        *[hparams[key] for key in keys],
        hparams["dim"] // hparams["n_heads"],  # rot (obsolete)
        ftype
    ]
    fout.write(struct.pack("i" * len(values), *values))

def write_tokens(fout, tokenizer):

    for i in range(tokenizer.vocab_size()):
        if tokenizer.is_unknown(i):
            text = " \u2047 ".encode("utf-8")
        elif tokenizer.is_control(i):
            text = b""
        elif tokenizer.is_byte(i):
            piece = tokenizer.id_to_piece(i)
            if len(piece) != 6:
                print(f"Invalid token: {piece}")
                sys.exit(1)
            byte_value = int(piece[3:-1], 16)
            text = struct.pack("B", byte_value)
        else:
            text = tokenizer.id_to_piece(i).replace("\u2581", " ").encode("utf-8")
        fout.write(struct.pack("i", len(text)))
        fout.write(text)

def process_and_write_variables(fout, model, ftype):

    for name, datao in model.items():

        if name.endswith("freqs"):
            continue

        shape = datao.shape

        print(f"Processing variable: {name} with shape: {shape} and type: {datao.dtype}")

        data = datao.numpy().squeeze()
        n_dims = len(shape)

        # default type is fp16
        ftype_cur = 1
        if ftype == 0 or n_dims == 1:
            print("  Converting to float32")
            data = data.astype(np.float32)
            ftype_cur = 0

        # header
        sname = name.encode('utf-8')
        fout.write(struct.pack("iii", len(data.shape), len(sname), ftype_cur))
        for dim in reversed(data.shape):
            fout.write(struct.pack("i", dim))
        fout.write(sname)

        # data output to file
        data.tofile(fout)

def main():

    args = parse_args()
    dir_model = args.dir_model
    ftype = args.ftype
    ftype_str = ["f32", "f16"]

    hparams, tokenizer = load_hparams_and_tokenizer(dir_model)
    n_parts = get_n_parts(hparams["dim"])

    for p in range(n_parts):

        print(f"Processing part {p}\n")

        fname_model = f"{dir_model}/consolidated.0{p}.pth"
        fname_out = f"{dir_model}/ggml-model-{ftype_str[ftype]}.bin{'' if p == 0 else '.' + str(p)}"

        model = torch.load(fname_model, map_location="cpu")

        with open(fname_out, "wb") as fout:
            write_header(fout, hparams, ftype)
            write_tokens(fout, tokenizer)
            process_and_write_variables(fout, model, ftype)

        del model
        print(f"Done. Output file: {fname_out}, (part {p})\n")

if __name__ == "__main__":
    main()