aboutsummaryrefslogtreecommitdiff
path: root/examples/common.h
blob: 2b66382a6a5e0fdba4569f44d9123cb789477a86 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
// Various helper functions and utilities

#pragma once

#include "llama.h"

#include <string>
#include <vector>
#include <random>
#include <thread>
#include <unordered_map>

#if !defined (_WIN32)
#include <stdio.h>
#include <termios.h>
#endif

//
// CLI argument parsing
//
int32_t get_num_physical_cores();

struct gpt_params {
    int32_t seed          = -1;  // RNG seed
    int32_t n_threads     = get_num_physical_cores();
    int32_t n_predict     = -1;  // new tokens to predict
    int32_t n_ctx         = 512; // context size
    int32_t n_batch       = 512; // batch size for prompt processing (must be >=32 to use BLAS)
    int32_t n_keep        = 0;   // number of tokens to keep from initial prompt
    int32_t n_gpu_layers  = 0;   // number of layers to store in VRAM

    // sampling parameters
    std::unordered_map<llama_token, float> logit_bias; // logit bias for specific tokens
    int32_t top_k             = 40;    // <= 0 to use vocab size
    float   top_p             = 0.95f; // 1.0 = disabled
    float   tfs_z             = 1.00f; // 1.0 = disabled
    float   typical_p         = 1.00f; // 1.0 = disabled
    float   temp              = 0.80f; // 1.0 = disabled
    float   repeat_penalty    = 1.10f; // 1.0 = disabled
    int32_t repeat_last_n     = 64;    // last n tokens to penalize (0 = disable penalty, -1 = context size)
    float   frequency_penalty = 0.00f; // 0.0 = disabled
    float   presence_penalty  = 0.00f; // 0.0 = disabled
    int     mirostat          = 0;     // 0 = disabled, 1 = mirostat, 2 = mirostat 2.0
    float   mirostat_tau      = 5.00f; // target entropy
    float   mirostat_eta      = 0.10f; // learning rate

    std::string model             = "models/7B/ggml-model.bin"; // model path
    std::string prompt            = "";
    std::string path_prompt_cache = "";  // path to file for saving/loading prompt eval state
    std::string input_prefix      = "";  // string to prefix user inputs with
    std::string input_suffix      = "";  // string to suffix user inputs with
    std::vector<std::string> antiprompt; // string upon seeing which more user input is prompted

    std::string lora_adapter = "";  // lora adapter path
    std::string lora_base    = "";  // base model path for the lora adapter

    bool memory_f16        = true;  // use f16 instead of f32 for memory kv
    bool random_prompt     = false; // do not randomize prompt if none provided
    bool use_color         = false; // use color to distinguish generations and inputs
    bool interactive       = false; // interactive mode
    bool prompt_cache_all  = false; // save user input and generations to prompt cache

    bool embedding         = false; // get only sentence embedding
    bool interactive_first = false; // wait for user input immediately
    bool multiline_input   = false; // reverse the usage of `\`

    bool instruct          = false; // instruction mode (used for Alpaca models)
    bool penalize_nl       = true;  // consider newlines as a repeatable token
    bool perplexity        = false; // compute perplexity over the prompt
    bool use_mmap          = true;  // use mmap for faster loads
    bool use_mlock         = false; // use mlock to keep model in memory
    bool mem_test          = false; // compute maximum memory usage
    bool verbose_prompt    = false; // print prompt tokens before generation
};

bool gpt_params_parse(int argc, char ** argv, gpt_params & params);

void gpt_print_usage(int argc, char ** argv, const gpt_params & params);

std::string gpt_random_prompt(std::mt19937 & rng);

//
// Vocab utils
//

std::vector<llama_token> llama_tokenize(struct llama_context * ctx, const std::string & text, bool add_bos);

//
// Model utils
//

struct llama_context * llama_init_from_gpt_params(const gpt_params & params);

//
// Console utils
//

#define ANSI_COLOR_RED     "\x1b[31m"
#define ANSI_COLOR_GREEN   "\x1b[32m"
#define ANSI_COLOR_YELLOW  "\x1b[33m"
#define ANSI_COLOR_BLUE    "\x1b[34m"
#define ANSI_COLOR_MAGENTA "\x1b[35m"
#define ANSI_COLOR_CYAN    "\x1b[36m"
#define ANSI_COLOR_RESET   "\x1b[0m"
#define ANSI_BOLD          "\x1b[1m"

enum console_color_t {
    CONSOLE_COLOR_DEFAULT=0,
    CONSOLE_COLOR_PROMPT,
    CONSOLE_COLOR_USER_INPUT
};

struct console_state {
    bool multiline_input = false;
    bool use_color = false;
    console_color_t color = CONSOLE_COLOR_DEFAULT;

    FILE* out = stdout;
#if defined (_WIN32)
    void* hConsole;
#else
    FILE* tty = nullptr;
    termios prev_state;
#endif
};

void console_init(console_state & con_st);
void console_cleanup(console_state & con_st);
void console_set_color(console_state & con_st, console_color_t color);
bool console_readline(console_state & con_st, std::string & line);