aboutsummaryrefslogtreecommitdiff
path: root/examples/perplexity/perplexity.cpp
blob: d23b7e7f0c1b8f2ea693178c5a16466d5df081f7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
#include "common.h"
#include "llama.h"
#include "build-info.h"

#include <cmath>
#include <ctime>
#include <sstream>

#if defined(_MSC_VER)
#pragma warning(disable: 4244 4267) // possible loss of data
#endif

std::vector<float> softmax(const std::vector<float>& logits) {
    std::vector<float> probs(logits.size());
    float max_logit = logits[0];
    for (float v : logits) max_logit = std::max(max_logit, v);
    double sum_exp = 0.0;
    for (size_t i = 0; i < logits.size(); i++) {
        // Subtract the maximum logit value from the current logit value for numerical stability
        const float logit = logits[i] - max_logit;
        const float exp_logit = expf(logit);
        sum_exp += exp_logit;
        probs[i] = exp_logit;
    }
    for (size_t i = 0; i < probs.size(); i++) probs[i] /= sum_exp;
    return probs;
}

void perplexity(llama_context * ctx, const gpt_params & params) {
    // Download: https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-2-raw-v1.zip?ref=salesforce-research
    // Run `./perplexity -m models/7B/ggml-model-q4_0.bin -f wiki.test.raw`
    // Output: `perplexity: 13.5106 [114/114]`
    // BOS tokens will be added for each chunk before eval
    auto tokens = ::llama_tokenize(ctx, params.prompt, true);

    const int n_chunk_max = tokens.size() / params.n_ctx;

    const int n_chunk = params.n_chunks < 0 ? n_chunk_max : std::min(params.n_chunks, n_chunk_max);
    const int n_vocab = llama_n_vocab(ctx);
    const int n_batch = params.n_batch;

    int count = 0;
    double nll = 0.0;

    fprintf(stderr, "%s: calculating perplexity over %d chunks, batch_size=%d\n", __func__, n_chunk, n_batch);

    for (int i = 0; i < n_chunk; ++i) {
        const int start =     i * params.n_ctx;
        const int end   = start + params.n_ctx;

        const int num_batches = (params.n_ctx + n_batch - 1) / n_batch;

        std::vector<float> logits;

        const auto t_start = std::chrono::high_resolution_clock::now();

        for (int j = 0; j < num_batches; ++j) {
            const int batch_start = start + j * n_batch;
            const int batch_size  = std::min(end - batch_start, n_batch);

            // save original token and restore it after eval
            const auto token_org = tokens[batch_start];

            // add BOS token for the first batch of each chunk
            if (j == 0) {
                tokens[batch_start] = llama_token_bos();
            }

            if (llama_eval(ctx, tokens.data() + batch_start, batch_size, j * n_batch, params.n_threads)) {
                fprintf(stderr, "%s : failed to eval\n", __func__);
                return;
            }

            // restore the original token in case it was set to BOS
            tokens[batch_start] = token_org;

            const auto batch_logits = llama_get_logits(ctx);
            logits.insert(logits.end(), batch_logits, batch_logits + batch_size * n_vocab);
        }

        const auto t_end = std::chrono::high_resolution_clock::now();

        if (i == 0) {
            const float t_total = std::chrono::duration<float>(t_end - t_start).count();
            fprintf(stderr, "%s: %.2f seconds per pass - ETA ", __func__, t_total);
            int total_seconds = (int)(t_total * n_chunk);
            if (total_seconds >= 60*60) {
                fprintf(stderr, "%d hours ", total_seconds / (60*60));
                total_seconds = total_seconds % (60*60);
            }
            fprintf(stderr, "%d minutes\n", total_seconds / 60);
        }

        // We get the logits for all the tokens in the context window (params.n_ctx)
        // from llama_eval above.  Now, based on https://huggingface.co/docs/transformers/perplexity,
        // calculate the perplexity over the last half of the window (so the model always has
        // some context to predict the token).
        //
        // We rely on the fact that attention in the forward pass only looks at previous
        // tokens here, so the logits returned for each token are an accurate representation
        // of what the model would have predicted at that point.
        //
        // Example, we have a context window of 512, we will compute perplexity for each of the
        // last 256 tokens.  Then, we split the input up into context window size chunks to
        // process the entire prompt.
        for (int j = std::min(512, params.n_ctx / 2); j < params.n_ctx - 1; ++j) {
            // Calculate probability of next token, given the previous ones.
            const std::vector<float> tok_logits(
                logits.begin() + (j + 0) * n_vocab,
                logits.begin() + (j + 1) * n_vocab);

            const float prob = softmax(tok_logits)[tokens[start + j + 1]];

            nll += -std::log(prob);
            ++count;
        }
        // perplexity is e^(average negative log-likelihood)
        printf("[%d]%.4lf,", i + 1, std::exp(nll / count));
        fflush(stdout);
    }
    printf("\n");
}

void perplexity_lines(llama_context * ctx, const gpt_params & params) {
    // Calculates perplexity over each line of the prompt

    std::vector<std::string> prompt_lines;
    std::istringstream strstream(params.prompt);
    std::string line;

    while (std::getline(strstream,line,'\n')) {
        prompt_lines.push_back(line);
    }

    const int n_vocab = llama_n_vocab(ctx);

    int counttotal   = 0;
    size_t n_lines = prompt_lines.size();

    double nll = 0.0;

    fprintf(stderr, "%s: calculating perplexity over %lu lines\n", __func__, n_lines);

    printf("\nLine\tPPL line\tPPL cumulative\n");

    for (size_t i = 0; i < n_lines; ++i) {

        // Tokenize and insert BOS at start
        std::vector<int> batch_embd = ::llama_tokenize(ctx, prompt_lines[i], true);

        size_t batch_size  = batch_embd.size();

        // Stop if line is too long
        if( batch_size > (size_t)params.n_ctx ) {
            fprintf(stderr, "%s : tokens in line %lu > n_ctxl\n", __func__, i);
            return;
        }

        if (llama_eval(ctx, batch_embd.data(), batch_size, 0, params.n_threads)) {
            fprintf(stderr, "%s : failed to eval\n", __func__);
            return;
        }

        const auto batch_logits = llama_get_logits(ctx);
        std::vector<float> logits;
        logits.insert(logits.end(), batch_logits, batch_logits + batch_size * n_vocab);

        double nllline = 0.0;
        int countline = 0;

        // Perplexity over second half of the line
        for (size_t j = batch_size/2; j < batch_size - 1; ++j) {
            // Calculate probability of next token, given the previous ones.
            const std::vector<float> tok_logits(
                logits.begin() + (j + 0) * n_vocab,
                logits.begin() + (j + 1) * n_vocab);

            const float prob = softmax(tok_logits)[batch_embd[ j + 1]];

            nllline += -std::log(prob);
            ++countline;
        }

        nll += nllline;
        counttotal += countline;

        // perplexity is e^(average negative log-likelihood)
        printf("%lu\t%.8lf\t%.8lf\n", i + 1, std::exp(nllline/countline), std::exp(nll / counttotal) );
        fflush(stdout);
    }

    printf("\n");
}

int main(int argc, char ** argv) {
    gpt_params params;

    params.n_batch = 512;
    if (gpt_params_parse(argc, argv, params) == false) {
        return 1;
    }

    params.perplexity = true;
    params.n_batch = std::min(params.n_batch, params.n_ctx);

    if (params.n_ctx > 2048) {
        fprintf(stderr, "%s: warning: model might not support context sizes greater than 2048 tokens (%d specified);"
                "expect poor results\n", __func__, params.n_ctx);
    }

    fprintf(stderr, "%s: build = %d (%s)\n", __func__, BUILD_NUMBER, BUILD_COMMIT);

    if (params.seed == LLAMA_DEFAULT_SEED) {
        params.seed = time(NULL);
    }

    fprintf(stderr, "%s: seed  = %u\n", __func__, params.seed);

    std::mt19937 rng(params.seed);
    if (params.random_prompt) {
        params.prompt = gpt_random_prompt(rng);
    }

    llama_backend_init(params.numa);

    llama_model * model;
    llama_context * ctx;

    // load the model and apply lora adapter, if any
    std::tie(model, ctx) = llama_init_from_gpt_params(params);
    if (model == NULL) {
        fprintf(stderr, "%s: error: unable to load model\n", __func__);
        return 1;
    }

    // print system information
    {
        fprintf(stderr, "\n");
        fprintf(stderr, "system_info: n_threads = %d / %d | %s\n",
                params.n_threads, std::thread::hardware_concurrency(), llama_print_system_info());
    }

    if (params.perplexity_lines) {
        perplexity_lines(ctx, params);
    } else {
        perplexity(ctx, params);
    }

    llama_print_timings(ctx);
    llama_free(ctx);
    llama_free_model(model);

    llama_backend_free();

    return 0;
}