aboutsummaryrefslogtreecommitdiff
path: root/examples/server/README.md
blob: 3b111655a84de5065f879fe09c8712aae47867bd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
# llama.cpp/example/server

This example allow you to have a llama.cpp http server to interact from a web page or consume the API.

## Table of Contents

1. [Quick Start](#quick-start)
2. [Node JS Test](#node-js-test)
3. [API Endpoints](#api-endpoints)
4. [More examples](#more-examples)
5. [Common Options](#common-options)
6. [Performance Tuning and Memory Options](#performance-tuning-and-memory-options)

## Quick Start

To get started right away, run the following command, making sure to use the correct path for the model you have:

#### Unix-based systems (Linux, macOS, etc.):
Make sure to build with the server option on
```bash
LLAMA_BUILD_SERVER=1 make
```

```bash
./server -m models/7B/ggml-model.bin --ctx_size 2048
```

#### Windows:

```powershell
server.exe -m models\7B\ggml-model.bin --ctx_size 2048
```

That will start a server that by default listens on `127.0.0.1:8080`. You can consume the endpoints with Postman or NodeJS with axios library.

## Node JS Test

You need to have [Node.js](https://nodejs.org/en) installed.

```bash
mkdir llama-client
cd llama-client
npm init
npm install axios
```

Create a index.js file and put inside this:

```javascript
const axios = require("axios");

const prompt = `Building a website can be done in 10 simple steps:`;

async function Test() {
    let result = await axios.post("http://127.0.0.1:8080/completion", {
        prompt,
        batch_size: 128,
        n_predict: 512,
    });

    // the response is received until completion finish
    console.log(result.data.content);
}

Test();
```

And run it:

```bash
node .
```

## API Endpoints

You can interact with this API Endpoints. This implementations just support chat style interaction.

-   **POST** `hostname:port/completion`: Setting up the Llama Context to begin the completions tasks.

*Options:*

`batch_size`: Set the batch size for prompt processing (default: 512).

`temperature`: Adjust the randomness of the generated text (default: 0.8).

`top_k`: Limit the next token selection to the K most probable tokens (default: 40).

`top_p`: Limit the next token selection to a subset of tokens with a cumulative probability above a threshold P (default: 0.9).

`n_predict`: Set the number of tokens to predict when generating text (default: 128, -1 = infinity).

`threads`: Set the number of threads to use during computation.

`n_keep`: Specify the number of tokens from the initial prompt to retain when the model resets its internal context. By default, this value is set to 0 (meaning no tokens are kept). Use `-1` to retain all tokens from the initial prompt.

`as_loop`: It allows receiving each predicted token in real-time instead of waiting for the completion to finish. To enable this, set to `true`.

`interactive`: It allows interacting with the completion, and the completion stops as soon as it encounters a `stop word`. To enable this, set to `true`.

`prompt`: Provide a prompt. Internally, the prompt is compared, and it detects if a part has already been evaluated, and the remaining part will be evaluate.

`stop`: Specify the words or characters that indicate a stop. These words will not be included in the completion, so make sure to add them to the prompt for the next iteration.

`exclude`: Specify the words or characters you do not want to appear in the completion. These words will not be included in the completion, so make sure to add them to the prompt for the next iteration.

-   **POST** `hostname:port/embedding`: Generate embedding of a given text

*Options:*

`content`: Set the text to get generate the embedding.

`threads`: Set the number of threads to use during computation.

To use this endpoint, you need to start the server with the `--embedding` option added.

-   **POST** `hostname:port/tokenize`: Tokenize a given text

*Options:*

`content`: Set the text to tokenize.

-   **GET** `hostname:port/next-token`: Receive the next token predicted, execute this request in a loop. Make sure set `as_loop` as `true` in the completion request.

*Options:*

`stop`: Set `hostname:port/next-token?stop=true` to stop the token generation.

## More examples

### Interactive mode

This mode allows interacting in a chat-like manner. It is recommended for models designed as assistants such as `Vicuna`, `WizardLM`, `Koala`, among others. Make sure to add the correct stop word for the corresponding model.

The prompt should be generated by you, according to the model's guidelines. You should keep adding the model's completions to the context as well.

This example works well for `Vicuna - version 1`.

```javascript
const axios = require("axios");

let prompt = `A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions.
### Human: Hello, Assistant.
### Assistant: Hello. How may I help you today?
### Human: Please tell me the largest city in Europe.
### Assistant: Sure. The largest city in Europe is Moscow, the capital of Russia.`;

async function ChatCompletion(answer) {
    // the user's next question to the prompt
    prompt += `\n### Human: ${answer}\n`

    result = await axios.post("http://127.0.0.1:8080/completion", {
        prompt,
        batch_size: 128,
        temperature: 0.2,
        top_k: 40,
        top_p: 0.9,
        n_keep: -1,
        n_predict: 2048,
        stop: ["\n### Human:"], // when detect this, stop completion
        exclude: ["### Assistant:"], // no show in the completion
        threads: 8,
        as_loop: true, // use this to request the completion token by token
        interactive: true, // enable the detection of a stop word
    });

    // create a loop to receive every token predicted
    // note: this operation is blocking, avoid use this in a ui thread

    let message = "";
    while (true) {
        // you can stop the inference adding '?stop=true' like this http://127.0.0.1:8080/next-token?stop=true
        result = await axios.get("http://127.0.0.1:8080/next-token");
        process.stdout.write(result.data.content);
        message += result.data.content;

        // to avoid an infinite loop
        if (result.data.stop) {
            console.log("Completed");
            // make sure to add the completion to the prompt.
            prompt += `### Assistant: ${message}`;
            break;
        }
    }
}

// This function should be called every time a question to the model is needed.
async function Test() {
    // the server can't inference in paralell
    await ChatCompletion("Write a long story about a time magician in a fantasy world");
    await ChatCompletion("Summary the story");
}

Test();
```

### Alpaca example

**Temporaly note:** no tested, if you have the model, please test it and report me some issue

```javascript
const axios = require("axios");

let prompt = `Below is an instruction that describes a task. Write a response that appropriately completes the request.
`;

async function DoInstruction(instruction) {
    prompt += `\n\n### Instruction:\n\n${instruction}\n\n### Response:\n\n`;
    result = await axios.post("http://127.0.0.1:8080/completion", {
        prompt,
        batch_size: 128,
        temperature: 0.2,
        top_k: 40,
        top_p: 0.9,
        n_keep: -1,
        n_predict: 2048,
        stop: ["### Instruction:\n\n"], // when detect this, stop completion
        exclude: [], // no show in the completion
        threads: 8,
        as_loop: true, // use this to request the completion token by token
        interactive: true, // enable the detection of a stop word
    });

    // create a loop to receive every token predicted
    // note: this operation is blocking, avoid use this in a ui thread

    let message = "";
    while (true) {
        result = await axios.get("http://127.0.0.1:8080/next-token");
        process.stdout.write(result.data.content);
        message += result.data.content;

        // to avoid an infinite loop
        if (result.data.stop) {
            console.log("Completed");
            // make sure to add the completion and the user's next question to the prompt.
            prompt += message;
            break;
        }
    }
}

// This function should be called every time a instruction to the model is needed.
DoInstruction("Destroy the world"); // as joke
```

### Embeddings

First, run the server with `--embedding` option:

```bash
server -m models/7B/ggml-model.bin --ctx_size 2048 --embedding
```

Run this code in NodeJS:

```javascript
const axios = require('axios');

async function Test() {
    let result = await axios.post("http://127.0.0.1:8080/embedding", {
        content: `Hello`,
        threads: 5
    });
    // print the embedding array
    console.log(result.data.embedding);
}

Test();
```

### Tokenize

Run this code in NodeJS:

```javascript
const axios = require('axios');

async function Test() {
    let result = await axios.post("http://127.0.0.1:8080/tokenize", {
        content: `Hello`
    });
    // print the embedding array
    console.log(result.data.tokens);
}

Test();
```

## Common Options

-   `-m FNAME, --model FNAME`: Specify the path to the LLaMA model file (e.g., `models/7B/ggml-model.bin`).
-   `-c N, --ctx-size N`: Set the size of the prompt context. The default is 512, but LLaMA models were built with a context of 2048, which will provide better results for longer input/inference.
-   `-ngl N, --n-gpu-layers N`: When compiled with appropriate support (currently CLBlast or cuBLAS), this option allows offloading some layers to the GPU for computation. Generally results in increased performance.
-   `-mg i, --main-gpu i`: When using multiple GPUs this option controls which GPU is used for small tensors for which the overhead of splitting the computation across all GPUs is not worthwhile. The GPU in question will use slightly more VRAM to store a scratch buffer for temporary results. By default GPU 0 is used. Requires cuBLAS.
-   `-ts SPLIT, --tensor-split SPLIT`: When using multiple GPUs this option controls how large tensors should be split across all GPUs. `SPLIT` is a comma-separated list of non-negative values that assigns the proportion of data that each GPU should get in order. For example, "3,2" will assign 60% of the data to GPU 0 and 40% to GPU 1. By default the data is split in proportion to VRAM but this may not be optimal for performance. Requires cuBLAS.
-   `-lv, --low-vram`: Do not allocate a VRAM scratch buffer for holding temporary results. Reduces VRAM usage at the cost of performance, particularly prompt processing speed. Requires cuBLAS.
-   `--embedding`: Enable the embedding mode. **Completion function doesn't work in this mode**.
-   `--host`: Set the hostname or ip address to listen. Default `127.0.0.1`;
-   `--port`: Set the port to listen. Default: `8080`.

### RNG Seed

-   `-s SEED, --seed SEED`: Set the random number generator (RNG) seed (default: -1, < 0 = random seed).

The RNG seed is used to initialize the random number generator that influences the text generation process. By setting a specific seed value, you can obtain consistent and reproducible results across multiple runs with the same input and settings. This can be helpful for testing, debugging, or comparing the effects of different options on the generated text to see when they diverge. If the seed is set to a value less than 0, a random seed will be used, which will result in different outputs on each run.

## Performance Tuning and Memory Options

### No Memory Mapping

-   `--no-mmap`: Do not memory-map the model. By default, models are mapped into memory, which allows the system to load only the necessary parts of the model as needed. However, if the model is larger than your total amount of RAM or if your system is low on available memory, using mmap might increase the risk of pageouts, negatively impacting performance.

### Memory Float 32

-   `--memory-f32`: Use 32-bit floats instead of 16-bit floats for memory key+value. This doubles the context memory requirement but does not appear to increase generation quality in a measurable way. Not recommended.

## Limitations:

-   The actual implementation of llama.cpp need a `llama-state` for handle multiple contexts and clients, but this could require more powerful hardware.