1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
|
#include <httplib.h>
#include <json.hpp>
#include "common.h"
#include "llama.h"
struct server_params
{
std::string hostname = "127.0.0.1";
int32_t port = 8080;
};
struct llama_server_context
{
bool as_loop = false;
bool has_next_token = false;
std::string generated_text = "";
int32_t num_tokens_predicted = 0;
int32_t n_past = 0;
int32_t n_consumed = 0;
int32_t n_session_consumed = 0;
int32_t n_remain = 0;
std::vector<llama_token> embd;
std::vector<llama_token> last_n_tokens;
std::vector<llama_token> processed_tokens;
std::vector<llama_token> llama_token_newline;
std::vector<llama_token> embd_inp;
std::vector<std::vector<llama_token>> no_show_words;
std::vector<llama_token> tokens_predicted;
llama_context *ctx;
gpt_params params;
void rewind() {
as_loop = false;
params.antiprompt.clear();
no_show_words.clear();
num_tokens_predicted = 0;
generated_text = "";
}
bool loadModel(gpt_params params_)
{
params = params_;
ctx = llama_init_from_gpt_params(params);
if (ctx == NULL)
{
fprintf(stderr, "%s: error: unable to load model\n", __func__);
return false;
}
// determine newline token
llama_token_newline = ::llama_tokenize(ctx, "\n", false);
last_n_tokens.resize(params.n_ctx);
std::fill(last_n_tokens.begin(), last_n_tokens.end(), 0);
return true;
}
bool loadPrompt() {
params.prompt.insert(0, 1, ' '); // always add a first space
std::vector<llama_token> prompt_tokens = ::llama_tokenize(ctx, params.prompt, true);
// compare the evaluated prompt with the new prompt
int new_prompt_len = 0;
for (size_t i = 0; i < prompt_tokens.size(); i++) {
if (i < processed_tokens.size() &&
processed_tokens[i] == prompt_tokens[i])
{
continue;
}
else
{
embd_inp.push_back(prompt_tokens[i]);
if(new_prompt_len == 0) {
if(int32_t(i) - 1 < n_past) {
processed_tokens.erase(processed_tokens.begin() + i, processed_tokens.end());
}
// Evaluate the new fragment prompt from the last token processed.
n_past = processed_tokens.size();
}
new_prompt_len ++;
}
}
if(n_past > 0 && params.interactive) {
n_remain -= new_prompt_len;
}
if ((int)embd_inp.size() > params.n_ctx - 4)
{
return false;
}
has_next_token = true;
return true;
}
void beginCompletion()
{
if(n_remain == 0) {
// number of tokens to keep when resetting context
if (params.n_keep < 0 || params.n_keep > (int)embd_inp.size())
{
params.n_keep = (int)embd_inp.size();
}
}
n_remain = params.n_predict;
}
llama_token nextToken() {
llama_token result = -1;
if (embd.size() > 0)
{
if (n_past + (int)embd.size() > params.n_ctx)
{
// Reset context
const int n_left = n_past - params.n_keep;
n_past = std::max(1, params.n_keep);
processed_tokens.erase(processed_tokens.begin() + n_past, processed_tokens.end());
embd.insert(embd.begin(), last_n_tokens.begin() + params.n_ctx - n_left / 2 - embd.size(), last_n_tokens.end() - embd.size());
}
for (int i = 0; i < (int)embd.size(); i += params.n_batch)
{
int n_eval = (int)embd.size() - i;
if (n_eval > params.n_batch)
{
n_eval = params.n_batch;
}
if (llama_eval(ctx, &embd[i], n_eval, n_past, params.n_threads))
{
fprintf(stderr, "%s : failed to eval\n", __func__);
has_next_token = false;
return result;
}
n_past += n_eval;
}
}
embd.clear();
if ((int)embd_inp.size() <= n_consumed && has_next_token)
{
// out of user input, sample next token
const float temp = params.temp;
// const int32_t top_k = params.top_k <= 0 ? llama_n_vocab(ctx) : params.top_k;
const float top_p = params.top_p;
const float tfs_z = params.tfs_z;
const float typical_p = params.typical_p;
const int32_t repeat_last_n = params.repeat_last_n < 0 ? params.n_ctx : params.repeat_last_n;
const float repeat_penalty = params.repeat_penalty;
const float alpha_presence = params.presence_penalty;
const float alpha_frequency = params.frequency_penalty;
const int mirostat = params.mirostat;
const float mirostat_tau = params.mirostat_tau;
const float mirostat_eta = params.mirostat_eta;
const bool penalize_nl = params.penalize_nl;
llama_token id = 0;
{
auto logits = llama_get_logits(ctx);
auto n_vocab = llama_n_vocab(ctx);
// Apply params.logit_bias map
for (auto it = params.logit_bias.begin(); it != params.logit_bias.end(); it++)
{
logits[it->first] += it->second;
}
std::vector<llama_token_data> candidates;
candidates.reserve(n_vocab);
for (llama_token token_id = 0; token_id < n_vocab; token_id++)
{
candidates.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f});
}
llama_token_data_array candidates_p = {candidates.data(), candidates.size(), false};
// Apply penalties
float nl_logit = logits[llama_token_nl()];
auto last_n_repeat = std::min(std::min((int)last_n_tokens.size(), repeat_last_n), params.n_ctx);
llama_sample_repetition_penalty(ctx, &candidates_p,
last_n_tokens.data() + last_n_tokens.size() - last_n_repeat,
last_n_repeat, repeat_penalty);
llama_sample_frequency_and_presence_penalties(ctx, &candidates_p,
last_n_tokens.data() + last_n_tokens.size() - last_n_repeat,
last_n_repeat, alpha_frequency, alpha_presence);
if (!penalize_nl)
{
logits[llama_token_nl()] = nl_logit;
}
if (temp <= 0)
{
// Greedy sampling
id = llama_sample_token_greedy(ctx, &candidates_p);
}
else
{
if (mirostat == 1)
{
static float mirostat_mu = 2.0f * mirostat_tau;
const int mirostat_m = 100;
llama_sample_temperature(ctx, &candidates_p, temp);
id = llama_sample_token_mirostat(ctx, &candidates_p, mirostat_tau, mirostat_eta, mirostat_m, &mirostat_mu);
}
else if (mirostat == 2)
{
static float mirostat_mu = 2.0f * mirostat_tau;
llama_sample_temperature(ctx, &candidates_p, temp);
id = llama_sample_token_mirostat_v2(ctx, &candidates_p, mirostat_tau, mirostat_eta, &mirostat_mu);
}
else
{
// Temperature sampling
llama_sample_tail_free(ctx, &candidates_p, tfs_z, 1);
llama_sample_typical(ctx, &candidates_p, typical_p, 1);
llama_sample_top_p(ctx, &candidates_p, top_p, 1);
llama_sample_temperature(ctx, &candidates_p, temp);
id = llama_sample_token(ctx, &candidates_p);
}
}
last_n_tokens.erase(last_n_tokens.begin());
last_n_tokens.push_back(id);
processed_tokens.push_back(id);
num_tokens_predicted++;
}
// replace end of text token with newline token when in interactive mode
if (id == llama_token_eos() && params.interactive)
{
id = llama_token_newline.front();
if (params.antiprompt.size() != 0)
{
// tokenize and inject first reverse prompt
const auto first_antiprompt = ::llama_tokenize(ctx, params.antiprompt.front(), false);
embd_inp.insert(embd_inp.end(), first_antiprompt.begin(), first_antiprompt.end());
}
}
// add it to the context
embd.push_back(id);
for (auto id : embd)
{
result = id;
}
// decrement remaining sampling budget
--n_remain;
}
else
{
// some user input remains from prompt or interaction, forward it to processing
while ((int)embd_inp.size() > n_consumed)
{
embd.push_back(embd_inp[n_consumed]);
last_n_tokens.erase(last_n_tokens.begin());
last_n_tokens.push_back(embd_inp[n_consumed]);
processed_tokens.push_back(embd_inp[n_consumed]);
++n_consumed;
if ((int)embd.size() >= params.n_batch)
{
break;
}
}
}
if (params.interactive && (int)embd_inp.size() <= n_consumed)
{
// check for reverse prompt
if (params.antiprompt.size())
{
std::string last_output;
for (auto id : last_n_tokens)
{
last_output += llama_token_to_str(ctx, id);
}
has_next_token = true;
// Check if each of the reverse prompts appears at the end of the output.
for (std::string &antiprompt : params.antiprompt)
{
if (last_output.find(antiprompt.c_str(), last_output.length() - antiprompt.length(), antiprompt.length()) != std::string::npos)
{
has_next_token = false;
return result;
}
}
}
if (n_past > 0)
{
has_next_token = true;
}
}
if (!embd.empty() && embd.back() == llama_token_eos()) {
has_next_token = false;
}
if (params.interactive && n_remain <= 0 && params.n_predict != -1)
{
n_remain = params.n_predict;
}
has_next_token = n_remain != 0;
return result;
}
std::string doCompletion()
{
llama_token token = nextToken();
if (token == -1) {
return "";
}
tokens_predicted.clear();
tokens_predicted.push_back(token);
// Avoid add the no show words to the response
for (std::vector<llama_token> word_tokens : no_show_words)
{
size_t match_token = 1;
if (tokens_predicted.front() == word_tokens.front())
{
bool execute_matching = true;
if (tokens_predicted.size() > 1) { // if previus tokens had been tested
for (size_t i = 1; i < word_tokens.size(); i++)
{
if (i >= tokens_predicted.size()) {
match_token = i;
break;
}
if (tokens_predicted[i] == word_tokens[i])
{
continue;
}
else
{
execute_matching = false;
break;
}
}
}
while (execute_matching) {
if (match_token == word_tokens.size()) {
return "";
}
token = nextToken();
tokens_predicted.push_back(token);
if (token == word_tokens[match_token])
{ // the token follow the sequence
match_token++;
}
else if (match_token < word_tokens.size())
{ // no complete all word sequence
break;
}
}
}
}
if(as_loop) {
generated_text = "";
}
for (llama_token tkn : tokens_predicted)
{
generated_text += llama_token_to_str(ctx, tkn);
}
return generated_text;
}
std::vector<float> embedding(std::string content, int threads) {
content.insert(0, 1, ' ');
std::vector<llama_token> tokens = ::llama_tokenize(ctx, content, true);
if (tokens.size() > 0)
{
if (llama_eval(ctx, tokens.data(), tokens.size(), 0, threads))
{
fprintf(stderr, "%s : failed to eval\n", __func__);
std::vector<float> embeddings_;
return embeddings_;
}
}
const int n_embd = llama_n_embd(ctx);
const auto embeddings = llama_get_embeddings(ctx);
std::vector<float> embeddings_(embeddings, embeddings + n_embd);
return embeddings_;
}
};
using namespace httplib;
using json = nlohmann::json;
void server_print_usage(int /*argc*/, char **argv, const gpt_params ¶ms)
{
fprintf(stderr, "usage: %s [options]\n", argv[0]);
fprintf(stderr, "\n");
fprintf(stderr, "options:\n");
fprintf(stderr, " -h, --help show this help message and exit\n");
fprintf(stderr, " -s SEED, --seed SEED RNG seed (default: -1, use random seed for < 0)\n");
fprintf(stderr, " -c N, --ctx-size N size of the prompt context (default: %d)\n", params.n_ctx);
fprintf(stderr, " --memory-f32 use f32 instead of f16 for memory key+value (default: disabled)\n");
fprintf(stderr, " not recommended: doubles context memory required and no measurable increase in quality\n");
fprintf(stderr, " --embedding enable embedding mode\n");
fprintf(stderr, " --keep number of tokens to keep from the initial prompt (default: %d, -1 = all)\n", params.n_keep);
if (llama_mlock_supported())
{
fprintf(stderr, " --mlock force system to keep model in RAM rather than swapping or compressing\n");
}
if (llama_mmap_supported())
{
fprintf(stderr, " --no-mmap do not memory-map model (slower load but may reduce pageouts if not using mlock)\n");
}
#ifdef LLAMA_SUPPORTS_GPU_OFFLOAD
fprintf(stderr, " -ngl N, --n-gpu-layers N\n");
fprintf(stderr, " number of layers to store in VRAM\n");
fprintf(stderr, " -ts SPLIT --tensor-split SPLIT\n");
fprintf(stderr, " how to split tensors across multiple GPUs, comma-separated list of proportions, e.g. 3,1\n");
fprintf(stderr, " how to split tensors across multiple GPUs, comma-separated list of proportions, e.g. 3,1\n");
fprintf(stderr, " -mg i, --main-gpu i the GPU to use for scratch and small tensors\n" );
fprintf(stderr, " -lv, --low-vram don't allocate VRAM scratch buffer\n" );
#endif
fprintf(stderr, " -m FNAME, --model FNAME\n");
fprintf(stderr, " model path (default: %s)\n", params.model.c_str());
fprintf(stderr, " -a ALIAS, --alias ALIAS\n");
fprintf(stderr, " set an alias for the model, will be added as `model` field in completion response\n");
fprintf(stderr, " --host ip address to listen (default 127.0.0.1)\n");
fprintf(stderr, " --port PORT port to listen (default 8080)\n");
fprintf(stderr, "\n");
}
bool server_params_parse(int argc, char **argv, server_params &sparams, gpt_params ¶ms)
{
gpt_params default_params;
std::string arg;
bool invalid_param = false;
for (int i = 1; i < argc; i++)
{
arg = argv[i];
if (arg == "--port")
{
if (++i >= argc)
{
invalid_param = true;
break;
}
sparams.port = std::stoi(argv[i]);
}
else if (arg == "--host")
{
if (++i >= argc)
{
invalid_param = true;
break;
}
sparams.hostname = argv[i];
}
else if (arg == "-s" || arg == "--seed")
{
#if defined(GGML_USE_CUBLAS)
fprintf(stderr, "WARNING: when using cuBLAS generation results are NOT guaranteed to be reproducible.\n");
#endif
if (++i >= argc)
{
invalid_param = true;
break;
}
params.seed = std::stoi(argv[i]);
}
else if (arg == "-m" || arg == "--model")
{
if (++i >= argc)
{
invalid_param = true;
break;
}
params.model = argv[i];
}
else if (arg == "-a" || arg == "--alias")
{
if (++i >= argc)
{
invalid_param = true;
break;
}
params.model_alias = argv[i];
}
else if (arg == "--embedding")
{
params.embedding = true;
}
else if (arg == "-h" || arg == "--help")
{
server_print_usage(argc, argv, default_params);
exit(0);
}
else if (arg == "-c" || arg == "--ctx-size" || arg == "--ctx_size")
{
if (++i >= argc)
{
invalid_param = true;
break;
}
params.n_ctx = std::stoi(argv[i]);
}
else if (arg == "--memory-f32" || arg == "--memory_f32")
{
params.memory_f16 = false;
}
else if (arg == "--gpu-layers" || arg == "-ngl" || arg == "--n-gpu-layers")
{
if (++i >= argc)
{
invalid_param = true;
break;
}
#ifdef LLAMA_SUPPORTS_GPU_OFFLOAD
params.n_gpu_layers = std::stoi(argv[i]);
#else
fprintf(stderr, "warning: not compiled with GPU offload support, --n-gpu-layers option will be ignored\n");
fprintf(stderr, "warning: see main README.md for information on enabling GPU BLAS support\n");
#endif
}
else if (arg == "--tensor-split" || arg == "-ts")
{
if (++i >= argc)
{
invalid_param = true;
break;
}
#ifdef GGML_USE_CUBLAS
std::string arg_next = argv[i];
// split string by , and /
const std::regex regex{R"([,/]+)"};
std::sregex_token_iterator it{arg_next.begin(), arg_next.end(), regex, -1};
std::vector<std::string> split_arg{it, {}};
GGML_ASSERT(split_arg.size() <= LLAMA_MAX_DEVICES);
for (size_t i = 0; i < LLAMA_MAX_DEVICES; ++i)
{
if (i < split_arg.size())
{
params.tensor_split[i] = std::stof(split_arg[i]);
}
else
{
params.tensor_split[i] = 0.0f;
}
}
#else
fprintf(stderr, "WARNING: llama.cpp was compiled without cuBLAS. It is not possible to set a tensor split.\n");
#endif // GGML_USE_CUBLAS
}
else if (arg == "--low-vram" || arg == "-lv")
{
#ifdef GGML_USE_CUBLAS
params.low_vram = true;
#else
fprintf(stderr, "warning: llama.cpp was compiled without cuBLAS. It is not possible to set lower vram usage.\n");
#endif // GGML_USE_CUBLAS
}
else if (arg == "--main-gpu" || arg == "-mg")
{
if (++i >= argc)
{
invalid_param = true;
break;
}
#ifdef GGML_USE_CUBLAS
params.main_gpu = std::stoi(argv[i]);
#else
fprintf(stderr, "warning: llama.cpp was compiled without cuBLAS. It is not possible to set a main GPU.\n");
#endif
}
else
{
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
server_print_usage(argc, argv, default_params);
exit(1);
}
}
if (invalid_param)
{
fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str());
server_print_usage(argc, argv, default_params);
exit(1);
}
return true;
}
bool parse_options_completion(json body, llama_server_context& llama, Response &res) {
if (!body["threads"].is_null())
{
llama.params.n_threads = body["threads"].get<int>();
}
if (!body["n_predict"].is_null())
{
llama.params.n_predict = body["n_predict"].get<int>();
}
if (!body["top_k"].is_null())
{
llama.params.top_k = body["top_k"].get<int>();
}
if (!body["top_p"].is_null())
{
llama.params.top_p = body["top_p"].get<float>();
}
if (!body["temperature"].is_null())
{
llama.params.temp = body["temperature"].get<float>();
}
if (!body["batch_size"].is_null())
{
llama.params.n_batch = body["batch_size"].get<int>();
}
if (!body["n_keep"].is_null())
{
llama.params.n_keep = body["n_keep"].get<int>();
}
if (!body["as_loop"].is_null())
{
llama.as_loop = body["as_loop"].get<bool>();
}
if (!body["interactive"].is_null())
{
llama.params.interactive = body["interactive"].get<bool>();
}
if (!body["prompt"].is_null())
{
llama.params.prompt = body["prompt"].get<std::string>();
}
else
{
json data = {
{"status", "error"},
{"reason", "You need to pass the prompt"}};
res.set_content(data.dump(), "application/json");
res.status = 400;
return false;
}
if (!body["stop"].is_null())
{
std::vector<std::string> stop_words = body["stop"].get<std::vector<std::string>>();
for (std::string stop_word : stop_words)
{
llama.params.antiprompt.push_back(stop_word);
llama.no_show_words.push_back(::llama_tokenize(llama.ctx, stop_word, false));
}
}
if (!body["exclude"].is_null())
{
std::vector<std::string> no_show_words = body["exclude"].get<std::vector<std::string>>();
for (std::string no_show : no_show_words)
{
llama.no_show_words.push_back(::llama_tokenize(llama.ctx, no_show, false));
}
}
return true;
}
int main(int argc, char **argv)
{
// own arguments required by this example
gpt_params params;
server_params sparams;
// struct that contains llama context and inference
llama_server_context llama;
params.model = "ggml-model.bin";
if (server_params_parse(argc, argv, sparams, params) == false)
{
return 1;
}
if (params.seed <= 0)
{
params.seed = time(NULL);
}
fprintf(stderr, "%s: seed = %d\n", __func__, params.seed);
// load the model
if (!llama.loadModel(params))
{
return 1;
}
Server svr;
svr.Get("/", [](const Request &, Response &res)
{ res.set_content("<h1>llama.cpp server works</h1>", "text/html"); });
svr.Post("/completion", [&llama](const Request &req, Response &res)
{
if(llama.params.embedding) {
json data = {
{"status", "error"},
{"reason", "To use completion function disable embedding mode"}};
res.set_content(data.dump(), "application/json");
res.status = 400;
return;
}
llama.rewind();
if(parse_options_completion(json::parse(req.body), llama, res) == false){
return;
}
if (!llama.loadPrompt())
{
json data = {
{"status", "error"},
{"reason", "Context too long, please be more specific"}};
res.set_content(data.dump(), "application/json");
res.status = 400;
return;
}
llama.beginCompletion();
if(llama.as_loop) {
json data = {
{"status", "done" } };
return res.set_content(data.dump(), "application/json");
} else {
// loop inference until finish completion
while (llama.has_next_token)
{
llama.doCompletion();
}
try
{
json data = {
{"model", llama.params.model_alias },
{"content", llama.generated_text },
{"tokens_predicted", llama.num_tokens_predicted}};
return res.set_content(data.dump(), "application/json");
}
catch (const json::exception &e)
{
// Some tokens have bad UTF-8 strings, the json parser is very sensitive
json data = {
{"content", "Bad encoding token"},
{"tokens_predicted", 0}};
return res.set_content(data.dump(), "application/json");
}
} });
svr.Post("/tokenize", [&llama](const Request &req, Response &res)
{
json body = json::parse(req.body);
json data = {
{"tokens", ::llama_tokenize(llama.ctx, body["content"].get<std::string>(), false) } };
return res.set_content(data.dump(), "application/json");
});
svr.Post("/embedding", [&llama](const Request &req, Response &res)
{
if(!llama.params.embedding) {
std::vector<float> empty;
json data = {
{"embedding", empty}};
fprintf(stderr, "[llama-server] : You need enable embedding mode adding: --embedding option\n");
return res.set_content(data.dump(), "application/json");
}
json body = json::parse(req.body);
std::string content = body["content"].get<std::string>();
int threads = body["threads"].get<int>();
json data = {
{"embedding", llama.embedding(content, threads) } };
return res.set_content(data.dump(), "application/json");
});
svr.Get("/next-token", [&llama](const Request &req, Response &res)
{
if(llama.params.embedding) {
res.set_content("{}", "application/json");
return;
}
std::string result = "";
if (req.has_param("stop")) {
llama.has_next_token = false;
} else {
result = llama.doCompletion(); // inference next token
}
try {
json data = {
{"content", result },
{"stop", !llama.has_next_token }};
return res.set_content(data.dump(), "application/json");
} catch (const json::exception &e) {
// Some tokens have bad UTF-8 strings, the json parser is very sensitive
json data = {
{"content", "" },
{"stop", !llama.has_next_token }};
return res.set_content(data.dump(), "application/json");
}
});
fprintf(stderr, "%s: http server Listening at http://%s:%i\n", __func__, sparams.hostname.c_str(), sparams.port);
if(params.embedding) {
fprintf(stderr, "NOTE: Mode embedding enabled. Completion function doesn't work in this mode.\n");
}
// change hostname and port
svr.listen(sparams.hostname, sparams.port);
}
|