aboutsummaryrefslogtreecommitdiff
path: root/examples/server/server.cpp
blob: 83c03065a5d583daf150026f796532c165a8e224 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
#include "common.h"
#include "llama.h"
#include "build-info.h"

#ifndef NDEBUG
// crash the server in debug mode, otherwise send an http 500 error
#define CPPHTTPLIB_NO_EXCEPTIONS 1
#endif

#include "httplib.h"
#include "json.hpp"

// auto generated files (update with ./deps.sh)
#include "index.html.hpp"
#include "index.js.hpp"
#include "completion.js.hpp"

#ifndef SERVER_VERBOSE
#define SERVER_VERBOSE 1
#endif

using namespace httplib;
using json = nlohmann::json;

struct server_params
{
    std::string hostname = "127.0.0.1";
    std::string public_path = "examples/server/public";
    int32_t port = 8080;
    int32_t read_timeout = 600;
    int32_t write_timeout = 600;
};

// completion token output with probabilities
struct completion_token_output
{
    struct token_prob
    {
        llama_token tok;
        float prob;
    };

    std::vector<token_prob> probs;
    llama_token tok;
};

static size_t common_part(const std::vector<llama_token> &a, const std::vector<llama_token> &b)
{
    size_t i;
    for (i = 0; i < a.size() && i < b.size() && a[i] == b[i]; i++)
    {
    }
    return i;
}

enum stop_type
{
    STOP_FULL,
    STOP_PARTIAL,
};

static bool ends_with(const std::string &str, const std::string &suffix)
{
    return str.size() >= suffix.size() &&
           0 == str.compare(str.size() - suffix.size(), suffix.size(), suffix);
}

static size_t find_partial_stop_string(const std::string &stop,
                                       const std::string &text)
{
    if (!text.empty() && !stop.empty())
    {
        const char text_last_char = text.back();
        for (int64_t char_index = stop.size() - 1; char_index >= 0; char_index--)
        {
            if (stop[char_index] == text_last_char)
            {
                const std::string current_partial = stop.substr(0, char_index + 1);
                if (ends_with(text, current_partial))
                {
                    return text.size() - char_index - 1;
                }
            }
        }
    }
    return std::string::npos;
}

template <class Iter>
static std::string tokens_to_str(llama_context *ctx, Iter begin, Iter end)
{
    std::string ret;
    for (; begin != end; ++begin)
    {
        ret += llama_token_to_str(ctx, *begin);
    }
    return ret;
}

static void server_log(const char *level, const char *function, int line,
                       const char *message, const nlohmann::ordered_json &extra)
{
    nlohmann::ordered_json log{
        {"timestamp", time(nullptr)},
        {"level", level},
        {"function", function},
        {"line", line},
        {"message", message},
    };

    if (!extra.empty())
    {
        log.merge_patch(extra);
    }

    const std::string str = log.dump(-1, ' ', false, json::error_handler_t::replace);
    fprintf(stdout, "%.*s\n", (int)str.size(), str.data());
    fflush(stdout);
}

// format incomplete utf-8 multibyte character for output
static std::string tokens_to_output_formatted_string(const llama_context *ctx, const llama_token token)
{
    std::string out = token == -1 ? "" : llama_token_to_str(ctx, token);
    // if first bit is 1, meaning it's a partial character
    if (out.size() > 0 && (out[0] & 0x80) == 0x80)
    {
        std::stringstream ss;
        ss << std::hex << (out[0] & 0xff);
        std::string res(ss.str());
        out = "byte: \\x" + res;
    }
    return out;
}

// convert a vector of completion_token_output to json
static json probs_vector_to_json(const llama_context *ctx, const std::vector<completion_token_output> probs)
{
    json out = json::array();
    for (const auto &prob : probs)
    {
        json probs_for_token = json::array();
        for (const auto &p : prob.probs)
        {
            std::string tok_str = tokens_to_output_formatted_string(ctx, p.tok);
            probs_for_token.push_back(json{
                {"tok_str", tok_str},
                {"prob", p.prob},
            });
        }
        std::string tok_str = tokens_to_output_formatted_string(ctx, prob.tok);
        out.push_back(json{
            {"content", tok_str},
            {"probs", probs_for_token},
        });
    }
    return out;
}

static bool server_verbose = false;

#if SERVER_VERBOSE != 1
#define LOG_VERBOSE(MSG, ...)
#else
#define LOG_VERBOSE(MSG, ...)                                            \
    do                                                                   \
    {                                                                    \
        if (server_verbose)                                              \
        {                                                                \
            server_log("VERBOSE", __func__, __LINE__, MSG, __VA_ARGS__); \
        }                                                                \
    } while (0)
#endif

#define LOG_ERROR(MSG, ...) server_log("ERROR", __func__, __LINE__, MSG, __VA_ARGS__)
#define LOG_WARNING(MSG, ...) server_log("WARNING", __func__, __LINE__, MSG, __VA_ARGS__)
#define LOG_INFO(MSG, ...) server_log("INFO", __func__, __LINE__, MSG, __VA_ARGS__)

struct llama_server_context
{
    bool stream = false;
    bool has_next_token = false;
    std::string generated_text;
    std::vector<completion_token_output> generated_token_probs;

    size_t num_prompt_tokens = 0;
    size_t num_tokens_predicted = 0;
    size_t n_past = 0;
    size_t n_remain = 0;

    std::vector<llama_token> embd;
    std::vector<llama_token> last_n_tokens;

    llama_model *model = nullptr;
    llama_context *ctx = nullptr;
    gpt_params params;

    bool truncated = false;
    bool stopped_eos = false;
    bool stopped_word = false;
    bool stopped_limit = false;
    std::string stopping_word;
    int32_t multibyte_pending = 0;

    std::mutex mutex;

    std::unique_lock<std::mutex> lock()
    {
        return std::unique_lock<std::mutex>(mutex);
    }

    ~llama_server_context()
    {
        if (ctx)
        {
            llama_free(ctx);
            ctx = nullptr;
        }
        if (model)
        {
            llama_free_model(model);
            model = nullptr;
        }
    }

    void rewind()
    {
        params.antiprompt.clear();
        num_prompt_tokens = 0;
        num_tokens_predicted = 0;
        generated_text = "";
        generated_text.reserve(params.n_ctx);
        generated_token_probs.clear();
        truncated = false;
        stopped_eos = false;
        stopped_word = false;
        stopped_limit = false;
        stopping_word = "";
        multibyte_pending = 0;

        n_remain = 0;
        n_past = 0;
    }

    bool loadModel(const gpt_params &params_)
    {
        params = params_;
        std::tie(model, ctx) = llama_init_from_gpt_params(params);
        if (model == nullptr)
        {
            LOG_ERROR("unable to load model", {{"model", params_.model}});
            return false;
        }

        last_n_tokens.resize(params.n_ctx);
        std::fill(last_n_tokens.begin(), last_n_tokens.end(), 0);
        return true;
    }

    void loadPrompt()
    {
        params.prompt.insert(0, 1, ' '); // always add a first space
        std::vector<llama_token> prompt_tokens = ::llama_tokenize(ctx, params.prompt, true);
        num_prompt_tokens = prompt_tokens.size();

        if (params.n_keep < 0)
        {
            params.n_keep = (int)num_prompt_tokens;
        }
        params.n_keep = std::min(params.n_ctx - 4, params.n_keep);

        // if input prompt is too big, truncate like normal
        if (num_prompt_tokens >= (size_t)params.n_ctx)
        {
            const int n_left = (params.n_ctx - params.n_keep) / 2;
            std::vector<llama_token> new_tokens(prompt_tokens.begin(), prompt_tokens.begin() + params.n_keep);
            const int erased_blocks = (num_prompt_tokens - params.n_keep - n_left - 1) / n_left;
            new_tokens.insert(new_tokens.end(), prompt_tokens.begin() + params.n_keep + erased_blocks * n_left, prompt_tokens.end());
            std::copy(prompt_tokens.end() - params.n_ctx, prompt_tokens.end(), last_n_tokens.begin());

            LOG_VERBOSE("input truncated", {
                                               {"n_ctx", params.n_ctx},
                                               {"n_keep", params.n_keep},
                                               {"n_left", n_left},
                                               {"new_tokens", tokens_to_str(ctx, new_tokens.cbegin(), new_tokens.cend())},
                                           });

            truncated = true;
            prompt_tokens = new_tokens;
        }
        else
        {
            const size_t ps = num_prompt_tokens;
            std::fill(last_n_tokens.begin(), last_n_tokens.end() - ps, 0);
            std::copy(prompt_tokens.begin(), prompt_tokens.end(), last_n_tokens.end() - ps);
        }

        // compare the evaluated prompt with the new prompt
        n_past = common_part(embd, prompt_tokens);
        embd = prompt_tokens;
        if (n_past == num_prompt_tokens)
        {
            // we have to evaluate at least 1 token to generate logits.
            n_past--;
        }

        LOG_VERBOSE("prompt ingested", {
                                           {"n_past", n_past},
                                           {"cached", tokens_to_str(ctx, embd.cbegin(), embd.cbegin() + n_past)},
                                           {"to_eval", tokens_to_str(ctx, embd.cbegin() + n_past, embd.cend())},
                                       });

        has_next_token = true;
    }

    void beginCompletion()
    {
        // number of tokens to keep when resetting context
        n_remain = params.n_predict;
        llama_set_rng_seed(ctx, params.seed);
    }

    completion_token_output nextToken()
    {
        completion_token_output result;
        result.tok = -1;

        if (embd.size() >= (size_t)params.n_ctx)
        {
            // Reset context
            const int n_left = (params.n_ctx - params.n_keep) / 2;

            std::vector<llama_token> new_tokens(embd.begin(), embd.begin() + params.n_keep);
            new_tokens.insert(new_tokens.end(), embd.end() - n_left, embd.end());
            embd = new_tokens;
            n_past = params.n_keep;
            truncated = true;
            LOG_VERBOSE("input truncated", {
                                               {"n_ctx", params.n_ctx},
                                               {"n_keep", params.n_keep},
                                               {"n_left", n_left},
                                               {"new_tokens", tokens_to_str(ctx, new_tokens.cbegin(), new_tokens.cend())},
                                           });
        }

        while (n_past < embd.size())
        {
            int n_eval = (int)embd.size() - n_past;
            if (n_eval > params.n_batch)
            {
                n_eval = params.n_batch;
            }
            if (llama_eval(ctx, &embd[n_past], n_eval, n_past, params.n_threads))
            {
                LOG_ERROR("failed to eval", {
                                                {"n_eval", n_eval},
                                                {"n_past", n_past},
                                                {"n_threads", params.n_threads},
                                                {"embd", tokens_to_str(ctx, embd.cbegin() + n_past, embd.cend())},
                                            });
                has_next_token = false;
                return result;
            }
            n_past += n_eval;
        }

        if (params.n_predict == 0)
        {
            has_next_token = false;
            result.tok = llama_token_eos();
            return result;
        }

        // out of user input, sample next token
        const float temp = params.temp;
        const int32_t top_k = params.top_k <= 0 ? llama_n_vocab(ctx) : params.top_k;
        const float top_p = params.top_p;
        const float tfs_z = params.tfs_z;
        const float typical_p = params.typical_p;
        const int32_t repeat_last_n = params.repeat_last_n < 0 ? params.n_ctx : params.repeat_last_n;
        const float repeat_penalty = params.repeat_penalty;
        const float alpha_presence = params.presence_penalty;
        const float alpha_frequency = params.frequency_penalty;
        const int mirostat = params.mirostat;
        const float mirostat_tau = params.mirostat_tau;
        const float mirostat_eta = params.mirostat_eta;
        const bool penalize_nl = params.penalize_nl;
        const int32_t n_probs = params.n_probs;

        {
            auto *logits = llama_get_logits(ctx);
            auto n_vocab = llama_n_vocab(ctx);

            // Apply params.logit_bias map
            for (const auto &it : params.logit_bias)
            {
                logits[it.first] += it.second;
            }

            std::vector<llama_token_data> candidates;
            candidates.reserve(n_vocab);
            for (llama_token token_id = 0; token_id < n_vocab; token_id++)
            {
                candidates.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f});
            }

            llama_token_data_array candidates_p = {candidates.data(), candidates.size(), false};

            // Apply penalties
            float nl_logit = logits[llama_token_nl()];
            auto last_n_repeat = std::min(std::min((int)last_n_tokens.size(), repeat_last_n), params.n_ctx);
            llama_sample_repetition_penalty(ctx, &candidates_p,
                                            last_n_tokens.data() + last_n_tokens.size() - last_n_repeat,
                                            last_n_repeat, repeat_penalty);
            llama_sample_frequency_and_presence_penalties(ctx, &candidates_p,
                                                          last_n_tokens.data() + last_n_tokens.size() - last_n_repeat,
                                                          last_n_repeat, alpha_frequency, alpha_presence);
            if (!penalize_nl)
            {
                logits[llama_token_nl()] = nl_logit;
            }

            if (temp <= 0)
            {
                // Greedy sampling
                result.tok = llama_sample_token_greedy(ctx, &candidates_p);
                if (n_probs > 0)
                {
                    llama_sample_softmax(ctx, &candidates_p);
                }
            }
            else
            {
                if (mirostat == 1)
                {
                    static float mirostat_mu = 2.0f * mirostat_tau;
                    const int mirostat_m = 100;
                    llama_sample_temperature(ctx, &candidates_p, temp);
                    result.tok = llama_sample_token_mirostat(ctx, &candidates_p, mirostat_tau, mirostat_eta, mirostat_m, &mirostat_mu);
                }
                else if (mirostat == 2)
                {
                    static float mirostat_mu = 2.0f * mirostat_tau;
                    llama_sample_temperature(ctx, &candidates_p, temp);
                    result.tok = llama_sample_token_mirostat_v2(ctx, &candidates_p, mirostat_tau, mirostat_eta, &mirostat_mu);
                }
                else
                {
                    // Temperature sampling
                    size_t min_keep = std::max(1, n_probs);
                    llama_sample_top_k(ctx, &candidates_p, top_k, min_keep);
                    llama_sample_tail_free(ctx, &candidates_p, tfs_z, min_keep);
                    llama_sample_typical(ctx, &candidates_p, typical_p, min_keep);
                    llama_sample_top_p(ctx, &candidates_p, top_p, min_keep);
                    llama_sample_temperature(ctx, &candidates_p, temp);
                    result.tok = llama_sample_token(ctx, &candidates_p);
                }
            }

            for (size_t i = 0; i < std::min(candidates_p.size, (size_t)n_probs); ++i)
            {
                result.probs.push_back({candidates_p.data[i].id, candidates_p.data[i].p});
            }
            last_n_tokens.erase(last_n_tokens.begin());
            last_n_tokens.push_back(result.tok);
            num_tokens_predicted++;
        }

        // add it to the context
        embd.push_back(result.tok);
        // decrement remaining sampling budget
        --n_remain;

        if (!embd.empty() && embd.back() == llama_token_eos())
        {
            // stopping_word = llama_token_to_str(ctx, embd.back());
            has_next_token = false;
            stopped_eos = true;
            LOG_VERBOSE("eos token found", {});
            return result;
        }

        has_next_token = params.n_predict == -1 || n_remain != 0;
        return result;
    }

    size_t findStoppingStrings(const std::string &text, const size_t last_token_size,
                               const stop_type type)
    {
        size_t stop_pos = std::string::npos;
        for (const std::string &word : params.antiprompt)
        {
            size_t pos;
            if (type == STOP_FULL)
            {
                const size_t tmp = word.size() + last_token_size;
                const size_t from_pos = text.size() > tmp ? text.size() - tmp : 0;
                pos = text.find(word, from_pos);
            }
            else
            {
                pos = find_partial_stop_string(word, text);
            }
            if (pos != std::string::npos &&
                (stop_pos == std::string::npos || pos < stop_pos))
            {
                if (type == STOP_FULL)
                {
                    stopping_word = word;
                    stopped_word = true;
                    has_next_token = false;
                }
                stop_pos = pos;
            }
        }
        return stop_pos;
    }

    completion_token_output doCompletion()
    {
        const completion_token_output token_with_probs = nextToken();

        const std::string token_text = token_with_probs.tok == -1 ? "" : llama_token_to_str(ctx, token_with_probs.tok);
        generated_text += token_text;

        if (params.n_probs > 0)
        {
            generated_token_probs.push_back(token_with_probs);
        }

        if (multibyte_pending > 0)
        {
            multibyte_pending -= token_text.size();
        }
        else if (token_text.size() == 1)
        {
            const char c = token_text[0];
            // 2-byte characters: 110xxxxx 10xxxxxx
            if ((c & 0xE0) == 0xC0)
            {
                multibyte_pending = 1;
                // 3-byte characters: 1110xxxx 10xxxxxx 10xxxxxx
            }
            else if ((c & 0xF0) == 0xE0)
            {
                multibyte_pending = 2;
                // 4-byte characters: 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx
            }
            else if ((c & 0xF8) == 0xF0)
            {
                multibyte_pending = 3;
            }
            else
            {
                multibyte_pending = 0;
            }
        }

        if (multibyte_pending > 0 && !has_next_token)
        {
            has_next_token = true;
            n_remain++;
        }

        if (!has_next_token && n_remain == 0)
        {
            stopped_limit = true;
        }

        LOG_VERBOSE("next token", {
                                      {"token", token_with_probs.tok},
                                      {"token_text", tokens_to_output_formatted_string(ctx, token_with_probs.tok)},
                                      {"has_next_token", has_next_token},
                                      {"n_remain", n_remain},
                                      {"num_tokens_predicted", num_tokens_predicted},
                                      {"stopped_eos", stopped_eos},
                                      {"stopped_word", stopped_word},
                                      {"stopped_limit", stopped_limit},
                                      {"stopping_word", stopping_word},
                                  });

        return token_with_probs;
    }

    std::vector<float> getEmbedding()
    {
        static const int n_embd = llama_n_embd(ctx);
        if (!params.embedding)
        {
            LOG_WARNING("embedding disabled", {
                                                  {"params.embedding", params.embedding},
                                              });
            return std::vector<float>(n_embd, 0.0f);
        }
        const float *data = llama_get_embeddings(ctx);
        std::vector<float> embedding(data, data + n_embd);
        return embedding;
    }
};

static void server_print_usage(const char *argv0, const gpt_params &params,
                               const server_params &sparams)
{
    fprintf(stdout, "usage: %s [options]\n", argv0);
    fprintf(stdout, "\n");
    fprintf(stdout, "options:\n");
    fprintf(stdout, "  -h, --help            show this help message and exit\n");
    fprintf(stdout, "  -v, --verbose         verbose output (default: %s)\n", server_verbose ? "enabled" : "disabled");
    fprintf(stdout, "  -t N, --threads N     number of threads to use during computation (default: %d)\n", params.n_threads);
    fprintf(stdout, "  -c N, --ctx-size N    size of the prompt context (default: %d)\n", params.n_ctx);
    fprintf(stdout, "  -gqa N, --gqa N       grouped-query attention factor (TEMP!!! use 8 for LLaMAv2 70B) (default: %d)\n", params.n_gqa);
    fprintf(stdout, "  -eps N, --rms-norm-eps N rms norm eps (TEMP!!! use 1e-5 for LLaMAv2) (default: %.1e)\n", params.rms_norm_eps);
    fprintf(stdout, "  --rope-freq-base N    RoPE base frequency (default: %.1f)\n", params.rope_freq_base);
    fprintf(stdout, "  --rope-freq-scale N   RoPE frequency scaling factor (default: %g)\n", params.rope_freq_scale);
    fprintf(stdout, "  -b N, --batch-size N  batch size for prompt processing (default: %d)\n", params.n_batch);
    fprintf(stdout, "  --memory-f32          use f32 instead of f16 for memory key+value (default: disabled)\n");
    fprintf(stdout, "                        not recommended: doubles context memory required and no measurable increase in quality\n");
    if (llama_mlock_supported())
    {
        fprintf(stdout, "  --mlock               force system to keep model in RAM rather than swapping or compressing\n");
    }
    if (llama_mmap_supported())
    {
        fprintf(stdout, "  --no-mmap             do not memory-map model (slower load but may reduce pageouts if not using mlock)\n");
    }
#ifdef LLAMA_SUPPORTS_GPU_OFFLOAD
    fprintf(stdout, "  -ngl N, --n-gpu-layers N\n");
    fprintf(stdout, "                        number of layers to store in VRAM\n");
    fprintf(stdout, "  -ts SPLIT --tensor-split SPLIT\n");
    fprintf(stdout, "                        how to split tensors across multiple GPUs, comma-separated list of proportions, e.g. 3,1\n");
    fprintf(stdout, "                        how to split tensors across multiple GPUs, comma-separated list of proportions, e.g. 3,1\n");
    fprintf(stdout, "  -mg i, --main-gpu i   the GPU to use for scratch and small tensors\n");
    fprintf(stdout, "  -lv, --low-vram don't allocate VRAM scratch buffer\n");
#endif
    fprintf(stdout, "  -m FNAME, --model FNAME\n");
    fprintf(stdout, "                        model path (default: %s)\n", params.model.c_str());
    fprintf(stdout, "  -a ALIAS, --alias ALIAS\n");
    fprintf(stdout, "                        set an alias for the model, will be added as `model` field in completion response\n");
    fprintf(stdout, "  --lora FNAME          apply LoRA adapter (implies --no-mmap)\n");
    fprintf(stdout, "  --lora-base FNAME     optional model to use as a base for the layers modified by the LoRA adapter\n");
    fprintf(stdout, "  --host                ip address to listen (default  (default: %s)\n", sparams.hostname.c_str());
    fprintf(stdout, "  --port PORT           port to listen (default  (default: %d)\n", sparams.port);
    fprintf(stdout, "  --path PUBLIC_PATH    path from which to serve static files (default %s)\n", sparams.public_path.c_str());
    fprintf(stdout, "  -to N, --timeout N    server read/write timeout in seconds (default: %d)\n", sparams.read_timeout);
    fprintf(stdout, "  --embedding           enable embedding vector output (default: %s)\n", params.embedding ? "enabled" : "disabled");
    fprintf(stdout, "\n");
}

static void server_params_parse(int argc, char **argv, server_params &sparams,
                                gpt_params &params)
{
    gpt_params default_params;
    server_params default_sparams;
    std::string arg;
    bool invalid_param = false;

    for (int i = 1; i < argc; i++)
    {
        arg = argv[i];
        if (arg == "--port")
        {
            if (++i >= argc)
            {
                invalid_param = true;
                break;
            }
            sparams.port = std::stoi(argv[i]);
        }
        else if (arg == "--host")
        {
            if (++i >= argc)
            {
                invalid_param = true;
                break;
            }
            sparams.hostname = argv[i];
        }
        else if (arg == "--path")
        {
            if (++i >= argc)
            {
                invalid_param = true;
                break;
            }
            sparams.public_path = argv[i];
        }
        else if (arg == "--timeout" || arg == "-to")
        {
            if (++i >= argc)
            {
                invalid_param = true;
                break;
            }
            sparams.read_timeout = std::stoi(argv[i]);
            sparams.write_timeout = std::stoi(argv[i]);
        }
        else if (arg == "-m" || arg == "--model")
        {
            if (++i >= argc)
            {
                invalid_param = true;
                break;
            }
            params.model = argv[i];
        }
        else if (arg == "-a" || arg == "--alias")
        {
            if (++i >= argc)
            {
                invalid_param = true;
                break;
            }
            params.model_alias = argv[i];
        }
        else if (arg == "-h" || arg == "--help")
        {
            server_print_usage(argv[0], default_params, default_sparams);
            exit(0);
        }
        else if (arg == "-c" || arg == "--ctx-size" || arg == "--ctx_size")
        {
            if (++i >= argc)
            {
                invalid_param = true;
                break;
            }
            params.n_ctx = std::stoi(argv[i]);
        }
        else if (arg == "-gqa" || arg == "--gqa")
        {
            if (++i >= argc)
            {
                invalid_param = true;
                break;
            }
            params.n_gqa = std::stoi(argv[i]);
        }
        else if (arg == "-eps" || arg == "--rms-norm-eps") {
            if (++i >= argc)
            {
                invalid_param = true;
                break;
            }
            params.rms_norm_eps = std::stof(argv[i]);
        }
        else if (arg == "--rope-freq-base")
        {
            if (++i >= argc)
            {
                invalid_param = true;
                break;
            }
            params.rope_freq_base = std::stof(argv[i]);
        }
        else if (arg == "--rope-freq-scale")
        {
            if (++i >= argc)
            {
                invalid_param = true;
                break;
            }
            params.rope_freq_scale = std::stof(argv[i]);
        }
        else if (arg == "--memory-f32" || arg == "--memory_f32")
        {
            params.memory_f16 = false;
        }
        else if (arg == "--threads" || arg == "-t")
        {
            if (++i >= argc)
            {
                invalid_param = true;
                break;
            }
            params.n_threads = std::stoi(argv[i]);
        }
        else if (arg == "-b" || arg == "--batch-size")
        {
            if (++i >= argc)
            {
                invalid_param = true;
                break;
            }
            params.n_batch = std::stoi(argv[i]);
            params.n_batch = std::min(512, params.n_batch);
        }
        else if (arg == "--gpu-layers" || arg == "-ngl" || arg == "--n-gpu-layers")
        {
            if (++i >= argc)
            {
                invalid_param = true;
                break;
            }
#ifdef LLAMA_SUPPORTS_GPU_OFFLOAD
            params.n_gpu_layers = std::stoi(argv[i]);
#else
            LOG_WARNING("Not compiled with GPU offload support, --n-gpu-layers option will be ignored. "
                        "See main README.md for information on enabling GPU BLAS support",
                        {{"n_gpu_layers", params.n_gpu_layers}});
#endif
        }
        else if (arg == "--tensor-split" || arg == "-ts")
        {
            if (++i >= argc)
            {
                invalid_param = true;
                break;
            }
#ifdef GGML_USE_CUBLAS
            std::string arg_next = argv[i];

            // split string by , and /
            const std::regex regex{R"([,/]+)"};
            std::sregex_token_iterator it{arg_next.begin(), arg_next.end(), regex, -1};
            std::vector<std::string> split_arg{it, {}};
            GGML_ASSERT(split_arg.size() <= LLAMA_MAX_DEVICES);

            for (size_t i_device = 0; i_device < LLAMA_MAX_DEVICES; ++i_device)
            {
                if (i_device < split_arg.size())
                {
                    params.tensor_split[i_device] = std::stof(split_arg[i_device]);
                }
                else
                {
                    params.tensor_split[i_device] = 0.0f;
                }
            }
#else
            LOG_WARNING("llama.cpp was compiled without cuBLAS. It is not possible to set a tensor split.", {});
#endif // GGML_USE_CUBLAS
        }
        else if (arg == "--low-vram" || arg == "-lv")
        {
#ifdef GGML_USE_CUBLAS
            params.low_vram = true;
#else
            fprintf(stderr, "warning: llama.cpp was compiled without cuBLAS. It is not possible to set lower vram usage.\n");
#endif // GGML_USE_CUBLAS
        }
        else if (arg == "--main-gpu" || arg == "-mg")
        {
            if (++i >= argc)
            {
                invalid_param = true;
                break;
            }
#ifdef GGML_USE_CUBLAS
            params.main_gpu = std::stoi(argv[i]);
#else
            LOG_WARNING("llama.cpp was compiled without cuBLAS. It is not possible to set a main GPU.", {});
#endif
        }
        else if (arg == "--lora")
        {
            if (++i >= argc)
            {
                invalid_param = true;
                break;
            }
            params.lora_adapter = argv[i];
            params.use_mmap = false;
        }
        else if (arg == "--lora-base")
        {
            if (++i >= argc)
            {
                invalid_param = true;
                break;
            }
            params.lora_base = argv[i];
        }
        else if (arg == "-v" || arg == "--verbose")
        {
#if SERVER_VERBOSE != 1
            LOG_WARNING("server.cpp is not built with verbose logging.", {});
#else
            server_verbose = true;
#endif
        }
        else if (arg == "--mlock")
        {
            params.use_mlock = true;
        }
        else if (arg == "--no-mmap")
        {
            params.use_mmap = false;
        }
        else if (arg == "--embedding")
        {
            params.embedding = true;
        }
        else
        {
            fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
            server_print_usage(argv[0], default_params, default_sparams);
            exit(1);
        }
    }

    if (invalid_param)
    {
        fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str());
        server_print_usage(argv[0], default_params, default_sparams);
        exit(1);
    }
}

static json format_generation_settings(llama_server_context &llama)
{
    const auto eos_bias = llama.params.logit_bias.find(llama_token_eos());
    const bool ignore_eos = eos_bias != llama.params.logit_bias.end() &&
                            eos_bias->second < 0.0f && std::isinf(eos_bias->second);

    return json{
        {"n_ctx", llama.params.n_ctx},
        {"model", llama.params.model_alias},
        {"seed", llama.params.seed},
        {"temp", llama.params.temp},
        {"top_k", llama.params.top_k},
        {"top_p", llama.params.top_p},
        {"tfs_z", llama.params.tfs_z},
        {"typical_p", llama.params.typical_p},
        {"repeat_last_n", llama.params.repeat_last_n},
        {"repeat_penalty", llama.params.repeat_penalty},
        {"presence_penalty", llama.params.presence_penalty},
        {"frequency_penalty", llama.params.frequency_penalty},
        {"mirostat", llama.params.mirostat},
        {"mirostat_tau", llama.params.mirostat_tau},
        {"mirostat_eta", llama.params.mirostat_eta},
        {"penalize_nl", llama.params.penalize_nl},
        {"stop", llama.params.antiprompt},
        {"n_predict", llama.params.n_predict},
        {"n_keep", llama.params.n_keep},
        {"ignore_eos", ignore_eos},
        {"stream", llama.stream},
        {"logit_bias", llama.params.logit_bias},
        {"n_probs", llama.params.n_probs},
    };
}

static json format_embedding_response(llama_server_context &llama)
{
    return json{
        {"embedding", llama.getEmbedding()},
    };
}

static json format_timings(llama_server_context &llama)
{
    const auto timings = llama_get_timings(llama.ctx);

    assert(timings.n_eval == llama.num_tokens_predicted);

    return json{
        {"prompt_n", timings.n_eval},
        {"prompt_ms", timings.t_p_eval_ms},
        {"prompt_per_token_ms", timings.t_p_eval_ms / timings.n_p_eval},
        {"prompt_per_second", 1e3 / timings.t_p_eval_ms * timings.n_p_eval},

        {"predicted_n", timings.n_eval},
        {"predicted_ms", timings.t_eval_ms},
        {"predicted_per_token_ms", timings.t_eval_ms / timings.n_eval},
        {"predicted_per_second", 1e3 / timings.t_eval_ms * timings.n_eval},
    };
}

static json format_final_response(llama_server_context &llama, const std::string &content, const std::vector<completion_token_output> &probs)
{

    json res = json{
        {"content", content},
        {"stop", true},
        {"model", llama.params.model_alias},
        {"tokens_predicted", llama.num_tokens_predicted},
        {"tokens_evaluated", llama.num_prompt_tokens},
        {"generation_settings", format_generation_settings(llama)},
        {"prompt", llama.params.prompt},
        {"truncated", llama.truncated},
        {"stopped_eos", llama.stopped_eos},
        {"stopped_word", llama.stopped_word},
        {"stopped_limit", llama.stopped_limit},
        {"stopping_word", llama.stopping_word},
        {"tokens_cached", llama.n_past},
        {"tokens_predicted", llama.num_tokens_predicted},
        {"timings", format_timings(llama)},
    };

    if (llama.params.n_probs > 0)
    {
        res["completion_probabilities"] = probs_vector_to_json(llama.ctx, probs);
    }

    return res;
}

static json format_partial_response(llama_server_context &llama, const std::string &content, const std::vector<completion_token_output> &probs)
{
    json res = json{
        {"content", content},
        {"stop", false},
    };

    if (llama.params.n_probs > 0)
    {
        res["completion_probabilities"] = probs_vector_to_json(llama.ctx, probs);
    }

    return res;
}

static json format_tokenizer_response(const std::vector<llama_token> &tokens)
{
    return json{
        {"tokens", tokens}};
}

static void parse_options_completion(const json &body, llama_server_context &llama)
{
    gpt_params default_params;

    llama.stream = body.value("stream", false);
    llama.params.n_predict = body.value("n_predict", default_params.n_predict);
    llama.params.top_k = body.value("top_k", default_params.top_k);
    llama.params.top_p = body.value("top_p", default_params.top_p);
    llama.params.tfs_z = body.value("tfs_z", default_params.tfs_z);
    llama.params.typical_p = body.value("typical_p", default_params.typical_p);
    llama.params.repeat_last_n = body.value("repeat_last_n", default_params.repeat_last_n);
    llama.params.temp = body.value("temperature", default_params.temp);
    llama.params.repeat_penalty = body.value("repeat_penalty", default_params.repeat_penalty);
    llama.params.presence_penalty = body.value("presence_penalty", default_params.presence_penalty);
    llama.params.frequency_penalty = body.value("frequency_penalty", default_params.frequency_penalty);
    llama.params.mirostat = body.value("mirostat", default_params.mirostat);
    llama.params.mirostat_tau = body.value("mirostat_tau", default_params.mirostat_tau);
    llama.params.mirostat_eta = body.value("mirostat_eta", default_params.mirostat_eta);
    llama.params.penalize_nl = body.value("penalize_nl", default_params.penalize_nl);
    llama.params.n_keep = body.value("n_keep", default_params.n_keep);
    llama.params.seed = body.value("seed", default_params.seed);
    llama.params.prompt = body.value("prompt", default_params.prompt);
    llama.params.n_probs = body.value("n_probs", default_params.n_probs);

    llama.params.logit_bias.clear();
    if (body.value("ignore_eos", false))
    {
        llama.params.logit_bias[llama_token_eos()] = -INFINITY;
    }

    const auto &logit_bias = body.find("logit_bias");
    if (logit_bias != body.end() && logit_bias->is_array())
    {
        const int n_vocab = llama_n_vocab(llama.ctx);
        for (const auto &el : *logit_bias)
        {
            if (el.is_array() && el.size() == 2 && el[0].is_number_integer())
            {
                llama_token tok = el[0].get<llama_token>();
                if (tok >= 0 && tok < n_vocab)
                {
                    if (el[1].is_number())
                    {
                        llama.params.logit_bias[tok] = el[1].get<float>();
                    }
                    else if (el[1].is_boolean() && !el[1].get<bool>())
                    {
                        llama.params.logit_bias[tok] = -INFINITY;
                    }
                }
            }
        }
    }

    llama.params.antiprompt.clear();
    const auto &stop = body.find("stop");
    if (stop != body.end() && stop->is_array())
    {
        for (const auto &word : *stop)
        {
            if (!word.empty())
            {
                llama.params.antiprompt.push_back(word);
            }
        }
    }

    LOG_VERBOSE("completion parameters parsed", format_generation_settings(llama));
}

static void log_server_request(const Request &req, const Response &res)
{
    LOG_INFO("request", {
                            {"remote_addr", req.remote_addr},
                            {"remote_port", req.remote_port},
                            {"status", res.status},
                            {"method", req.method},
                            {"path", req.path},
                            {"params", req.params},
                        });

    LOG_VERBOSE("request", {
                               {"request", req.body},
                               {"response", res.body},
                           });
}

int main(int argc, char **argv)
{
    // own arguments required by this example
    gpt_params params;
    server_params sparams;

    // struct that contains llama context and inference
    llama_server_context llama;

    server_params_parse(argc, argv, sparams, params);

    if (params.model_alias == "unknown")
    {
        params.model_alias = params.model;
    }

    llama_backend_init(params.numa);

    LOG_INFO("build info", {{"build", BUILD_NUMBER},
                            {"commit", BUILD_COMMIT}});
    LOG_INFO("system info", {
                                {"n_threads", params.n_threads},
                                {"total_threads", std::thread::hardware_concurrency()},
                                {"system_info", llama_print_system_info()},
                            });

    // load the model
    if (!llama.loadModel(params))
    {
        return 1;
    }

    Server svr;

    svr.set_default_headers({{"Server", "llama.cpp"},
                             {"Access-Control-Allow-Origin", "*"},
                             {"Access-Control-Allow-Headers", "content-type"}});

    // this is only called if no index.html is found in the public --path
    svr.Get("/", [](const Request &, Response &res)
            {
        res.set_content(reinterpret_cast<const char*>(&index_html), index_html_len, "text/html");
        return false; });

    // this is only called if no index.js is found in the public --path
    svr.Get("/index.js", [](const Request &, Response &res)
            {
        res.set_content(reinterpret_cast<const char *>(&index_js), index_js_len, "text/javascript");
        return false; });

    // this is only called if no index.html is found in the public --path
    svr.Get("/completion.js", [](const Request &, Response &res)
            {
        res.set_content(reinterpret_cast<const char*>(&completion_js), completion_js_len, "application/javascript");
        return false; });

    svr.Post("/completion", [&llama](const Request &req, Response &res)
             {
        auto lock = llama.lock();

        llama.rewind();

        llama_reset_timings(llama.ctx);

        parse_options_completion(json::parse(req.body), llama);

        llama.loadPrompt();
        llama.beginCompletion();

        if (!llama.stream) {
            size_t stop_pos = std::string::npos;

            while (llama.has_next_token) {
                const completion_token_output token_with_probs = llama.doCompletion();
                const std::string token_text = token_with_probs.tok == -1 ? "" : llama_token_to_str(llama.ctx, token_with_probs.tok);

                stop_pos = llama.findStoppingStrings(llama.generated_text,
                    token_text.size(), STOP_FULL);
            }

            if (stop_pos == std::string::npos) {
                stop_pos = llama.findStoppingStrings(llama.generated_text, 0, STOP_PARTIAL);
            }
            if (stop_pos != std::string::npos) {
                llama.generated_text.erase(llama.generated_text.begin() + stop_pos,
                    llama.generated_text.end());
            }

            const json data = format_final_response(llama, llama.generated_text, llama.generated_token_probs);

            llama_print_timings(llama.ctx);

            res.set_content(data.dump(-1, ' ', false, json::error_handler_t::replace),
                            "application/json");
        } else {
            const auto chunked_content_provider = [&](size_t, DataSink & sink) {
                size_t sent_count = 0;
                size_t sent_token_probs_index = 0;

                while (llama.has_next_token) {
                    const completion_token_output token_with_probs = llama.doCompletion();
                    const std::string token_text = token_with_probs.tok == -1 ? "" : llama_token_to_str(llama.ctx, token_with_probs.tok);
                    if (llama.multibyte_pending > 0) {
                        continue;
                    }

                    size_t pos = std::min(sent_count, llama.generated_text.size());

                    const std::string str_test = llama.generated_text.substr(pos);
                    size_t stop_pos =
                        llama.findStoppingStrings(str_test, token_text.size(), STOP_FULL);
                    if (stop_pos != std::string::npos) {
                        llama.generated_text.erase(
                            llama.generated_text.begin() + pos + stop_pos,
                            llama.generated_text.end());
                        pos = std::min(sent_count, llama.generated_text.size());
                    } else {
                        stop_pos = llama.findStoppingStrings(str_test, token_text.size(),
                            STOP_PARTIAL);
                    }

                    const std::string to_send = llama.generated_text.substr(pos, stop_pos);
                    sent_count += to_send.size();

                    std::vector<completion_token_output> probs_output = {};

                    if (llama.params.n_probs > 0) {
                        const std::vector<llama_token> to_send_toks = llama_tokenize(llama.ctx, to_send, false);
                        size_t probs_pos = std::min(sent_token_probs_index, llama.generated_token_probs.size());
                        size_t probs_stop_pos = std::min(sent_token_probs_index + to_send_toks.size(), llama.generated_token_probs.size());
                        if (probs_pos < probs_stop_pos) {
                            probs_output = std::vector<completion_token_output>(llama.generated_token_probs.begin() + probs_pos, llama.generated_token_probs.begin() + probs_stop_pos);
                        }
                        sent_token_probs_index = probs_stop_pos;
                    }

                    const json data = llama.has_next_token
                                          ? format_partial_response(llama, to_send, probs_output)
                                          // Generation is done, send extra information.
                                          : format_final_response(llama, to_send, llama.generated_token_probs);

                    const std::string str =
                        "data: " +
                        data.dump(-1, ' ', false, json::error_handler_t::replace) +
                        "\n\n";

                    LOG_VERBOSE("data stream", {
                        { "to_send", str }
                    });

                    if (!sink.write(str.data(), str.size())) {
                        LOG_VERBOSE("stream closed", {});
                        llama_print_timings(llama.ctx);
                        return false;
                    }
                }

                llama_print_timings(llama.ctx);
                sink.done();
                return true;
            };
            res.set_chunked_content_provider("text/event-stream", chunked_content_provider);
        } });

    svr.Get("/model.json", [&llama](const Request &, Response &res)
            {
        const json data = format_generation_settings(llama);
        return res.set_content(data.dump(), "application/json"); });

    svr.Options(R"(/.*)", [](const Request &, Response &res)
                { return res.set_content("", "application/json"); });

    svr.Post("/tokenize", [&llama](const Request &req, Response &res)
             {
        auto lock = llama.lock();

        const json body = json::parse(req.body);
        const std::string content = body.value("content", "");
        const std::vector<llama_token> tokens = llama_tokenize(llama.ctx, content, false);
        const json data = format_tokenizer_response(tokens);
        return res.set_content(data.dump(), "application/json"); });

    svr.Post("/embedding", [&llama](const Request &req, Response &res)
             {
        auto lock = llama.lock();

        const json body = json::parse(req.body);

        llama.rewind();
        llama_reset_timings(llama.ctx);
        llama.params.prompt = body.value("content", "");
        llama.params.n_predict = 0;
        llama.loadPrompt();
        llama.beginCompletion();
        llama.doCompletion();

        const json data = format_embedding_response(llama);
        return res.set_content(data.dump(), "application/json"); });

    svr.set_logger(log_server_request);

    svr.set_exception_handler([](const Request &, Response &res, std::exception_ptr ep)
                              {
        const auto * fmt = "500 Internal Server Error\n%s";
        char buf[BUFSIZ];
        try {
            std::rethrow_exception(std::move(ep));
        } catch (std::exception & e) {
            snprintf(buf, sizeof(buf), fmt, e.what());
        } catch (...) {
            snprintf(buf, sizeof(buf), fmt, "Unknown Exception");
        }
        res.set_content(buf, "text/plain");
        res.status = 500; });

    svr.set_error_handler([](const Request &, Response &res)
                          {
        res.set_content("File Not Found", "text/plain");
        res.status = 404; });

    // set timeouts and change hostname and port
    svr.set_read_timeout(sparams.read_timeout);
    svr.set_write_timeout(sparams.write_timeout);

    if (!svr.bind_to_port(sparams.hostname, sparams.port))
    {
        fprintf(stderr, "\ncouldn't bind to server socket: hostname=%s port=%d\n\n", sparams.hostname.c_str(), sparams.port);
        return 1;
    }

    // Set the base directory for serving static files
    svr.set_base_dir(sparams.public_path);

    // to make it ctrl+clickable:
    fprintf(stdout, "\nllama server listening at http://%s:%d\n\n", sparams.hostname.c_str(), sparams.port);

    LOG_INFO("HTTP server listening", {
                                          {"hostname", sparams.hostname},
                                          {"port", sparams.port},
                                      });

    if (!svr.listen_after_bind())
    {
        return 1;
    }

    llama_backend_free();

    return 0;
}