aboutsummaryrefslogtreecommitdiff
path: root/ggml-cuda.cu
blob: f2630ec8ee1a16b822eab278bff9c49db7bfb930 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
#include <cstddef>
#include <cstdint>
#include <stdint.h>
#include <stdio.h>
#include <atomic>

#include <cuda_runtime.h>
#include <cublas_v2.h>
#include <cuda_fp16.h>

#include "ggml-cuda.h"
#include "ggml.h"

static_assert(sizeof(half) == sizeof(ggml_fp16_t), "wrong fp16 size");

#define CUDA_CHECK(err)                                                                 \
    do {                                                                                \
        cudaError_t err_ = (err);                                                       \
        if (err_ != cudaSuccess) {                                                      \
            fprintf(stderr, "CUDA error %d at %s:%d: %s\n", err_, __FILE__, __LINE__,   \
                cudaGetErrorString(err_));                                              \
            exit(1);                                                                    \
        }                                                                               \
    } while (0)

#define CUBLAS_CHECK(err)                                                               \
    do {                                                                                \
        cublasStatus_t err_ = (err);                                                    \
        if (err_ != CUBLAS_STATUS_SUCCESS) {                                            \
            fprintf(stderr, "cuBLAS error %d at %s:%d\n", err_, __FILE__, __LINE__);    \
            exit(1);                                                                    \
        }                                                                               \
    } while (0)

typedef void (*dequantize_kernel_t)(const void * vx, const int ib, const int iqs, float & v0, float & v1);
typedef void (*to_fp32_cuda_t)(const void * x, float * y, int k, cudaStream_t stream);
typedef void (*dequantize_mul_mat_vec_cuda_t)(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream);

// QK = number of values after dequantization
// QR = QK / number of values before dequantization

#define QK4_0 32
#define QR4_0 2
typedef struct {
    float   d;              // delta
    uint8_t qs[QK4_0 / 2];  // nibbles / quants
} block_q4_0;
static_assert(sizeof(block_q4_0) == sizeof(float) + QK4_0 / 2, "wrong q4_0 block size/padding");

#define QK4_1 32
#define QR4_1 2
typedef struct {
    float   d;              // delta
    float   m;              // min
    uint8_t qs[QK4_1 / 2];  // nibbles / quants
} block_q4_1;
static_assert(sizeof(block_q4_1) == sizeof(float) * 2 + QK4_1 / 2, "wrong q4_1 block size/padding");

#define QK5_0 32
#define QR5_0 2
typedef struct {
    half d;                 // delta
    uint8_t qh[4];          // 5-th bit of quants
    uint8_t qs[QK5_0 / 2];  // nibbles / quants
} block_q5_0;
static_assert(sizeof(block_q5_0) == sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_0 / 2, "wrong q5_0 block size/padding");

#define QK5_1 32
#define QR5_1 2
typedef struct {
    half d;                 // delta
    half m;                 // min
    uint8_t qh[4];          // 5-th bit of quants
    uint8_t qs[QK5_1 / 2];  // nibbles / quants
} block_q5_1;
static_assert(sizeof(block_q5_1) == 2 * sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_1 / 2, "wrong q5_1 block size/padding");

#define QK8_0 32
#define QR8_0 1
typedef struct {
    float   d;              // delta
    int8_t  qs[QK8_0];      // quants
} block_q8_0;
static_assert(sizeof(block_q8_0) == sizeof(float) + QK8_0, "wrong q8_0 block size/padding");

#define CUDA_DEQUANTIZE_BLOCK_SIZE 256
#define CUDA_DMMV_BLOCK_SIZE 32 // dmmv = dequantize_mul_mat_vec

static __device__ void dequantize_q4_0(const void * vx, const int ib, const int iqs, float & v0, float & v1){
    const block_q4_0 * x = (const block_q4_0 *) vx;

    const float d = x[ib].d;

    const uint8_t vui = x[ib].qs[iqs];

    const int8_t vi0 = vui & 0xF;
    const int8_t vi1 = vui >> 4;

    v0 = (vi0 - 8)*d;
    v1 = (vi1 - 8)*d;
}

static __device__ void dequantize_q4_1(const void * vx, const int ib, const int iqs, float & v0, float & v1){
    const block_q4_1 * x = (const block_q4_1 *) vx;

    const float d = x[ib].d;
    const float m = x[ib].m;

    const uint8_t vui = x[ib].qs[iqs];

    const int8_t vi0 = vui & 0xF;
    const int8_t vi1 = vui >> 4;

    v0 = vi0*d + m;
    v1 = vi1*d + m;
}

static __device__ void dequantize_q5_0(const void * vx, const int ib, const int iqs, float & v0, float & v1){
    const block_q5_0 * x = (const block_q5_0 *) vx;

    const float d = x[ib].d;

    uint32_t qh;
    memcpy(&qh, x[ib].qh, sizeof(qh));

    const uint8_t xh_0 = ((qh >> (iqs +  0)) << 4) & 0x10;
    const uint8_t xh_1 = ((qh >> (iqs + 12))     ) & 0x10;

    const int32_t x0 = ((x[ib].qs[iqs] & 0xf) | xh_0) - 16;
    const int32_t x1 = ((x[ib].qs[iqs] >>  4) | xh_1) - 16;

    v0 = x0*d;
    v1 = x1*d;
}

static __device__ void dequantize_q5_1(const void * vx, const int ib, const int iqs, float & v0, float & v1){
    const block_q5_1 * x = (const block_q5_1 *) vx;

    const float d = x[ib].d;
    const float m = x[ib].m;

    uint32_t qh;
    memcpy(&qh, x[ib].qh, sizeof(qh));

    const uint8_t xh_0 = ((qh >> (iqs +  0)) << 4) & 0x10;
    const uint8_t xh_1 = ((qh >> (iqs + 12))     ) & 0x10;

    const int32_t x0 = ((x[ib].qs[iqs] & 0xf) | xh_0);
    const int32_t x1 = ((x[ib].qs[iqs] >>  4) | xh_1);

    v0 = x0*d + m;
    v1 = x1*d + m;
}

static __device__ void dequantize_q8_0(const void * vx, const int ib, const int iqs, float & v0, float & v1){
    const block_q8_0 * x = (const block_q8_0 *) vx;

    const float d = x[ib].d;

    const int8_t vi0 = x[ib].qs[iqs + 0];
    const int8_t vi1 = x[ib].qs[iqs + 1];

    v0 = vi0*d;
    v1 = vi1*d;
}

static __device__ void convert_f16(const void * vx, const int ib, const int iqs, float & v0, float & v1){
    const half * x = (const half *) vx;

    v0 = __half2float(x[ib + 0]);
    v1 = __half2float(x[ib + 1]);
}

template <int qk, int qr, dequantize_kernel_t dequantize_kernel>
static __global__ void dequantize_block(const void * vx, float * y, const int k) {
    const int i = blockDim.x*blockIdx.x + 2*threadIdx.x;

    if (i >= k) {
        return;
    }

    const int ib = i/qk; // block index
    const int iqs = (i%qk)/qr; // quant index
    const int iybs = i - i%qk; // y block start index
    const int y_offset = qr == 1 ? 1 : qk/2;

    // dequantize
    float & v0 = y[iybs + iqs + 0];
    float & v1 = y[iybs + iqs + y_offset];
    dequantize_kernel(vx, ib, iqs, v0, v1);
}

template <int block_size, int qk, int qr, dequantize_kernel_t dequantize_kernel>
static __global__ void dequantize_mul_mat_vec(const void * vx, const float * y, float * dst, const int ncols) {
    const int row = blockIdx.x;
    const int tid = threadIdx.x;

    const int y_offset = qr == 1 ? 1 : qk/2;

    __shared__ float tmp[block_size]; // separate sum for each thread
    tmp[tid] = 0;

    for (int i = 0; i < ncols/block_size; i += 2) {
        const int col = i*block_size + 2*tid;
        const int ib = (row*ncols + col)/qk; // block index
        const int iqs = (col%qk)/qr; // quant index
        const int iybs = col - col%qk; // y block start index

        // dequantize
        float v0, v1;
        dequantize_kernel(vx, ib, iqs, v0, v1);

        // matrix multiplication
        tmp[tid] += v0 * y[iybs + iqs + 0];
        tmp[tid] += v1 * y[iybs + iqs + y_offset];
    }

    // sum up partial sums and write back result
    __syncthreads();
    for (int s=block_size/2; s>0; s>>=1) {
        if (tid < s) {
            tmp[tid] += tmp[tid + s];
        }
        __syncthreads();
    }
    if (tid == 0) {
        dst[row] = tmp[0];
    }
}

static void dequantize_row_q4_0_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
    const int num_blocks = (k + CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / CUDA_DEQUANTIZE_BLOCK_SIZE;
    dequantize_block<QK4_0, QR4_0, dequantize_q4_0><<<num_blocks, CUDA_DEQUANTIZE_BLOCK_SIZE, 0, stream>>>(vx, y, k);
}

static void dequantize_row_q4_1_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
    const int num_blocks = (k + CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / CUDA_DEQUANTIZE_BLOCK_SIZE;
    dequantize_block<QK4_1, QR4_1, dequantize_q4_1><<<num_blocks, CUDA_DEQUANTIZE_BLOCK_SIZE, 0, stream>>>(vx, y, k);
}

static void dequantize_row_q5_0_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
    const int num_blocks = (k + CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / CUDA_DEQUANTIZE_BLOCK_SIZE;
    dequantize_block<QK5_0, QR5_0, dequantize_q5_0><<<num_blocks, CUDA_DEQUANTIZE_BLOCK_SIZE, 0, stream>>>(vx, y, k);
}

static void dequantize_row_q5_1_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
    const int num_blocks = (k + CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / CUDA_DEQUANTIZE_BLOCK_SIZE;
    dequantize_block<QK5_1, QR5_1, dequantize_q5_1><<<num_blocks, CUDA_DEQUANTIZE_BLOCK_SIZE, 0, stream>>>(vx, y, k);
}

static void dequantize_row_q8_0_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
    const int num_blocks = (k + CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / CUDA_DEQUANTIZE_BLOCK_SIZE;
    dequantize_block<QK8_0, QR8_0, dequantize_q8_0><<<num_blocks, CUDA_DEQUANTIZE_BLOCK_SIZE, 0, stream>>>(vx, y, k);
}

static void dequantize_mul_mat_vec_q4_0_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
    GGML_ASSERT(ncols % CUDA_DMMV_BLOCK_SIZE == 0);
    dequantize_mul_mat_vec<CUDA_DMMV_BLOCK_SIZE, QK4_0, QR4_0, dequantize_q4_0>
        <<<nrows, CUDA_DMMV_BLOCK_SIZE, 0, stream>>>(vx, y, dst, ncols);
}

static void dequantize_mul_mat_vec_q4_1_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
    GGML_ASSERT(ncols % CUDA_DMMV_BLOCK_SIZE == 0);
    dequantize_mul_mat_vec<CUDA_DMMV_BLOCK_SIZE, QK4_1, QR4_1, dequantize_q4_1>
        <<<nrows, CUDA_DMMV_BLOCK_SIZE, 0, stream>>>(vx, y, dst, ncols);
}

static void dequantize_mul_mat_vec_q5_0_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
    GGML_ASSERT(ncols % CUDA_DMMV_BLOCK_SIZE == 0);
    dequantize_mul_mat_vec<CUDA_DMMV_BLOCK_SIZE, QK5_0, QR5_0, dequantize_q5_0>
        <<<nrows, CUDA_DMMV_BLOCK_SIZE, 0, stream>>>(vx, y, dst, ncols);
}

static void dequantize_mul_mat_vec_q5_1_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
    GGML_ASSERT(ncols % CUDA_DMMV_BLOCK_SIZE == 0);
    dequantize_mul_mat_vec<CUDA_DMMV_BLOCK_SIZE, QK5_1, QR5_1, dequantize_q5_1>
        <<<nrows, CUDA_DMMV_BLOCK_SIZE, 0, stream>>>(vx, y, dst, ncols);
}

static void dequantize_mul_mat_vec_q8_0_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
    GGML_ASSERT(ncols % CUDA_DMMV_BLOCK_SIZE == 0);
    dequantize_mul_mat_vec<CUDA_DMMV_BLOCK_SIZE, QK8_0, QR8_0, dequantize_q8_0>
        <<<nrows, CUDA_DMMV_BLOCK_SIZE, 0, stream>>>(vx, y, dst, ncols);
}

static void convert_fp16_to_fp32_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
    const int num_blocks = (k + CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / CUDA_DEQUANTIZE_BLOCK_SIZE;
    dequantize_block<32, 1, convert_f16><<<num_blocks, CUDA_DEQUANTIZE_BLOCK_SIZE, 0, stream>>>(vx, y, k);
}

static void convert_mul_mat_vec_f16_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
    GGML_ASSERT(ncols % CUDA_DMMV_BLOCK_SIZE == 0);
    dequantize_mul_mat_vec<CUDA_DMMV_BLOCK_SIZE, 32, 1, convert_f16>
        <<<nrows, CUDA_DMMV_BLOCK_SIZE, 0, stream>>>(vx, y, dst, ncols);
}

static to_fp32_cuda_t ggml_get_to_fp32_cuda(ggml_type type) {
    switch (type) {
        case GGML_TYPE_Q4_0:
            return dequantize_row_q4_0_cuda;
        case GGML_TYPE_Q4_1:
            return dequantize_row_q4_1_cuda;
        case GGML_TYPE_Q5_0:
            return dequantize_row_q5_0_cuda;
        case GGML_TYPE_Q5_1:
            return dequantize_row_q5_1_cuda;
        case GGML_TYPE_Q8_0:
            return dequantize_row_q8_0_cuda;
        case GGML_TYPE_F16:
            return convert_fp16_to_fp32_cuda;
        default:
            return nullptr;
    }
}

static dequantize_mul_mat_vec_cuda_t ggml_get_dequantize_mul_mat_vec_cuda(ggml_type type) {
    switch (type) {
        case GGML_TYPE_Q4_0:
            return dequantize_mul_mat_vec_q4_0_cuda;
        case GGML_TYPE_Q4_1:
            return dequantize_mul_mat_vec_q4_1_cuda;
        case GGML_TYPE_Q5_0:
            return dequantize_mul_mat_vec_q5_0_cuda;
        case GGML_TYPE_Q5_1:
            return dequantize_mul_mat_vec_q5_1_cuda;
        case GGML_TYPE_Q8_0:
            return dequantize_mul_mat_vec_q8_0_cuda;
        case GGML_TYPE_F16:
            return convert_mul_mat_vec_f16_cuda;
        default:
            return nullptr;
    }
}

// buffer pool for cuda
#define MAX_CUDA_BUFFERS 256

struct scoped_spin_lock {
    std::atomic_flag& lock;
    scoped_spin_lock(std::atomic_flag& lock) : lock(lock) {
        while (lock.test_and_set(std::memory_order_acquire)) {
            ; // spin
        }
    }
    ~scoped_spin_lock() {
        lock.clear(std::memory_order_release);
    }
    scoped_spin_lock(const scoped_spin_lock&) = delete;
    scoped_spin_lock& operator=(const scoped_spin_lock&) = delete;
};

struct cuda_buffer {
    void * ptr = nullptr;
    size_t size = 0;
};

static cuda_buffer g_cuda_buffer_pool[MAX_CUDA_BUFFERS];
static std::atomic_flag g_cuda_pool_lock = ATOMIC_FLAG_INIT;

static void * ggml_cuda_pool_malloc(size_t size, size_t * actual_size) {
    scoped_spin_lock lock(g_cuda_pool_lock);

    for (int i = 0; i < MAX_CUDA_BUFFERS; ++i) {
        cuda_buffer& b = g_cuda_buffer_pool[i];
        if (b.size >= size && b.ptr != nullptr) {
            void * ptr = b.ptr;
            *actual_size = b.size;
            b.ptr = nullptr;
            b.size = 0;
            return ptr;
        }
    }
    void * ptr;
    CUDA_CHECK(cudaMalloc((void **) &ptr, size));
    *actual_size = size;
    return ptr;
}

static void ggml_cuda_pool_free(void * ptr, size_t size) {
    scoped_spin_lock lock(g_cuda_pool_lock);

    for (int i = 0; i < MAX_CUDA_BUFFERS; ++i) {
        cuda_buffer& b = g_cuda_buffer_pool[i];
        if (b.ptr == nullptr) {
            b.ptr = ptr;
            b.size = size;
            return;
        }
    }
    fprintf(stderr, "WARNING: cuda buffer pool full, increase MAX_CUDA_BUFFERS\n");
    CUDA_CHECK(cudaFree(ptr));
}

#define GGML_CUDA_MAX_STREAMS 8 // Set this to 1 for reproducible matrix multiplication.
#define GGML_CUDA_MAX_EVENTS 64
static cublasHandle_t g_cublasH = nullptr;
static cudaStream_t g_cudaStreams[GGML_CUDA_MAX_STREAMS] = { nullptr };
static cudaStream_t g_cudaStreams2[GGML_CUDA_MAX_STREAMS] = { nullptr };
static cudaEvent_t g_cudaEvents[GGML_CUDA_MAX_EVENTS] = { nullptr };

void ggml_init_cublas() {
    if (g_cublasH == nullptr) {
        // create streams
        for (int i = 0; i < GGML_CUDA_MAX_STREAMS; ++i) {
            CUDA_CHECK(cudaStreamCreateWithFlags(&g_cudaStreams[i], cudaStreamNonBlocking));
            CUDA_CHECK(cudaStreamCreateWithFlags(&g_cudaStreams2[i], cudaStreamNonBlocking));
        }
        // create events
        for (int i = 0; i < GGML_CUDA_MAX_EVENTS; ++i) {
            CUDA_CHECK(cudaEventCreateWithFlags(&g_cudaEvents[i], cudaEventDisableTiming));
        }

        // create cublas handle
        CUBLAS_CHECK(cublasCreate(&g_cublasH));
        CUBLAS_CHECK(cublasSetMathMode(g_cublasH, CUBLAS_TF32_TENSOR_OP_MATH));

        // configure logging to stdout
        // CUBLAS_CHECK(cublasLoggerConfigure(1, 1, 0, nullptr));
    }
}

void * ggml_cuda_host_malloc(size_t size) {
    if (getenv("GGML_CUDA_NO_PINNED") != nullptr) {
        return nullptr;
    }

    void * ptr = nullptr;
    cudaError_t err = cudaMallocHost((void **) &ptr, size);
    if (err != cudaSuccess) {
        fprintf(stderr, "WARNING: failed to allocate %.2f MB of pinned memory: %s\n",
            size/1024.0/1024.0, cudaGetErrorString(err));
        return nullptr;
    }

    return ptr;
}

void ggml_cuda_host_free(void * ptr) {
    CUDA_CHECK(cudaFreeHost(ptr));
}

static cudaError_t ggml_cuda_h2d_tensor_2d(void * dst, const struct ggml_tensor * src, uint64_t i3, uint64_t i2, cudaStream_t stream) {
    const uint64_t ne0 = src->ne[0];
    const uint64_t ne1 = src->ne[1];
    const uint64_t nb0 = src->nb[0];
    const uint64_t nb1 = src->nb[1];
    const uint64_t nb2 = src->nb[2];
    const uint64_t nb3 = src->nb[3];
    const enum ggml_type type = src->type;
    const size_t ts = ggml_type_size(type);
    const size_t bs = ggml_blck_size(type);

    const void * x = (const void *) ((const char *) src->data + i2*nb2 + i3*nb3);
    if (nb0 == ts && nb1 == ts*ne0/bs) {
        return cudaMemcpyAsync(dst, x, ne1*nb1, cudaMemcpyHostToDevice, stream);
    } else if (nb0 == ts) {
        return cudaMemcpy2DAsync(dst, ts*ne0/bs, x, nb1, ts*ne0/bs, ne1, cudaMemcpyHostToDevice, stream);
    } else {
        for (uint64_t i1 = 0; i1 < ne1; i1++) {
            const void * rx = (const void *) ((const char *) x + i1*nb1);
            void * rd = (void *) ((char *) dst + i1*ts*ne0/bs);
            // pretend the row is a matrix with cols=1
            cudaError_t r = cudaMemcpy2DAsync(rd, ts/bs, rx, nb0, ts/bs, ne0, cudaMemcpyHostToDevice, stream);
            if (r != cudaSuccess) return r;
        }
        return cudaSuccess;
    }
}

static void ggml_cuda_mul_mat_f32(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
    const int64_t ne00 = src0->ne[0];
    const int64_t ne01 = src0->ne[1];
    const int64_t ne02 = src0->ne[2];
    const int64_t ne03 = src0->ne[3];

    const int64_t ne10 = src1->ne[0];
    const int64_t ne11 = src1->ne[1];

    const int nb2  = dst->nb[2];
    const int nb3  = dst->nb[3];

    const float alpha = 1.0f;
    const float beta = 0.0f;
    const int x_ne = ne01 * ne00;
    const int y_ne = ne11 * ne10;
    const int d_ne = ne11 * ne01;
    const int n_mm = ne03 * ne02;

    size_t x_size, y_size, d_size;
    float * d_X = (float *) ggml_cuda_pool_malloc(n_mm * sizeof(float) * x_ne, &x_size);
    float * d_Y = (float *) ggml_cuda_pool_malloc(n_mm * sizeof(float) * y_ne, &y_size);
    float * d_D = (float *) ggml_cuda_pool_malloc(n_mm * sizeof(float) * d_ne, &d_size);

    for (int64_t i03 = 0; i03 < ne03; i03++) {
        for (int64_t i02 = 0; i02 < ne02; i02++) {
            int i = i03*ne02 + i02;
            cudaStream_t cudaStream = g_cudaStreams[i % GGML_CUDA_MAX_STREAMS];

            float * c_X = d_X + i * x_ne;
            float * c_Y = d_Y + i * y_ne;
            float * c_D = d_D + i * d_ne;

            // copy data to device
            CUDA_CHECK(ggml_cuda_h2d_tensor_2d(c_X, src0, i03, i02, cudaStream));
            CUDA_CHECK(ggml_cuda_h2d_tensor_2d(c_Y, src1, i03, i02, cudaStream));

            // compute
            CUBLAS_CHECK(cublasSetStream(g_cublasH, cudaStream));
            CUBLAS_CHECK(
                cublasSgemm(g_cublasH, CUBLAS_OP_T, CUBLAS_OP_N,
                        ne01, ne11, ne10,
                        &alpha, c_X, ne00,
                                c_Y, ne10,
                        &beta,  c_D, ne01));

            // copy dst to host
            float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
            CUDA_CHECK(cudaMemcpyAsync(d, c_D, sizeof(float) * d_ne, cudaMemcpyDeviceToHost, cudaStream));
        }
    }

    CUDA_CHECK(cudaDeviceSynchronize());
    ggml_cuda_pool_free(d_X, x_size);
    ggml_cuda_pool_free(d_Y, y_size);
    ggml_cuda_pool_free(d_D, d_size);
}

static void ggml_cuda_mul_mat_f16(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, void * wdata, size_t /* wsize */) {
    const int64_t ne00 = src0->ne[0];
    const int64_t ne01 = src0->ne[1];
    const int64_t ne02 = src0->ne[2];
    const int64_t ne03 = src0->ne[3];

    const int64_t ne10 = src1->ne[0];
    const int64_t ne11 = src1->ne[1];

    const int nb10 = src1->nb[0];
    const int nb11 = src1->nb[1];
    const int nb12 = src1->nb[2];
    const int nb13 = src1->nb[3];

    const int nb2  = dst->nb[2];
    const int nb3  = dst->nb[3];

    const float alpha = 1.0f;
    const float beta = 0.0f;
    const int x_ne = ne01 * ne00;
    const int y_ne = ne11 * ne10;
    const int d_ne = ne11 * ne01;
    const int n_mm = ne03 * ne02;

    size_t x_size, y_size, d_size;
    half  * d_X =  (half *) ggml_cuda_pool_malloc(n_mm * sizeof(half) * x_ne, &x_size);
    half  * d_Y =  (half *) ggml_cuda_pool_malloc(n_mm * sizeof(half) * y_ne, &y_size);
    float * d_D = (float *) ggml_cuda_pool_malloc(n_mm * sizeof(float) * d_ne, &d_size);

    bool src1_cont_rows = nb10 == sizeof(float);
    bool src1_cont_cols = (size_t)nb11 == ne11*sizeof(float);

    for (int64_t i03 = 0; i03 < ne03; i03++) {
        for (int64_t i02 = 0; i02 < ne02; i02++) {
            int i = i03*ne02 + i02;
            cudaStream_t cudaStream = g_cudaStreams[i % GGML_CUDA_MAX_STREAMS];

            half  * c_X = d_X + i * x_ne;
            half  * c_Y = d_Y + i * y_ne;
            float * c_D = d_D + i * d_ne;

            // copy src0 to device
            CUDA_CHECK(ggml_cuda_h2d_tensor_2d(c_X, src0, i03, i02, cudaStream));

            // convert src1 to fp16
            // TODO: use multiple threads
            ggml_fp16_t * const tmp = (ggml_fp16_t *) wdata + (ne11 * ne10) * (i03 * ne02 + i02);
            char * src1i = (char *) src1->data + i03*nb13 + i02*nb12;
            if (src1_cont_rows) {
                if (src1_cont_cols) {
                    ggml_fp32_to_fp16_row((float *) src1i, tmp, ne10*ne11);
                }
                else {
                    for (int64_t i01 = 0; i01 < ne11; i01++) {
                        ggml_fp32_to_fp16_row((float *) (src1i + i01*nb11), tmp + i01*ne10, ne10);
                    }
                }
            }
            else {
                for (int64_t i01 = 0; i01 < ne11; i01++) {
                    for (int64_t i00 = 0; i00 < ne10; i00++) {
                        // very slow due to no inlining
                        tmp[i01*ne10 + i00] = ggml_fp32_to_fp16(*(float *) (src1i + i01*nb11 + i00*nb10));
                    }
                }
            }

            // copy src1 to device
            CUDA_CHECK(cudaMemcpyAsync(c_Y, tmp, sizeof(half) * y_ne, cudaMemcpyHostToDevice, cudaStream));

            // compute
            CUBLAS_CHECK(cublasSetStream(g_cublasH, cudaStream));
            CUBLAS_CHECK(
                cublasGemmEx(g_cublasH, CUBLAS_OP_T, CUBLAS_OP_N,
                        ne01, ne11, ne10,
                        &alpha, c_X, CUDA_R_16F, ne00,
                                c_Y, CUDA_R_16F, ne10,
                        &beta,  c_D, CUDA_R_32F, ne01,
                        CUBLAS_COMPUTE_32F_FAST_16F,
                        CUBLAS_GEMM_DEFAULT));

            // copy dst to host
            float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
            CUDA_CHECK(cudaMemcpyAsync(d, c_D, sizeof(float) * d_ne, cudaMemcpyDeviceToHost, cudaStream));
        }
    }

    CUDA_CHECK(cudaDeviceSynchronize());
    ggml_cuda_pool_free(d_X, x_size);
    ggml_cuda_pool_free(d_Y, y_size);
    ggml_cuda_pool_free(d_D, d_size);
}

static void ggml_cuda_mul_mat_q_f32(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
    const int64_t ne00 = src0->ne[0];
    const int64_t ne01 = src0->ne[1];
    const int64_t ne02 = src0->ne[2];
    const int64_t ne03 = src0->ne[3];

    const int64_t ne10 = src1->ne[0];
    const int64_t ne11 = src1->ne[1];

    const int nb2  = dst->nb[2];
    const int nb3  = dst->nb[3];
    const ggml_type type = src0->type;
    const bool mul_mat_vec = ne11 == 1;

    const float alpha = 1.0f;
    const float beta = 0.0f;
    const int x_ne = ne01 * ne00;
    const int y_ne = ne11 * ne10;
    const int d_ne = ne11 * ne01;
    const int n_mm = ne03 * ne02;
    const size_t q_sz = ggml_type_size(type) * x_ne / ggml_blck_size(type);

    size_t x_size, y_size, d_size, q_size;
    float * d_X = nullptr;
    if (!mul_mat_vec) {
        d_X = (float *) ggml_cuda_pool_malloc(n_mm * sizeof(float) * x_ne, &x_size);
    }
    float * d_Y = (float *) ggml_cuda_pool_malloc(n_mm * sizeof(float) * y_ne, &y_size);
    float * d_D = (float *) ggml_cuda_pool_malloc(n_mm * sizeof(float) * d_ne, &d_size);
    char  * d_Q = (char  *) ggml_cuda_pool_malloc(n_mm * q_sz, &q_size);

    const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(type);
    dequantize_mul_mat_vec_cuda_t dmmv = ggml_get_dequantize_mul_mat_vec_cuda(type);
    GGML_ASSERT(to_fp32_cuda != nullptr);

    for (int64_t i03 = 0; i03 < ne03; i03++) {
        for (int64_t i02 = 0; i02 < ne02; i02++) {
            int i = i03*ne02 + i02;
            cudaStream_t cudaStream = g_cudaStreams[i % GGML_CUDA_MAX_STREAMS];
            cudaStream_t cudaStream2 = g_cudaStreams2[i % GGML_CUDA_MAX_STREAMS];
            cudaEvent_t  cudaEvent = g_cudaEvents[i % GGML_CUDA_MAX_EVENTS];

            float * c_Y = d_Y + i * y_ne;
            float * c_D = d_D + i * d_ne;
            char  * c_Q = d_Q + i * q_sz;

            // copy src0 to device if necessary
            if (src0->backend == GGML_BACKEND_CPU) {
                CUDA_CHECK(ggml_cuda_h2d_tensor_2d(c_Q, src0, i03, i02, cudaStream2));
            } else if (src0->backend == GGML_BACKEND_CUDA) {
                c_Q = ((char *) src0->data) + i * q_sz;
            } else {
                GGML_ASSERT(false);
            }
            if (mul_mat_vec) { // specialized dequantize_mul_mat_vec kernel
                CUDA_CHECK(cudaEventRecord(cudaEvent, cudaStream2));

                // copy src1 to device
                CUDA_CHECK(ggml_cuda_h2d_tensor_2d(c_Y, src1, i03, i02, cudaStream));

                // wait for data
                CUDA_CHECK(cudaStreamWaitEvent(cudaStream, cudaEvent, 0));

                // compute
                dmmv(c_Q, c_Y, c_D, ne00, ne01, cudaStream);
                CUDA_CHECK(cudaGetLastError());

            } else { // general dequantization kernel + cuBLAS matrix matrix multiplication
                float * c_X = d_X + i * x_ne;

                // convert src0 to fp32 on device
                to_fp32_cuda(c_Q, c_X, x_ne, cudaStream2);
                CUDA_CHECK(cudaGetLastError());
                CUDA_CHECK(cudaEventRecord(cudaEvent, cudaStream2));

                // copy src1 to device
                CUDA_CHECK(ggml_cuda_h2d_tensor_2d(c_Y, src1, i03, i02, cudaStream));

                // wait for conversion
                CUDA_CHECK(cudaStreamWaitEvent(cudaStream, cudaEvent, 0));

                // compute
                CUBLAS_CHECK(cublasSetStream(g_cublasH, cudaStream));
                CUBLAS_CHECK(
                    cublasSgemm(g_cublasH, CUBLAS_OP_T, CUBLAS_OP_N,
                            ne01, ne11, ne10,
                            &alpha, c_X, ne00,
                                    c_Y, ne10,
                            &beta,  c_D, ne01));
            }

            // copy dst to host
            float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
            CUDA_CHECK(cudaMemcpyAsync(d, c_D, sizeof(float) * d_ne, cudaMemcpyDeviceToHost, cudaStream));
        }
    }

    CUDA_CHECK(cudaDeviceSynchronize());
    if (!mul_mat_vec) {
        ggml_cuda_pool_free(d_X, x_size);
    }
    ggml_cuda_pool_free(d_Y, y_size);
    ggml_cuda_pool_free(d_D, d_size);
    ggml_cuda_pool_free(d_Q, q_size);
}

bool ggml_cuda_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) {
    const int64_t ne10 = src1->ne[0];

    const int64_t ne0 = dst->ne[0];
    const int64_t ne1 = dst->ne[1];

    // TODO: find the optimal values for these
    if ((src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) &&
        src1->type == GGML_TYPE_F32 &&
        dst->type == GGML_TYPE_F32 &&
        ((ne0 >= 32 && ne1 >= 32 && ne10 >= 32) || src0->backend == GGML_BACKEND_CUDA)) {
        return true;
    }

    return false;
}

bool ggml_cuda_mul_mat_use_f16(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * /* dst */) {
    size_t src0_sz = ggml_nbytes(src0);
    size_t src1_sz = ggml_nbytes(src1);

    // mul_mat_q: src0 is converted to fp32 on device
    size_t mul_mat_q_transfer = src0_sz + src1_sz;

    // mul_mat_f16: src1 is converted to fp16 on cpu
    size_t mul_mat_f16_transfer = src0_sz + sizeof(half) * ggml_nelements(src1);

    // choose the smaller one to transfer to the device
    // TODO: this is not always the best choice due to the overhead of converting to fp16
    return mul_mat_f16_transfer < mul_mat_q_transfer;
}

void ggml_cuda_mul_mat(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, void * wdata, size_t wsize) {
    GGML_ASSERT(ggml_cuda_can_mul_mat(src0, src1, dst));

    if (src0->type == GGML_TYPE_F32) {
        ggml_cuda_mul_mat_f32(src0, src1, dst);
    }
    else if (src0->type == GGML_TYPE_F16) {
        if (ggml_cuda_mul_mat_use_f16(src0, src1, dst)) {
            ggml_cuda_mul_mat_f16(src0, src1, dst, wdata, wsize);
        }
        else {
            ggml_cuda_mul_mat_q_f32(src0, src1, dst);
        }
    }
    else if (ggml_is_quantized(src0->type)) {
        ggml_cuda_mul_mat_q_f32(src0, src1, dst);
    }
    else {
        GGML_ASSERT(false);
    }
}

size_t ggml_cuda_mul_mat_get_wsize(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) {
    if (ggml_cuda_mul_mat_use_f16(src0, src1, dst)) {
        return ggml_nelements(src1) * sizeof(ggml_fp16_t);
    }
    else {
        return 0;
    }
}

void ggml_cuda_transform_tensor(ggml_tensor * tensor) {
    const int64_t ne0 = tensor->ne[0];
    const int64_t ne1 = tensor->ne[1];
    const int64_t ne2 = tensor->ne[2];
    const int64_t ne3 = tensor->ne[3];

    const ggml_type type = tensor->type;
    const size_t q_sz = ggml_type_size(type) * ne0 * ne1 * ne2 * ne3 / ggml_blck_size(type);

    size_t q_size;
    char * d_Q = (char *) ggml_cuda_pool_malloc(q_sz, &q_size);

    cudaStream_t cudaStream2 = g_cudaStreams2[0];

    // copy tensor to device
    CUDA_CHECK(ggml_cuda_h2d_tensor_2d(d_Q, tensor, 0, 0, cudaStream2));
    CUDA_CHECK(cudaDeviceSynchronize());

    tensor->data = d_Q;
    tensor->backend = GGML_BACKEND_CUDA;
}